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2	  

The remarkable Australian rove beetle genus Myotyphlus: its cryptic diversity and significance 23	  

for exploring mutualism among insects and mammals (Coleoptera: Staphylinidae) 24	  

25	  

‘C'est un des types les plus curieux de l'immense famille des Staphylinides.’ [it is one of the 26	  

most curious types of the vast family of rove beetles]. (Fauvel 1883) 27	  

‘Myotyphlus remains the most enigmatic genus.’ (Ashe & Timm 1988). 28	  

29	  

Abstract 30	  

Myotyphlus jansoni (Matthews, 1878), a rare and the only rove beetle species from the 31	  

subtribe Amblyopinina in Australia that occurs in the fur of small mammals, is revised.  Male 32	  

genitalia have been examined for this species and, as a result, it is divided into three species: 33	  

M. jansoni restricted to Tasmania; as well as M. newtoni sp. nov. and M. wurra sp. nov.34	  

described as new from mainland south-western Australia. Distribution, bionomics and host 35	  

associations are summarized for all three species with a conclusion that at least M. newtoni sp. 36	  

nov. and M. wurra sp. nov., in addition to the mammal-associated records, also occur in bat 37	  

guano in caves, or on the ground. Neither of three Myotyphlus species is specific for a 38	  

particular mammal species, and the genus as a whole occurs on several species of Rattus, on 39	  

Pseudomys higginsi, and on Antechinus swainsonii. Presumably Myotyphlus is not as strongly 40	  

associated with the host mammals as the more diverse American mammal-associated genera 41	  

of Amblyopinina. Ecology and putative sister-group relationships of Myotyphlus reviewed in 42	  

the broad context of mammal-rove beetle mutualism suggest an independent origin of this 43	  

mammal-associated lifestyle in the Neotropics and Australia from different free living 44	  

lineages of Amblyopinina. 45	  

46	  

Key words: systematics, Staphylinini, Amblyopinina, Australia, Neotropical, new species 47	  

1. Introduction48	  

Insects and mammals are two very different, diverse, and evolutionarily successful animal 49	  

groups dominating all habitable landscapes on our planet. They are mutually dependent on 50	  

each other as valuable components of terrestrial ecosystems through indirect associations, for 51	  
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example insects as pollinators of plants and grazing mammals as plant consumers, or dung 52	  

beetles as coprophages and mammals as dung producers. These balanced biotic interactions 53	  

between two animal classes are crucial for the biosphere and yield important benefits for 54	  

humans. At the same time direct interactions between insects and mammals mostly appear 55	  

antagonistic. For example, many mammals predate on insects, or some insects consume 56	  

mammal blood or otherwise utilize them as hosts during parasitism. In fact with about 6000 57	  

species of ectoparasitic insects (Marshall 1981), their parasitism on mammals is the main type 58	  

of direct relationships between these animal classes followed by mammal predation on 59	  

insects. 60	  

On the contrary, there seems to be hardly any examples of an insect-mammal 61	  

mutualism. This is quite remarkable since mutualisms, defined as interactions that benefit 62	  

both parties involved, are frequently encountered in the natural world (e.g. Boucher et al. 63	  

1982; Herre et al. 1999; Weiblen & Treiber 2015). One example of an insect-mammal direct 64	  

association interpreted as mutualism is the interaction between sloths and pyralid moths that, 65	  

however, also involve the third agent, the algae in Central America (Pauli et al. 2014).  A 66	  

much more straightforward case of insects truly mutualistic to mammals has been discovered 67	  

earlier (Ashe & Timm 1987a) among Amblyopinina, a subtribe of rove beetles 68	  

(Staphylinidae) that are a mega-diverse, globally distributed beetle family. In fact, the 69	  

peculiar looking Amblyopinina rove beetles from the Neotropical region were known to 70	  

entomologists for more than a century who gradually described their 6 genera (Amblyopinus 71	  

Solsky, 1875, Edrabius Fauvel, 1900, Amblyopinoides Seevers, 1955, Megamblyopinus 72	  

Seevers, 1955 and Chilamblyopinus Ashe & Timm, 1988 from South America, and 73	  

Myotyphlus Fauvel, 1883 from Australia), altogether comprising 65 species (Herman 2001). 74	  

But due to these strange looking beetles (Fig. 1) repeatedly being collected in the fur of live 75	  

small mammals, mostly rodents, and reminiscent of fleas, they were always presumed to be 76	  

ectoparasites on their mammal hosts. Seevers (1955), however, had noted that the hosts were 77	  

‘insensible’ to the beetles on their bodies, even if the beetles were crossing the hosts’ eyes. 78	  

Later, Ashe and Timm (1987a) extended Seevers' (1955) observation into an interesting 79	  

experiment. They took live specimens of Amblyopinus tiptoni Barrera, 1966 and placed them 80	  

on the mouse Scotinomys teguine (Alston, 1877) that is not a host of the beetle but one that is 81	  

similar in fur type and body size to its natural hosts. The mice reacted by actively grooming 82	  

the beetles out and exterminating them, such behavior suggesting a significant degree of 83	  

coadaptation among beetles and their natural hosts required in case of mutualism. 84	  

Additionally, they observed the beetles feeding on the ‘real’ ectoparasites of their hosts, such 85	  
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as fleas or mites. Ashe and Timm (1987a) argued that as predatory rove beetles Amblyopinina 86	  

became adapted to hunt true mammal ectoparasitess directly from the fur of their hosts. In 87	  

return, the hosts evolved high tolerance to the beetles on their bodies. Therefore, these rove 88	  

beetles and their mammal host display a highly specialized case of mutualism. 89	  

In spite of the recent papers by Ashe and Timm (1987a, b) which gave a good summary 90	  

and a novel look at the amblyopinine biology, this rare and perhaps the only known example 91	  

of an insect-mammal mutualism, was not placed in the spotlight of the broader evolutionary 92	  

research. One reason for that is lack of a sound phylogenetic study of Amblyopinina resulting 93	  

in confusing definition of these rove beetles and their putative sister relationships. Secondly, 94	  

poor outreach of the specialized sections of systematic entomology to other biological 95	  

disciplines acted as an impediment for making these beetles accessible for studies outside that 96	  

field. Recently a series of phylogenetic studies of Staphylinini (Solodovnikov 2006; 97	  

Solodovnikov & Schomann 2009; Chatzimanolis et al. 2010; Brunke et al. 2015) finally 98	  

defined a broader monophyletic group that gave rise to these mammal mutualistic 99	  

amblyopinines. These studies, however, did not address one of the core evolutionary 100	  

questions about this mutualism: whether all mammal associated Amblyopinina stem from a 101	  

single free living ancestor, or whether they are in fact polyphyletic. In other words, it remains 102	  

open if this very unique case of mutualism among insects and mammals has a single origin or 103	  

arose multiple times from closely related free living ancestors within the rove beetle subtribe 104	  

