403 research outputs found

    Distribution and genetic variability of Staphylinidae across a gradient of anthropogenically influenced insular landscapes

    Get PDF
    This paper describes the distribution and genetic variability of rove beetles (Coleoptera Staphylinidae) in anthropogenically influenced insular landscapes. The study was conducted in the Azores archipelago, characterized by high anthropogenic influence and landscape fragmentation. Collections were made in five islands, from eight habitats, along a gradient of anthropogenic influence. The species of Staphylinidae from the Azores collected for this study were widely distributed and showed low habitat fidelity. Rove beetle richness was associated with anthropogenic influence and habitat type, increasing from less to more anthropogenic impacted habitats. However, genetic diversity of profiled species (i.e. with three or more specimens per species/habitat) does not seem affected by anthropogenic influence in the different habitat types, isolation or landscape fragmentation. COI haplotypes were, as a rule, not exclusive to a given island or habitat. High level of genetic divergence and nucleotide saturation was found in closely related morphological designated species, demonstrating possible disparities between currently defined taxonomic units based on morphology and molecular phylogenies of Staphylinidae. This study found evidence of cryptic speciation in the Atheta fungi (Gravenhorst) species complex which had thus far remained undetected. Similar trends were found for Oligota parva Kraatz, Oxytelus sculptus Gravenhorst, Oligota pumilio Kiesenwetter. Previous studies with lower taxonomical resolution may have underestimated the biotic diversity reported in the Azores in comparison to other Macaronesian archipelagos.info:eu-repo/semantics/publishedVersio

    Phylogeny of the hyper-diverse rove beetle subtribe Philonthina with implications for classification of the tribe Staphylinini (Coleoptera: Staphylinidae)

    Get PDF
    With 71 genera and over 2700 described species, Philonthina is the most speciose subtribe of rove beetle tribe Staphylinini and forms a major component of the largest remaining higher systematics challenge in Staphylinini, the Staphylinini propria clade. A related systematics issue concerns the position of the genus Holisus Hyptiomina), which was recovered within the Neotropical philonthine lineage in several recent analyses of morphology. With the aims of resolving the phylogeny of Philonthina and the position and, thus, validity of Hyptiomina, we performed phylogenetic analyses of the tribe Staphylinini based on molecular (six genes, 4471 bp) and morphological (113 characters) data including 138 taxa from all relevant lineages of Staphylinini. We found that "Staphylinini propria" is a monophylum consisting of six lineages: current subtribes Anisolinina, Philonthina, Staphylinina and Xanthopygina; and two new subtribes, Algonina Schillhammer and Brunke and Philothalpina Chatzimanolis and Brunke. While the previously hypothesized Neotropical lineage of Philonthina was corroborated, Holisus was recovered as a separate subtribe, outside of Philonthina, within an informal Southern Hemisphere clade. Based on our analyses, we propose tentative new concepts of the polyphyletic genera Belonuchus and Philonthus. We propose the following taxonomic changes: synonymy of the subtribes Staphylinina Latreille (valid name) and Eucibdelina Sharp; resurrection of genera Barypalpus Cameron and Trapeziderus Motschulsky from synonymy with Rientis Sharp and Belonuchus Nordmann, respectively; transfer of 38 Belonuchus species, 16 Hesperus Fauvel species and one Philonthus Stephens species to Trapeziderus as new combinations; transfer of two Hesperus species to Eccoptolonthus Bernhauer as new combinations; transfer of one Belonuchus species to Paederomimus Sharp as a new combination; and transfer of Pridonius Blackwelder new status from its position as a subgenus of Quedius (subtribe Quediina) to Philonthina as a genus, and new combinations for its two described species.Fil: Chani Posse, Mariana Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina. Natural History Museum of Denmark; DinamarcaFil: Brunke, Adam James. Natural History Museum Vienna. International Research Institute for Entomology; Austria. Canadian National Collection of Insects, Arachnids and Nematodes; CanadáFil: Chatzimanolis, Stylianos. University of Tennessee at Chattanooga; Estados UnidosFil: Schillhammer, Harald. Natural History Museum Vienna. International Research Institute for Entomology; AustriaFil: Solodovnikov, Alexey. Natural Historymuseun Of Copenhague. Zoological Museum Of Copenhague; Dinamarc

