29 research outputs found

    Fast matrix inversion based on Chebyshev acceleration for linear detection in massive MIMO systems

    Get PDF
    MASSIVE5G (SAICT‐45‐2017‐02)To circumvent the prohibitive complexity of linear minimum mean square error detection in a massive multiple-input multiple-output system, several iterative methods have been proposed. However, they can still be too complex and/or lead to non-negligible performance degradation. In this letter, a Chebyshev acceleration technique is proposed to overcome the limitations of iterative methods, accelerating the convergence rates and enhancing the performance. The Chebyshev acceleration method employs a new vector combination, which combines the spectral radius of the iteration matrix with the receiver signal, and also the optimal parameters of Chebyshev acceleration have also been defined. A detector based on iterative algorithms requires pre-processing and initialisation, which enhance the convergence, performance, and complexity. To influence the initialisation, the stair matrix has been proposed as the first start of iterative methods. The performance results show that the proposed technique outperforms state-of-the-art methods in terms of error rate performance, while significantly reducing the computational complexity.publishersversionpublishe

    Efficient low-complexity data detection for multiple-input multiple-output wireless communication systems

    Get PDF
    The tradeoff between the computational complexity and system performance in multipleinput multiple-output (MIMO) wireless communication systems is critical to practical applications. In this dissertation, we investigate efficient low-complexity data detection schemes from conventional small-scale to recent large-scale MIMO systems, with the targeted applications in terrestrial wireless communication systems, vehicular networks, and underwater acoustic communication systems. In the small-scale MIMO scenario, we study turbo equalization schemes for multipleinput multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) and multipleinput multiple-output single-carrier frequency division multiple access (MIMO SC-FDMA) systems. For the MIMO-OFDM system, we propose a soft-input soft-output sorted QR decomposition (SQRD) based turbo equalization scheme under imperfect channel estimation. We demonstrate the performance enhancement of the proposed scheme over the conventional minimum mean-square error (MMSE) based turbo equalization scheme in terms of system bit error rate (BER) and convergence performance. Furthermore, by jointly considering channel estimation error and the a priori information from the channel decoder, we develop low-complexity turbo equalization schemes conditioned on channel estimate for MIMO systems. Our proposed methods generalize the expressions used for MMSE and MMSE-SQRD based turbo equalizers, where the existing methods can be viewed as special cases. In addition, we extend the SQRD-based soft interference cancelation scheme to MIMO SC-FDMA systems where a multi-user MIMO scenario is considered. We show an improved system BER performance of the proposed turbo detection scheme over the conventional MMSE-based detection scheme. In the large-scale MIMO scenario, we focus on low-complexity detection schemes because computational complexity becomes critical issue for massive MIMO applications. We first propose an innovative approach of using the stair matrix in the development of massive MIMO detection schemes. We demonstrate the applicability of the stair matrix through the study of the convergence conditions. We then investigate the system performance and demonstrate that the convergence rate and the system BER are much improved over the diagonal matrix based approach with the same system configuration. We further investigate low-complexity and fast processing detection schemes for massive MIMO systems where a block diagonal matrix is utilized in the development. Using a parallel processing structure, the processing time can be much reduced. We investigate the convergence performance through both the probability that the convergence conditions are satisfied and the convergence rate, and evaluate the system performance in terms of computational complexity, system BER, and the overall processing time. Using our proposed approach, we extend the block Gauss-Seidel method to large-scale array signal detection in underwater acoustic (UWA) communications. By utilizing a recently proposed computational efficient statistic UWA channel model, we show that the proposed scheme can effectively approach the system performance of the original Gauss-Seidel method, but with much reduced processing delay

    Analysis and Design of Non-Orthogonal Multiple Access (NOMA) Techniques for Next Generation Wireless Communication Systems