Amblyopinina. Myotyphlus jansoni (Matthews, 1878), the only Australian representative of 105	  

the otherwise South and Central American mutualistic amblyopinines is the key taxon for 106	  

seeking answers for this question. In addition to its geographic distribution as an outlier, 107	  

morphology of that species is not as derived as in species of the main (Neotropical) mammal-108	  

associated stock of Amblyopinina. And the ecology of its association with mammals, as far as 109	  

known (Hamilton-Smith & Adams 1966) seems less strict than in the Neotropical species. 110	  

Although being a truly unique beetle in Australia critical for understanding the rare biological 111	  

phenomenon of insect-mammal mutualism, M. jansoni remains a very poorly known species 112	  

without a proper modern taxonomic treatment. Even its aedeagus, for example, has never 113	  

been dissected and studied, although illustrating this structure is now a standard in species 114	  

diagnostics of rove beetles, especially Staphylinini. To fill all abovementioned gaps, here we 115	  

target the systematic revision of M. jansoni and summarize all available data about its 116	  

distribution, bionomics and biology. We discuss these data in the phylogenetic context 117	  

elucidating the origin of the unique example of insect-mammal mutualism displayed by rove 118	  

beetles. Morphology of M. jansoni had to be revisited since none of the previous descriptions 119	  



5	  

accounted for systematically important characters that have been introduced in the latest 120	  

phylogenetic work on Staphylinini. Morphology is particularly important in this case as hosts 121	  

and/or symbionts frequently evolve novel characters or lose them (Herre et al. 1999). With 122	  

the closer examination of this amazing living species of the Australian continent, we have 123	  

discovered that in fact it consists of three species two of which are new to science and are 124	  

described here. Due to the paucity of the available material, our knowledge of the distribution 125	  

and biology of this species complex remains limited, while its species discrimination is 126	  

possible only with the examination of male genitalia. But we hope that this paper will 127	  

stimulate further study of this species complex, also by DNA-based methods and with 128	  

biological observations. By reviewing mammal-associated mutualism in beetles and insects in 129	  

general here, we also aim to bridge the gap between technical systematics of Amblyopinina 130	  

and broader evolutionary research of this group, potentially manifesting the multiple origin of 131	  

a remarkable and unique case of mutualism between insects and mammals. 132	  

2. Materials and methods133	  

Beetles were examined using a Leica MZ APO dissection microscope. They were studied as 134	  

either dry pinned material or as wet specimens in petri dishes containing glycerin. Dissected 135	  

genitalia are stored in glycerin in vials or mounted in water soluble transparent Lompe 136	  

solution on see-through cards, those attached to an insect pin beneath respective specimens. 137	  

Measurements were taken using an ocular micrometer and are given in millimeters (mm). 138	  

Morphological characters are abbreviated as follows FL = Forebody Length (posterior margin 139	  

of elytra to anterior margin of labrum), HL = Head Length (from apex of labrum to neck 140	  

constriction), HW= Head Width at widest point, HL*HW= Head Length X Head Width. 141	  

Specimen label data is repeated verbatim, one forward slash (/) indicates separation of labels. 142	  

This paper is based on the study of specimens from the following collections: 143	  

BMNH – Natural History Museum, London (R. Booth, M. Barclay) 144	  

CSIRO - Australian National Insect Collection Canberra (C. Lemann) 145	  

FMNH - Field Museum of Natural History, Chicago (J. Boone, C. Maier) 146	  

SAM - South Australian Museum, Adelaide (P. Hudson) 147	  

ZMUC – Zoological Museum at the University of Copenhagen (part of the Natural History 148	  

Museum of Denmark (A. Solodovnikov, S. Selvantharan) 149	  
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Habitus photographs were taken using either the Visionary Digital Imaging Systems with a 150	  

Canon EOS 7D (Myotyphlus jansoni habitus) or a Leica MZ 16 A dissection scope combined 151	  

with a Leica DFC450 C camera (habitus images in Fig. 1) and stacked using Zerene Stacker 152	  

software. A middle leg was taken from M. jansoni, mounted on aluminium stubs, coated with 153	  

platinum/palladium and studied in a JEOL JSM-6335F scanning electron microscope. The 154	  

distribution map was created using QGIS 2.12 Lyon and the Natural Earth Free vector and 155	  

raster map data (naturalearthdata.com). The schematic phylogeny (Fig. 1) was drawn in 156	  

Adobe Illustrator CS6. The graph (Fig. 2A) was made using R studio 3.2.3 using the package 157	  

‘ggplot2’. Male genitalia were digitally inked from photos using Adobe Illustrator CS6. 158	  

159	  

3. Systematics of the genus Myotyphlus160	  

3.1. Taxonomic history 161	  

Until present the genus Myotyphlus was known from a single species Myotyphlus jansoni 162	  

(Matthews, 1878). That species was described in the genus Amblyopinus, at that time 163	  

associated with the rove beetle subfamily Tachyporinae. Its original description (Matthews 164	  

1878) was based on two specimens collected in Tasmania. The description was very careful 165	  

and even contained illustrations of morphological details which was rare at that time. Fauvel 166	  

(1883), who studied this species shortly after, argued that it must be moved from 167	  

Amblyopinus to its own genus that he named Myotyphlus. Matthews (1884) agreed with the 168	  

separate generic status of this species, but he did not like Fauvel’s name Myotyphlus and 169	  

proposed the genus name Cryptommatus instead. Contrary to Fauvel (1883) who erected 170	  

Myotyphlus without elaborate character assessment or even a genus description, Matthews’ 171	  

(1884) description of Cryptommatus was very detailed. Also Matthews (1878, 1884) pointed 172	  

to the affinity of Myotyphlus jansoni with the genus Philonthus, i.e. towards the subfamily 173	  

Staphylininae where Myotyphlus currently belongs. Naturally, Matthews’ genus 174	  

Cryptommatus was placed in synonymy with Myotyphlus in accordance with the rules of 175	  

zoological nomenclature. Apart from several catalogues and ecological faunistic records (Lea 176	  

1925; Hamilton-Smith & Adams 1966),  Myotyphlus jansoni was redescribed, illustrated and 177	  

compared to the American members of the group only several decades later, in the 178	  

monograph of Seevers (1955). Later, the species was mentioned in Machado-Allison (1963), 179	  

Newton (1985), and Ashe & Timm (1988) who expressed opinions on its possible 180	  

phylogenetic affinities that we address in the discussion. 181	  
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3.2. Recognition of the genus 182	  

Among all rove beetles of Australia Myotyphlus is easily recognized based on the following 183	  

features of its habitus (Fig. 2D): overall depigmented body; characteristically trapezoidal head 184	  

noticeably widened posteriorly and with very reduced eyes situated anteriad on the head; 185	  

reduced elytra that are slightly shorter than the pronotum; and a black comb on the first 186	  

mesotarsomere in both sexes (Fig. 3). Additional characters such as the quadrate pronotum; 187	  

apical segment of labial and maxillary palpi about half the length of the penultimate segment; 188	  

lack of post-coxal process on the strongly deflexed hypomera; and presence of sub-basal 189	  

carina connecting spiracles on abdominal tergites III to V are important to note for placing M. 190	  

jansoni in its proper lineage within Amblyopinina (for more details see below). Among 191	  