    Dispersal of thermophilic beetles across the intercontinental Arctic forest belt during the early Eocene

    Get PDF
    Abstract Massive biotic change occurred during the Eocene as the climate shifted from warm and equable to seasonal and latitudinally stratified. Mild winter temperatures across Arctic intercontinental land bridges permitted dispersal of frost-intolerant groups until the Eocene-Oligocene boundary, while trans-Arctic dispersal in thermophilic groups may have been limited to the early Eocene, especially during short-lived hyperthermals. Some of these lineages are now disjunct between continents of the northern hemisphere. Although Eocene climate change may have been one of the most important drivers of these ancient patterns in modern animal and plant distributions, its particular events are rarely implicated or correlated with group-specific climatic requirements. Here we explored the climatic and geological drivers of a particularly striking Neotropical-Oriental disjunct distribution in the rove beetle Bolitogyrus, a suspected Eocene relict. We integrated evidence from Eocene fossils, distributional and climate data, paleoclimate, paleogeography, and phylogenetic divergence dating to show that intercontinental dispersal of Bolitogyrus ceased in the early Eocene, consistent with the termination of conditions required by thermophilic lineages. These results provide new insight into the poorly known and short-lived Arctic forest community of the Early Eocene and its surviving lineages

    The probable larva of an undescribed species of Edrabius (Coleoptera: Staphylinidae) and its implications for the systematics of the tribe Amblyopinini.

    Get PDF
    Larval staphylinids collected from the nest of the Chilean tuco-tuco, Ctenomys maulinus brunneus, are presumed to be those of an undescribed species of Edrabius, adults of which are known to occur on this host. These larvae are described and illustrations are provided for their identification. The larvae are characteristic of the subfamily Staphylininae; however, they do not have a combination of characteristics which allows unambiguous placement into one of the described tribes of this subfamily. Edrabius larvae share the greatest number of characteristics with larvae of the tribe Staphylinini, and, among these, with members of the subtribe Xanthopygina. Importantly, they differ from larvae of the tribe Quediini, to which the amblyopinines were believed to be related, in a number of significant ways. However, Edrabius may not be a part of a monophyletic lineage with the remainder of the South American amblyopinines

    Delgadobius amazonensis—a new genus and species of the subtribe Philonthina from Amazonia (Coleoptera: Staphylinidae: Staphylininae)

    Get PDF
    Delgadobius amazonensis Chani-Posse & Couturier, gen. et sp. nov., a new genus and species of the subtribe Philonthina (tribe Staphylinini) from Amazonia, is described and illustrated. The potential phylogenetic relationships of Delgadobius with other Neotropical genera of Philonthina are discussed. Distributional and bionomic data are also provided. Delgadobius amazonensis is reported in association with four species of palm trees (Arecaceae).Fil: Chani Posse, Mariana Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Couturier, Guy. Museum National d’Histoire Naturelle; Franci

    Taxonomy of the poorly known <em>Quedius mutilatus</em> group of wingless montane species from Middle Asia (Coleoptera: Staphylinidae: Staphylinini)

    Get PDF
    The Quedius mutilatus group, a very poorly known presumably monophyletic complex of wingless, possibly hypogean species confined to the Tien-Shan Mountains, is characterized as such for the first time. Newly available material clarified the identity of Q. mutilatus Eppelsheim, 1888 and Q. kalabi Smetana, 1995, each hitherto known from a handful of non-conspecific and vaguely georeferenced specimens only. Additional material is reported for Q. equus Smetana, 2014 and one species, Quedius kungeicus sp. nov., is described. All available data on the taxonomy, distribution and bionomics for all these four species of the group are summarized
    corecore