    Get PDF
    The current surge in wireless connectivity, anticipated to amplify significantly in future wireless technologies, brings a new wave of users. Given the impracticality of an endlessly expanding bandwidth, there’s a pressing need for communication techniques that efficiently serve this burgeoning user base with limited resources. Multiple Access (MA) techniques, notably Orthogonal Multiple Access (OMA), have long addressed bandwidth constraints. However, with escalating user numbers, OMA’s orthogonality becomes limiting for emerging wireless technologies. Non-Orthogonal Multiple Access (NOMA), employing superposition coding, serves more users within the same bandwidth as OMA by allocating different power levels to users whose signals can then be detected using the gap between them, thus offering superior spectral efficiency and massive connectivity. This thesis examines the integration of NOMA techniques with cooperative relaying, EXtrinsic Information Transfer (EXIT) chart analysis, and deep learning for enhancing 6G and beyond communication systems. The adopted methodology aims to optimize the systems’ performance, spanning from bit-error rate (BER) versus signal to noise ratio (SNR) to overall system efficiency and data rates. The primary focus of this thesis is the investigation of the integration of NOMA with cooperative relaying, EXIT chart analysis, and deep learning techniques. In the cooperative relaying context, NOMA notably improved diversity gains, thereby proving the superiority of combining NOMA with cooperative relaying over just NOMA. With EXIT chart analysis, NOMA achieved low BER at mid-range SNR as well as achieved optimal user fairness in the power allocation stage. Additionally, employing a trained neural network enhanced signal detection for NOMA in the deep learning scenario, thereby producing a simpler signal detection for NOMA which addresses NOMAs’ complex receiver problem

    Ultra-Reliable Short-Packet Communications: Fundamental Limits and Enabling Technologies

    Get PDF
    The paradigm shift from 4G to 5G communications, anticipated to enable ultra-reliable low-latency communications (URLLC), will enforce a radical change in the design of wireless communication systems. Unlike in 4G systems, where the main objective is to provide a large transmission rate, in URLLC, as implied by its name, the objective is to enable transmissions with low latency and, simultaneously, very high reliability. Since low latency implies the use of short data packets, the tension between blocklength and reliability is studied in URLLC.Several key enablers for URLLC communications have been designated in the literature. Of special importance are diversity-enabling technologies such as multiantenna systems and feedback protocols. Furthermore, it is not only important to introduce additional diversity by means of the above examples, one must also guarantee that thescarce number of channel uses are used in an optimal way. Therefore, it is imperative to develop design guidelines for how to enable reliable detection of incoming data, how to acquire channel-state information, and how to construct efficient short-packet channel codes. The development of such guidelines is at the heart of this thesis. This thesis focuses on the fundamental performance of URLLC-enabling technologies. Specifically, we provide converse (upper) bounds and achievability (lower) bounds on the maximum coding rate, based on finite-blocklength information theory, for systems that employ the key enablers outlined above. With focus on the wireless channel, modeled via a block-fading assumption, we are able to provide answers to questions like: howto optimally utilize spatial and frequency diversity, how far from optimal short-packet channel codes perform, how multiantenna systems should be designed to serve a given number of users, and how to design feedback schemes when the feedback link is noisy. In particular, this thesis is comprised out of four papers. In Paper A, we study the short-packet performance over the Rician block-fading channel. In particular, we present achievability bounds for pilot-assisted transmission with several different decoders that allow us to quantify the impact, on the achievable performance, of imposed pilots and mismatched decoding. Furthermore, we design short-packet channel codes that perform within 1 dB of our achievability bounds. Paper B studies multiuser massive multiple-input multiple-output systems with short packets. We provide an achievability bound on the average error probability over quasistatic spatially correlated Rayleigh-fading channels. The bound applies to arbitrary multiuser settings, pilot-assisted transmission, and mismatched decoding. This makes it suitable to assess the performance in the uplink/downlink for arbitrary linear signal processing. We show that several lessons learned from infinite-blocklength analyses carry over to the finite-blocklength regime. Furthermore, for the multicell setting with randomly placed users, pilot contamination should be avoided at all cost and minimum mean-squared error signal processing should be used to comply with the stringent requirements of URLLC.In Paper C, we consider sporadic transmissions where the task of the receiver is to both detect and decode an incoming packet. Two novel achievability bounds, and a novel converse bound are presented for joint detection-decoding strategies. It is shown that errors associated with detection deteriorates performance significantly for very short packet sizes. Numerical results also indicate that separate detection-decoding strategies are strictly suboptimal over block-fading channels.Finally, in Paper D, variable-length codes with noisy stop-feedback are studied via a novel achievability bound on the average service time and the average error probability. We use the bound to shed light on the resource allocation problem between the forward and the feedback channel. For URLLC applications, it is shown that enough resources must be assigned to the feedback link such that a NACK-to-ACK error becomes rarer than the target error probability. Furthermore, we illustrate that the variable-length stop-feedback scheme outperforms state-of-the-art fixed-length no-feedback bounds even when the stop-feedback bit is noisy