Australian Staphylinidae Myotyphlus may superficially appear similar to Quedius 192	  

mediofuscus Lea, 1910. 193	  

194	  

3.3. Myotyphlus jansoni, revised concept 195	  

Type material examined: Australia: Tasmania: syntypes: 2 males, 1 female, ‘Tasmania A. 196	  

Simson // 3137’ (SAM).  197	  

Other material: Australia: Tasmania: 2 females, ‘3137 Cryptommatus jansoni Matth 198	  

Tasmania (SAM); 1 female, ‘From bush rat [something illegible] Tas. H.M. Nicholls/ J. 199	  

12506 Cryptommatus janssoni Matth. Tasmania base of rats tail cotype’; 2 females with same 200	  

geographic labels but without determination label; (SAM); 1 male, 1 female: ‘Cradle Mt, 201	  

6.xii.1964, R.H Green/ Pseudomys higginsi/ Myotyphlus >3 spp. (2+ new) det. A. Newton202	  

1981’. 2 males: ‘Franklin River, below Gordons Peak, 15 Jan. 1983, E.B Britton’. 1 male, 1 203	  

female: ‘Mt Kate, 16.x.1964, R.H Green/ Rattus lutreolus’. 1 female: ‘Florentine Valley, 204	  

7.vii.1959, B.C Mollison/ Rattus lutreolus valentinus’. 1 female: ‘Corinna, 8.ii.1965, R.H205	  

Green/ Antechinus swainsonii’. 1 female: ‘Tasmania/ Myotyphlus jansoni Matth./ 296 [in 206	  

red]/ M. Cameron Bequest B.M. 1955-147’ (BMNH). 207	  

Redescription 208	  

Measurements: FL (2.6-2.8), HL (0.7-0.8), HW (0.95-1.1), HL*HW (0.665-0.88). 209	  

Overall pale brown, not strongly pigmented beetles with highly reduced eyes, a distinctive 210	  

trapezoid shaped head and black combs on the first mesotarsomere in both sexes (best viewed 211	  
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from a lateral angle, Fig. 3). Habitus as in Fig. 2D.     212	  

 Head trapezoidal, posteriorly widened, with fully developed neck constriction. Nuchal 213	  

ridge developed laterally, absent dorsally. Eyes consisting of few ommatidia and therefore 214	  

extremely small, positioned anteriorly very close to base of mandibles. Gular sutures slightly 215	  

diverging anteriorly. Postmandibular ridge present. Postgenal ridge weakly developed, 216	  

sinuate, projecting anteriad and connecting the gular suture and infraorbital ridge. Infraorbital 217	  

ridge short, extending just past the post-genal ridge. Anterior area of gula with pair of setae. 218	  

Apical segment of labial and maxillary palpi aciculate, about half the length of penultimate 219	  

segments. Labrum short and bilobed with translucent membrane bearing setae. Mandibles 220	  

with long and distinct dorsal groove. Dorsal and ventral sides of head with distinct transversal 221	  

microsculpture. Temples with scattered setae in addition to macro setae. Antennae rather 222	  

short; first antennomere about as long as antennomeres 2 and 3 combined. Antennomeres 1–3 223	  

only with setae; antennomeres 4-11 with tomentose pubescence and setae.  Pronotum quadrate 224	  

(sometimes slightly transverse) with one pair of shallow punctures in each dorsal row and 225	  

sparse micropunctures covering pronotum (visible under adequate light and magnification). 226	  

Pronotal hypomera strongly deflexed and thus not visible in lateral view. Pronotum without 227	  

translucent postcoxal process. Basisternum with pair of macro setae. Elytra shorter than 228	  

pronotum, with even but sparse punctation. Scutellum only with one (anterior) scutellar ridge. 229	  

Humeral angles of elytra with several spines. Hind wings absent entirely. Mesosternal process 230	  

obtuse, rounded. Metasternal process notched. Legs concolorous with body. Tarsal formula 5-231	  

5-5. Both sexes with protarsi moderately dilated with white adhesive setation ventrally. Both 232	  

sexes with the first tarsomere of the mesotarsus bearing a black comb (Fig. 3). Fifth tarsal 233	  

segment with a pair of empodial setae. Mesocoxae larger than metacoxae. Metacoxae with 234	  

transverse carina. Abdomen moderately dorsoventrally flattened. Tergites III to V with sub-235	  

basal carinae connecting spiracles. Male sternite VIII with apical median incision. Protergal 236	  

glands (hidden under elytra) positioned anteriorly, manifested as an oval impression bordered 237	  

by small setae.          238	  

 Male. Aedeagus with paramere closely attached to median lobe, apex of paramere in 239	  

dorsal or ventral view very blunt (Fig. 2B).  240	  

Distribution  241	  

Based on new data from specimens examined here and earlier records (Hamilton-Smith & 242	  

Adams 1966), M. jansoni has been recorded from several isolated localities in Tasmania (Fig. 243	  

2С, Table 1). Earlier records of M. jansoni for Victoria and New South Wales (Hamilton-244	  
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Smith & Adams 1966) in fact probably belong to the new species described below, but study 245	  

of those specimens and male genitalia is required to clarify their identity. 246	  

Bionomics 247	  

According to the specimen label data available to us, M. jansoni has been recorded from the 248	  

following mammals in Tasmania: from Rattus lutreolus, R. velutinus, Pseudomys higginsi and 249	  

Antechinis swainsonii (Table 1). The only available information about the two specimens of 250	  

M. jansoni studied by Matthews (1878) is that they were received by Mr. Janson in 1877 from251	  

Mr. Simson among other Coleoptera collected in Gould’s Country, Tasmania. Bionomic 252	  

records associated with both specimens indicated that they were collected ‘in the fur of a 253	  

living rat’. Fauvel (1883) mentioned that he had studied M. jansoni based on the same 254	  

Tasmanian material from Mr. Simson and an additional specimen found in Brussels museum. 255	  

He did not mention any biological information about the species other than published in 256	  

Matthews (1878). The second contribution to the study of this species by Matthews (1884) 257	  

was based on the same material as its original description. In the summary on parasitic 258	  

beetles, Kolbe (1911) similarly to South American amblyopinines, listed M. jansoni as a 259	  

mammal ectoparasite, solely based on the information earlier published about that species in 260	  

Matthews (1878, 1884). Lea (1925) listed nine specimens of M. jansoni (as Cryptommatus 261	  

jansoni) that ‘were all taken clinging to the anal hairs of bush rats [modern perception of 262	  

‘bush rats’ seems to refer to Rattus fuscipes], in Tasmania, by Messrs. Aug. Simson and H.M. 263	  

Nichols, and in Victoria by Mr. E. Jarvis’. With new species concepts based on male 264	  

genitalia, Lea’s (1925) records from Victoria correspond not to M. jansoni but to either M. 265	  

newtoni or M. wurra.  As far as the Tasmanian material of real M. jansoni is concerned, 266	  

clearly the specimens mentioned by Lea (1925) were additional to the type material, 267	  

confirming both its rat-associated biology. In his revision of Amblyopinina, Seevers (1955) 268	  

based his treatment of Myotyphlus on the previously published data, and he assumed that the 269	  

host of M. jansoni must be ‘the house rat as there are no native Tasmanian rodents’. 270	  

Comparison 271	  

Myotyphlus jansoni differs from its two newly described congeners (see below) only in the 272	  

shape of the aedeagus: its paramere apex is distinctly more blunt than either M. newtoni or M. 273	  

wurra, and therefore looking somewhat truncate (Fig. 2B). Based on the available males that 274	  

can be assigned to species, M. jansoni is larger than the largest specimens of M. newtoni. On 275	  

Tasmania Myotyphlus jansoni is the only species of the genus. 276	  
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3.4 Myotyphlus newtoni sp. nov. 277	  

Holotype: Australia: Victoria: 1 male, ‘Victoria, French Island, 29.viii.1967, R.M. 278	  

Warneke’/’Rattus fuscipes assimilis’. (CSIRO) 279	  

Paratypes: Australia: Victoria: 2 males: ‘Olson’s Bridge, 11.ix.1959, R.M Warneke/ Rattus 280	  

assimilis’ (CSIRO). 1 female: ‘French Island, 29.viii.1967, R.M Warneke/ Rattus fuscipes 281	  

assimilis’ (CSIRO). 1 male: ‘Loch Valley, in fur of Rattus assimilis, 27.vii.63, R.M Warneke/ 282	  

Myotyphlus jansoni det. Seevers’ (CSIRO). 1 male, 1 female: ‘Bat’s Ridge, 20.i.1968, J.H 283	  

Seebeck/ Rattus fuscipes grayii’ (CSIRO). New South Wales: 1 male: ‘Deua NP NSW, Deua 284	  

Cave, 5 Apr. 1986, E. Holm, ex. Bat guano/ Myotyphlus sp. Det. J.F. Lawrence’ (CSIRO). 285	  

Description 286	  

Measurements: FL (1.5-2.4), HL (0.6-0.9), HW (0.6-0.9), HL*HW (0.36-0.81) 287	  

Externally the new species is the same as M. jansoni, but on average smaller. The smallest 288	  

specimens of M. newtoni are significantly smaller than M. jansoni (Fig. 2A). Myotyphlus 289	  

newtoni has very characteristic acute apex of the paramere (Fig. 2B), that easily distinguishes 290	  

this species from either M. jansoni or M. wurra. 291	  

Etymology 292	  

We are pleased to dedicate the new species to Alfred Newton, who invested significant time 293	  

and effort in the study of Australian Staphylinidae. In particular, he has examined some of the 294	  

material we used in this paper, and based on his notes we could see that he also thought that 295	  

‘M. jansoni’ maybe a complex of several species. 296	  

Distribution  297	  

Presumably M. newtoni is broadly distributed in South-Eastern Australia. Reliable male-298	  

associated records stretch from Bat’s Ridge in the west to Deua Cave in the east (Fig. 2C, 299	  

Table 1). 300	  

Bionomics 301	  

According to the specimen label data available to us, M. newtoni has been collected in the 302	  

usual ground surface habitats of various localities, and in Deua Cave in New South Wales. In 303	  

the ground surface habitats, it was recorded from Rattus fuscipes, R. assimilis, and R. grayii. 304	  
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In the Deua Cave a single male was collected not from rats but in the layer of bat guano. 305	  

Significant material reported as ‘M. jansoni’ in Hamilton-Smith and Adams (1966) from 306	  

Miniopterus schreibergsi (Kuhl) bat guano in Lake Gillear Guano Cave near Warnambool, 307	  

Victoria, and in a cave within the Southern Limestone at Jenolan, New South Wales 308	  

apparently can be attributed to M. newtoni based on the distribution. Interestingly, that 309	  

Hamilton-Smith and Adams (1966) also reported a personal communication of R.M. 310	  

Warnecke of the Victorian Fisheries and Wildlife Department who had found ‘M. jansoni’ 311	  

(presumably M. newtoni) on only three of the 2000 examined Rattus assimilis. Among beetles 312	  

found on these three rats, some were found on scrotum of one rat, and all other were confined 313	  

to the area immediately surrounding the anus of the host animal. All beetles were attached to 314	  

rats by the feet only without any signs of skin disorders on host rats. Hamilton-Smith and 315	  

Adams (1966) stressed that larva of ‘M. jansoni’ has never been found anywhere. Based on 316	  

new findings, they overall concluded that this species is not an obligate parasite of mammals 317	  

as in Neotropical amblyopinines, but maybe the case of an initial evolutionary step from a 318	  

free-living lifestyle to ectoparasitism. Although we have examined a number of specimens 319	  

collected by R.M. Warnecke, it is not clear if any of them are related to the personal 320	  

communication between R.M. Warnecke and Hamilton-Smith and Adams (1966).  321	  

 322	  

3.5 Myotyphlus wurra sp. nov. 323	  

Holotype: Australia: Victoria: 1 male, ‘Olson’s Bridge, 11-9-59 (Sept), R.M. Warneke, 324	  

Rattus assimilis’ [specimen mounted from alcohol, label handwritten by JJS]. (CSIRO). 325	  

Paratypes: Australia: Victoria: 4 males: details as for holotype. (CSIRO). 326	  

Description 327	  

Measurements: FL (2.2-2.7), HL (0.8-1), HW (0.8-1), HL*HW (0.64-1). 328	  

Externally the new species is the same as M. jansoni or M. newtoni, but differs from both of 329	  

them in a characteristically rounded apex of the paramere (Fig. 2B). In body size M. wurra 330	  

greatly overlaps with M. jansoni and some larger specimens of M. newtoni. 331	  

Etymology 332	  



12	  

The species epithet refers to the aboriginal word for ‘rat’ or ‘common rat’, from which all 333	  

known specimens of M. wurra were collected. The species name ‘wurra’ is a noun in 334	  

apposition. 335	  

Distribution  336	  

So far Myotyphlus wurra is known only from the type locality, Olson’s Bridge in Victoria 337	  

(Fig. 2C), where it occurs sympatrically with M. newtoni. 338	  

Bionomics 339	  

The new species was collected on Rattus assimilis and is only known from the type locality. 340	  

341	  

3.6 Myotyphlus sp. 342	  

The following specimens refer to females which were collected from Olson’s Bridge, Victoria 343	  

where M. newtoni and M. wurra occur sympatrically and therefore female cannot be assigned 344	  

to species. The specimen from New South Wales refers to a female collected without 345	  

association with males. Female only specimen records from Tasmania are presumed to be M. 346	  

jansoni since that is the only known species from Tasmania. 347	  

Material examined: Australia: Victoria: 3 females, ‘Olson’s Bridge, 11.ix.1959, R.M 348	  

Warneke/ Rattus assimilis’ (CSIRO). New South Wales: 1 female, ‘South Ramshead, 1850m 349	  

Kosciusko Nat. Pk. NSW, May 1981, Ken Green, pitfalls/ A.N.I.C Coleoptera, Voucher No. 350	  

83-0058’. (CSIRO).351	  

352	  

4. Discussion353	  

4.1 Myotyphlus jansoni: how many species?   354	  

Observed variation in the shape of the aedeagus suggested that ‘M. jansoni’ is a complex of at 355	  

least three species where, based on the identity of the type material, true M. jansoni is 356	  

confined to Tasmania only. Strong geographic isolation of Tasmania, combined with the 357	  

noticeable difference in the shape of aedeagus between M. jansoni and two new species from 358	  

the mainland Australia, speaks for the lacking gene flow between the Tasmanian and the 359	  

mainland populations.  Sympatric occurrence of M. wurra and M. newtoni and lacking 360	  
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transitional states between their respective aedeagi shapes suggest their genetic isolation from 361	  

each other and thus separate species status even though we did not find difference between 362	  

these species in external characters. Additional material from throughout the genus range 363	  

would help resolve its taxonomy more rigorously using morphology and DNA based markers. 364	  

Combined with its unique biology and occurrence in caves, there may be complex 365	  

microevolutionary processes that take place in this species complex, with a possibility that 366	  

new material may reveal more new species. 367	  

368	  

4.2 Sister group relationships and biogeography of Myotyphlus 369	  

Seevers (1955) expressed an idea that Myotyphlus was the basal Amblyopinini connecting 370	  

them to related tribe Quediini. He proposed the affinity of Myotyphlus with the South 371	  

American Edrabius based on a single character – the highly reduced eyes located close behind 372	  

the antennal insertions. As Quediini were known mostly as a Northern Hemisphere group, 373	  

Seevers (1955) proposed a complex hypothesis of the northern origin of Amblyopinini from 374	  

Quediini ancestors and their dispersal from North to South America together with mammals 375	  

during great faunal exchange between both continents. Therefore, basal nature of the 376	  

Australian Myotyphlus and its affiliation with Edrabius was a perplexing fact for Seevers’ 377	  

hypothesis, which he could not explain. Machado-Allison (1963) also argued that Myotyphlus 378	  

could be closely related to the South American genus Edrabius, but, contrary to Seevers 379	  

(1955), he suggested a southern origin of Amblyopinini. Bringing new biological 380	  

observations for M. jansoni, Hamilton-Smith and Adams (1966) also mentioned that it was 381	  

apparently closely allied to the Neotropical amblyopinine genus Edrabius.  Largely based on 382	  

their finding that Myotyphlus was not as strictly associated with rats as it was thought before, 383	  

they suggested that it may have to be moved from Amblyopinini to Quediini. Newton (1985) 384	  

was the first who raised the possibility that Myotyphlus may be derived from the free-living 385	  

‘quediines’ of Australia, independently of the genera found in the Neotropical region which 386	  

would result in a polyphyletic origin of this mammal-associated group. Ashe and Timm 387	  

(1988) recognized a few lineages among mammal-associated amblyopinines: Chilean 388	  

Chilamblyopinus as a very basal lineage; South-Central American genera Amblyopinodes, 389	  

Amblyopinus and Megamblyopinus as a more derived lineage; and Edrabius and Myotyphlus 390	  

as two isolated lineages of unclear sister-group relationships, not necessarily related to each 391	  

other (Fig.1). They emphasized the more ecologically generalized Myotyphlus as a very 392	  



	   14	  

important taxon for testing the monophyly of the mammal-associated amblyopinines. Based 393	  

on the presence of tarsal combs in Myotyphlus and some Australian Quediini (unique feature 394	  

among Staphylinini), Ashe and Timm (1988) agreed with Newton (1985) that the former may 395	  

be more closely related to the latter than to other (Neotropical) Amblyopinini.   396	  

 Much uncertainty and controversy about sister-group relationships for Myotyphlus and 397	  

other amblyopinines came from the very poor state of knowledge of the ‘Southern 398	  

Hemisphere quediines’ and the fact that Seevers (1955), Machado-Allison (1963), Ashe and 399	  

Timm (1988) or others thought that their putative sister group had to be sought within the 400	  

bipolar global subtribe Quediina. Since then systematics of Staphylinini has changed 401	  

significantly. In particular, it was shown that ‘north temperate’ and ‘south temperate’ 402	  

‘Quediina’ are non-related lineages (Solodovnikov 2006; Solodovnikov & Schomann 2009; 403	  

Chatzimanolis et al. 2010; Brunke et al. 2015). The former became a subtribe Quediina in a 404	  

restricted sense, while the latter became a subtribe of its own that received the name 405	  

Amblyopinina since it included the name bearing genus Amblyopinus Solsky, 1875 and other 406	  

mammal associated genera (Amblyopinoides Seevers, 1955, Chilamblyopinus Ashe & Timm, 407	  

1988, Edrabius Fauvel, 1900, Megamblyopinus Seevers, 1955 from South America and 408	  

Myotyphlus Fauvel, 1883 from Australia). Internal phylogeny of Amblyopinina in that new 409	  

sense, however, remains unknown and currently impossible to reconstruct because of the very 410	  

poor state of the alpha-taxonomic knowledge of the numerous free living members of this 411	  

subtribe. Our work in progress suggests that free living amblyopinines comprise the following 412	  

major lineages: Loncovilius-lineage for species with enlarged middle and hind tarsi; 413	  

NatalignathusAtanygnathus-lineage with elongated mouthparts; Heterothops-lineage with 414	  

fully fused paramere and median lobe of the aedeagus; Cheilocolpus-Rolla-Philonthellus-415	  

lineage with species characterized by short ‘infraorbital ridges’, absent translucent post coxal 416	  

process, wide anterior tarsi, often narrow or aciculate apical segment of maxillary palps and 417	  

two basal carinae on abdominal segments III-V; a lineage consisting of one-two new genera 418	  

to be described with fully developed ‘infraorbital ridges’, narrow anterior tarsi, absent 419	  

translucent post coxal process and two basal carinae on abdominal segments III-V; 420	  

Quediopsis-lineage with securiform last segment of maxillary palps; and Sphingoquedius-421	  

Quediomimus-Mimosticus-Ctenandropus- lineage with species bearing black iridescent 422	  

combs. Such combs are unique among Staphylinini (and Staphylinidae) and, in different 423	  

species or genera, they can be located on the first mesotarsomere, mesotrochanter, 424	  

mesofemora, or metacoxae, respectively. Often these combs are present only in males, but 425	  

those on mesotarsomeres may be developed in both sexes. Except the strictly South American 426	  
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Loncovilius-lineage, South African (Natalignathus) and wide-spread (Atanygnathus) lineage 427	  

and wide-spread Heterothops-lineage, all other lineages have disjunct distributions across 428	  

several Gondwana-derived landmasses (mainly South America, Australia, New Zealand, New 429	  

Caledonia and New Guinea) where they form major to notable share of the entire Staphylinini 430	  

fauna. Amblyopinina are notably absent or very poorly represented in India, Madagascar and 431	  

Africa, i.e. the Gondwana-derived landmasses that got separated earlier. Such distribution 432	  

pattern hints that Amblyopinina is a relatively old lineage of Staphylinini whose major 433	  

lineages evolved during Cretaceous - Early Tertiary when at least South America, Australia 434	  

and New Zealand were connected via Antractica. Except the Loncovilius-lineage, all other 435	  

amblyopinine lineages occur in Australia. Based on the presence of combs and characters of 436	  

Myotyphlus, it can be assigned to Sphingoquedius-Quediomimus-Mimosticus-Ctenandropus 437	  

lineage where the majority of the Australian Amblyopinina belong (e.g., ‘Quedius’ bellus 438	  

Lea, 1925, ‘Quedius’ cordatus Lea, 1925, Quedius lateroflavus Lea, 1925, Quedius 439	  

metallicus Fauvel, 1878 and many other species still formally remaining in the genus 440	  

Quedius). Noteworthy that the black combs are absent in all genera of the truly mammal-441	  

mutualistic genera of the Neotropical region even though there are free living comb-bearing 442	  

species Amblyopinina there. All these observations suggest that Myotyphlus stems from a 443	  

lineage different from the one(s) that gave rise to South American mammal mutualistic 444	  

mammals.  445	  

 446	  

4.3 Myotyphlus association with Australian mammals, historical perspective  447	  

According to the available data, all species of Myotyphlus are known only as adults that have 448	  

been recorded.  Myotyphlus jansoni was found on rodents (Rattus spp. and Pseudomys 449	  

higginsi) and on Antechinus swainsonii, a species of carnivorous dasyurid marsupial 450	  

Myotyphlus newtoni and M. wurra were found only on Rattus spp., and, at least on two 451	  

occasions they were collected not from mammals but in caves from under the surface of bat 452	  

guano. Finally, one female specimen identified as M. newtoni based on the distribution was 453	  

collected in a pitfall trap in the usual above ground microhabitat at high elevation of Mt. 454	  

Kostiusko. Therefore, it seems that none of Myotyphlus species has strict association with any 455	  

particular host mammal species. Probably, beetles do not even stay on the mammal body all 456	  

the time, or even some populations, for example those found in bat guano, do not occur on 457	  

mammals at all. Presumably, larvae of the species develop outside the mammal host body. 458	  
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The strength of the association between Myotyphlus and caves, is also unknown. Presumably, 459	  

the mammals which the Myotyphlus specimens were taken from, have been trapped in the 460	  

usual above ground habitats. But it may well be that mammals with beetles also occur in 461	  

caves, at least episodically. It is also unclear whether a specialized depigmented and small-462	  

eyed habitus of Myotyphlus was a primary adaptation for subterranean biology where beetles 463	  

and mammals could come in contact, or the association with mammals came first, followed 464	  

by adaptations to cave microhabitats. In any case, specialized biology and associated 465	  

morphological adaptations of Myotyphlus seem to be a relatively young phenomenon in the 466	  

evolutionary history of Australian Amblyopinina given the time estimates derived from the 467	  

study of the evolutionary history of their hosts in Australia. 468	  

Since amblyopinines must have been present in Australia for tens of millions of years, 469	  

it is quite noteworthy that in spite of rich ancient indigenous and diverse fauna of marsupials 470	  

in Australia, the only marsupial that Myotyphlus has been recorded from, is the carnivorous 471	  

marsupial genus Antechinus (Dasyuridae). It is comprised of 12 species distributed in 472	  

Australia and New Guinea (Flannery 1995; Strahan 1995; Armstrong et al. 1998) with the 473	  

genera from those two regions forming two monophyletic lineages (Armstrong et al. 1998). In 474	  

that study, Armstrong et al. (1998) made no biogeographic inference from their phylogeny, 475	  

however like rodents dasyurids also appear to be a recent group in Australia (Crowther & 476	  

Blacket 2003), with the oldest fossil that can be placed in an extant genus dated at around 4.5 477	  

mya (early Pliocene). More recently it has been suggested that extant Dasyuridae have earlier 478	  

origins in Australia with Antechinus originating around 11.9 (9.5–14.5) mya (Woolley et al. 479	  

2015). 480	  

The first group of rodents that reached Australia from Asia most likely via New 481	  

Guinea were the Pseudomys-group of rodents (Muridae), with one genus and species recorded 482	  

as a host of M. jansoni (Pseudomys higginsi) (Simpson 1961). This pattern of colonization of 483	  

Australia from Asia via New Guinea has been found in a number of studies on different 484	  

organisms and can be explained by the close geographic affinity of Australia and New Guinea 485	  

and frequent land connections between those during the Pliocene. The diversity of native 486	  

Rattus (Muridae) species is the highest in New Guinea and followed by Australia, mainland 487	  

south-east Asia and Sulawesi (Aplin et al. 2003). Molecular phylogenetic dating and the 488	  

earliest of Australian murine fossils suggest that diversification of the native Australian 489	  

rodents began between 5.1 and 5.5 mya (Rowe et al. 2008). Based on mitochondrial genome 490	  

data, Robins et al. (2011) proposed that Rattus fuscipes and R. lutreolus (recorded as 491	  

Myotyphlus hosts) are among the oldest lineages of Australian rats and not part of the 492	  
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colonization from New Guinea, but rather share a common ancestor with Rattus that 493	  

colonized Australia out of New Guinea. In that paper they also suggested recent interchanges 494	  

between the Australian and New Guinean Rattus fauna during the Pleistocene, supporting 495	  

previous morphology-based analysis (Taylor et al. 1983). Finally, it is interesting to note that 496	  

Rattus rattus and Rattus norvegicus were introduced to Australia by Europeans and there are 497	  

no records of Myotyphlus from those species.       498	  

 For comparison, hosts of the more diverse American symbiotic amblyopinines 499	  

represented by many more different mammal species, almost equally split between marsupials 500	  

and rodents (Seevers 1944, 1955). The earliest fossil marsupials in South America are dated 501	  

to 61-65mya. The marsupial genera Didelphis, Metachirus and Monodelphis from which 502	  

American symbiotic amblyopinines have been recorded, are part of a clade that originated 503	  

during the early Eocene (ca.51 mya), based on semi-parametric divergence dating methods 504	  

which relax the molecular clock (Nilsson et al. 2004). Those amblyopinines are also recorded 505	  

from Rhyncholestes, a genus sister to Caenolestes (Meredith et al. 2008) and Palma & 506	  

Spotorno 1999). Nilsson et al. (2004) suggested a divergence time between those two sister 507	  

genera of around 30 mya, during the Oligocene.     508	  

 Hystricomorpha, a suborder of rodents and recorded host of South American 509	  

Amblyopinina have been suggested to have Oligocene (23-34mya) origins in South America, 510	  

although the exact source of their South American fauna seems to still be controversial 511	  

(Huchon & Douzery 2001; Upham & Patterson 2012). According to Smith and Patton (1999), 512	  

the ancestor of the rodent subfamily Sigmodontinae from which many mammal-mutualistic 513	  

Amblyopinina have been collected, dispersed to South America from North America across 514	  

the water barrier, probably during the Miocene. The earliest recognized fossils of the 515	  

Sigmodontinae from Argentina dated at about 4-5 mya (early Pliocene) are consistent with 516	  

that hypothesis (Pardiñas & Tonni 1998). There are variations on each of the two hypotheses 517	  

mentioned above, but it is not within the scope of this paper to discuss them in detail, but 518	  

rather we aim to draw attention to the controversy and potential temporal variation in the 519	  

colonization and radiation of Amblyopinina hosts in South America. It is apparent that 520	  

American symbiotic Amblyopinina are adapted to mammals that had much earlier origins 521	  

(particularly the marsupials), but also more recent rodent lineages.  522	  

Lower degree of morphological specialization, frequency of records outside mammal bodies, 523	  

and relatively short period of time available for possible co-evolution with their hosts, suggest 524	  
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that Myotyphlus may not be as strong case of mutualism with mammals as manifested by 525	  

South American genera.  526	  

4.4 Myotyphlus as an early stage of insect-mammal mutualism and other other examples of 527	  

mammal-insect  528	  

 529	  

The case of Myotyphlus, that possibly displays an early stage of the evolution towards more 530	  

refined mutualism, reveals a certain gradient within such insect-mammal interactions, and it 531	  

draws our attention to other rare cases of similarly looking relationships. When Popham 532	  

(1962) reported the presumably ectoparasitic earwig Arixenia esau Jordon, 1909 533	  

(Dermaptera)  feeding on the skin of Cheiromeles, he noted that another species of the same 534	  

genus, A. jacobsoni Burr, 1912 with less specialized mouthparts, feeds on insects found in bat 535	  

guano. Later, Marshall (1972) suggested the interaction between Arixenia earwigs and 536	  

Cheiromeles bats to be a mutualism where earwig feeding mode keep the bat body clean. 537	  

Waage (1979) further discussed the relationship between Arixenia and its bat hosts and 538	  

described it as a commensalism with the potential of actually being a mutualism if a sanitary 539	  

benefit to the bat can be attributed to the feeding strategy of Arixenia. Noteworthy is that even 540	  

though rove beetles and earwigs are members of phylogenetically remote insect orders, 541	  

convergently they represent very similar adaptive types, with flexible elongate body and short 542	  

elytra.  543	  

Another example is phylogenetically close to rove beetles since it concerns a derived 544	  

staphylinoid beetle Platypsyllus castoris Ritsema, 1869 from the family Leiodidae. 545	  

Platypsyllus castoris is believed to be an ectoparastic beetle specialized on Old and New 546	  

world beavers (Peck 2006) based on observations of its larvae consuming the epidermal tissue 547	  

of beavers as well as skin secretions and wood exudates (Wood 1965). In view of the 548	  

Amblyopinina and earwig examples, it would therefore appear that this relationship also has 549	  

the potential to be a mutualism, if evidence can be attained of any sanitary (or other) benefit 550	  

to the beaver. 551	  

Finally, the last example of insect-mammal mutualism involves Lepidoptera. Initially it 552	  

was described as phoresis between Cryptoses moths and a species of three-toed sloth (Waage 553	  

& Montgomery 1976) where moths require the relationship but they pose no consequence 554	  

(positive or negative) on the sloth. Adult female moths that occur in the fur of sloths 555	  

disembark their host during its descent to the forest floor for defecation. Female moths 556	  

oviposit on the fresh dung of their host sloth where development of the moth next generation 557	  
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takes place until newly hatched moth adults disperse into the forest canopy and find sloths 558	  

again. The relationship between moths and sloths started to be seen as mutualism only 559	  

recently after Pauli et al. (2014) added a third  organismal type (algae Trichophilus sp.) in the 560	  

system. They found that sloths with algae-infested fur consume their algae via self-grooming 561	  

and apparently benefit from adding algae in their diet, while moths, presumably, facilitate the 562	  

increase of algal biomass in the sloth’s fur. In turn, by descending for defecation to the 563	  

ground, the sloths facilitate moth’s life cycle. However, the exact mechanism driving the 564	  

positive relationship between moth density and algal biomass remains speculative, and 565	  

therefore this entire complex case of presumed mutualism is not fully understood yet. 566	  

567	  

5. Conclusions568	  

The Staphylinini subtribe Amblyopinina under its most recent concept (Chatzimanolis et al. 569	  

2010; Brunke et al. 2015) comprises a diverse and species-rich monophylum forming a 570	  

predominant type of rove beetles in the mesophilic habitats of the highly disjunct south 571	  

temperate areas of the globe. Based on a rather basal position of the Amblyopinina in the 572	  

phylogenetic tree of Staphylinini, fossil-inferred age of this tribe, and the distribution pattern 573	  

of tentative amblyopinine monophyletic lineages, early diversification of this group is 574	  

associated with the Gondwana-derived South America-Antarctica-Australia-New Zealand 575	  

landmass before its fragmentation. Mammal-associated, morphologically highly derived 576	  

species constitute a minority within Amblyopinina and they are mainly confined to South and 577	  

Central America. Existing evidence suggests that American mammal-associated 578	  

amblyopinines form a fine tuned mutualistic relationship with the mammal hosts by feeding 579	  

on their ectoparasites. 580	  

Myotyphlus, endemic to Australia, is the only mammal-associated amblyopinine 581	  

outside America. The genus comprises at least three species diagnosable by the shape of the 582	  

aedeagus two of which, M. newtoni sp. nov. and M. wurra sp. nov., occur sympatrically in the 583	  

south-western Australia, and one, M. jansoni, is confined to Tasmania. Most specimens of 584	  

Myotyphlus were collected from the bodies of small mammals, rodents and one marsupial, 585	  

while some – in bat guano in the caves.  There seems to be no strict association with one 586	  

particular mammal species in any of three Myotyphlus species. Larvae of Myotyphlus are 587	  

unknown and it is unclear how long and when any of its species occur on mammal hosts 588	  

during their life cycle. 589	  
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Current state of knowledge suggests that mammal mutualistic Myotyphlus has an independent 590	  

origin from the Neotropical mammal mutualists, and even within the latter different genera 591	  

could have originated from independent free living lineages. Presumably M. jansoni has 592	  

originated from a species of free living Australian Amblyopinine. Highly reduced eyes in 593	  

Myotyphlus and South American Edrabius, a feature contributing to their similarity and 594	  

causing earlier views about phylogenetic affinity of both genera, seems as a convergent 595	  

adaptation to caves in the case of Myotyphlus and nocturnal, mammal and/or mammal-burrow 596	  

associated behavior in the case of Edrabius.       597	  

 Although sister group relationship of Myotyphlus remain to be rigorously explored, it 598	  

is logical to assume that its association with mammals in Australia evolved a relatively short 599	  

time ago, after the colonization of the Australian continent by rodents and dasyurine 600	  

carnivorous marsupials. The distinctly less specialized morphology of Myotyphlus compared 601	  

to the mammal-associated species from the Neotropical region, is consistent with relatively 602	  

shorter time of existence there of its mammal hosts providing therefore shorter evolutionary 603	  

time for Myotyphlus to develop its co-adaptations with mammals. It is not clear if the rodent-604	  

associated lifestyle was primary with subsequent shifts to guano dwelling in caves via their 605	  

rodent hosts visiting caves. Or the adaptation to guano-associated biology in caves was the 606	  

original state for Mytotyphlus, serving as a precondition for the next evolutionary step 607	  

towards an association with rats, frequently seeking shelter in caves and thus getting into 608	  

proximity with guano-dwelling beetles there.       609	  

 An ongoing generic revision of free-living Amblyopinina and a molecular phylogeny 610	  

of the subtribe will hopefully provide a baseline to further investigate the sister-group 611	  

relationships of Myotyphlus. In addition, phylogenetic reconstruction of the Neotropical 612	  

mutualistic Amblyopinina and their hosts has the potential to reveal the level of congruence 613	  

between both sides of a mutualistic relationship and provide an insight into the origin(s) of the 614	  

unique relationship.          615	  

 Insect-mammal cases of mutualism are very rare and, apart from Amblyopinina rove 616	  

beetles, is known for Cryptoses moths and sloths in South America. Other staphylinoid beetle, 617	  

Holarctic Platypsyllus castoris (Leiodidae), that is thought to be parasitic on beavers, may in 618	  

fact be mutualistic similarly to Amblyopinina. The example of Myotyphlus has some 619	  

similarity with a rare case of Arixenia earwig and Cheiromeles bat interaction that perhaps is 620	  

also a case of mutualism. 621	  

 622	  
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Figures 763	  

 764	  

Fig. 1. Schematic phylogeny of the tribe Amblyopinini expressing the ideas of Ashe and 765	  

Timm (1988). Illustrated are: Chilamblyopinus piceus, adapted from the illustration of Ashe 766	  

and Timm (1988), Amblyopinodes sp. from Brazil, Amblyopinus jelskii Solsky, 1875, 767	  

Edrabius kuscheli Scheerpeltz, 1957 from Chile and Myotyphlus sp. (female) from Australia.  768	  

 769	  

 770	  

 771	  

 772	  

 773	  

 774	  

 775	  
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776	  

777	  
Fig. 2. A - The relationship between Forebody Length (mm) and Head Length x Head Width 778	  

(mm) for three species of Myotyphlus: M. jansoni (red), M. newtoni sp. nov. (green) and M.779	  

wurra sp. nov. (blue). B – Aedeagi of Myotyphlus jansoni, M. newtoni and M. wurra. C – 780	  

distribution of specimens and species studied in this paper (thick circles) and records from 781	  

literature (thin circles). Colours in circles correspond to those used in 2A and B. 782	  

Corresponding shaded areas indicate hypothesized distribution of respective species based on 783	  

locality data so far available. D – habitus of female Myotyphlus sp. from Olson’s Bridge, 784	  

Victoria. 785	  
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786	  

Fig. 3. Mesotarsus of Myotyphlus jansoni (female) from Tasmania showing the comb on the 787	  

first tarsomere (red line). Scale bar = 100 micro metres (µm).  788	  

789	  
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792	  
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Table. 1. Synthesis of Myotyphlus species and associated data used in this study. a = records 798	  

from Hamilton-Smith and Adams (1966) and personal communication therein. Locality, Date, 799	  

Host and Collector data are repeated verbatime from data labels beneath specimens or from 800	  

literature. 801	  

Species Locality State Date Male
s 

Putativ
e 
Female
s 

Host Collecto
r 

Locality 
(numbe
r on 
map) 

M. jansoni Cradle Mt Tasmani
a 

6.xiii.1964 1 1 Pseudomys 
higginsi 

R.H. 
Green 

10 

M. jansoni Franklin 
River, below 
Gordons Peak 

Tasmani
a 

15 Jan. 
1983 

2 - - E.B. 
Britton 

12 

M. jansoni Mt Kate Tasmani
a 

16.x.1964 1 1 Rattus 
lutreolus 

R.H. 
Green 

11 

M. jansoni Florentine 
Valley 

Tasmani
a 

7.vii.1959 - 1 Rattus 
lutreolus 
velutinus 

B.C.
Mollison

13 

M. jansoni Corinna Tasmani
a 

8.ii.1965 - 1 Antechinus 
swainsonii 

R.H. 
Green 

9 

M. newtoni Olson’s 
Bridge 

Victoria 11-9-59
(Sept)

2 - Rattus 
assimilis 

R.M
Warneke

5 

M. newtoni Loch Valley Victoria 27.vii.63 1 - In fur of 
Rattus 
assimilis 

R.M
Warneke

4 

M. newtoni Deua NP, 
Deua Cave 

New 
South 
Wales 

5 Apr. 
1986 

1 - Bat guano E. Holm 7 

M. newtoni French Island Victoria 29.viii.196
7

1 1 Rattus 
fuscipes 
assimilis 

R.M
Warneke

3 

M. newtoni Bat’s Ridge Victoria 20.i.1968 1 1 Rattus 
assimilis 
grayii 

J.H. 
Seebeck 

1 
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M. wurra Olson’s 
Bridge 

Victoria 7.vii.1959 5 - Rattus 
assimilis 

R.M
Warneke

5 

Myotyphlus 
sp. 

South 
Ramshead, 
1850m, 
Kosciuskco 
Nat. Pk. 

New 
South 
Wales 

May 1981 - 1 - Ken 
Green 

6 

Myotyphlus 
sp. 

Olson’s 
Bridge 

Victoria 7.vii.1959 - 3 Rattus 
assimilis 

R.M.
Warneke

5 

‘M. 
newtoni’ a

Lake Gillear 
Guano Cave 
near 
Warrnambool 

Victoria May 13, 
1962 

May 19, 
1973 

Jan 12, 
1964 

- - Bat guano of 
Miniopterus 
schreibersi 
(Kuhl) 

- 2 

‘M. 
newtoni’ a

Southern 
Limestone 
(cave), 
Jenolan 

New 
South 
Wales 

July 25 
1964 

- - Bat guano of 
Miniopterus 
schreibersi 
(Kuhl) 

B. Dew 8 
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