    Distributed Processing Methods for Extra Large Scale MIMO

    Get PDF

    Mobile node-aided localization and tracking in terrestrial and underwater networks

    Get PDF
    In large-scale wireless sensor networks (WSNs), the position information of individual sensors is very important for many applications. Generally, there are a small number of position-aware nodes, referred to as the anchors. Every other node can estimate its distances to the surrounding anchors, and then employ trilateration or triangulation for self-localization. Such a system is easy to implement, and thus popular for both terrestrial and underwater applications, but it suffers from some major drawbacks. First, the density of the anchors is generally very low due to economical considerations, leading to poor localization accuracy. Secondly, the energy and bandwidth consumptions of such systems are quite significant. Last but not the least, the scalability of a network based on fixed anchors is not good. Therefore, whenever the network expands, more anchors should be deployed to guarantee the required performance. Apart from these general challenges, both terrestrial and underwater networks have their own specific ones. For example, realtime channel parameters are generally required for localization in terrestrial WSNs. For underwater networks, the clock skew between the target sensor and the anchors must be considered. That is to say, time synchronization should be performed together with localization, which makes the problem complicated. An alternative approach is to employ mobile anchors to replace the fixed ones. For terrestrial networks, commercial drones and unmanned aerial vehicles (UAVs) are very good choices, while autonomous underwater vehicles (AUVs) can be used for underwater applications. Mobile anchors can move along a predefined trajectory and broadcast beacon signals. By listening to the messages, the other nodes in the network can localize themselves passively. This architecture has three major advantages: first, energy and bandwidth consumptions can be significantly reduced; secondly, the localization accuracy can be much improved with the increased number of virtual anchors, which can be boosted at negligible cost; thirdly, the coverage can be easily extended, which makes the solution and the network highly scalable. Motivated by this idea, this thesis investigates the mobile node-aided localization and tracking in large-scale WSNs. For both terrestrial and underwater WSNs, the system design, modeling, and performance analyses will be presented for various applications, including: (1) the drone-assisted localization in terrestrial networks; (2) the ToA-based underwater localization and time synchronization; (3) the Doppler-based underwater localization; (4) the underwater target detection and tracking based on the convolutional neural network and the fractional Fourier transform. In these applications, different challenges will present, and we will see how these challenges can be addressed by replacing the fixed anchors with mobile ones. Detailed mathematical models will be presented, and extensive simulation and experimental results will be provided to verify the theoretical results. Also, we will investigate the channel estimation for the fifth generation (5G) wireless communications. A pilot decontamination method will be presented for the massive multiple-input-multiple-output communications, and the data-aided channel tracking will be discussed for millimeter wave communications. We will see that the localization problem is highly coupled with the channel estimation in wireless communications

    Power control with Machine Learning Techniques in Massive MIMO cellular and cell-free systems

    Get PDF
    This PhD thesis presents a comprehensive investigation into power control (PC) optimization in cellular (CL) and cell-free (CF) massive multiple-input multiple-output (mMIMO) systems using machine learning (ML) techniques. The primary focus is on enhancing the sum spectral efficiency (SE) of these systems by leveraging various ML methods. To begin with, it is combined and extended two existing datasets, resulting in a unique dataset tailored for this research. The weighted minimum mean square error (WMMSE) method, a popular heuristic approach, is utilized as the baseline method for addressing the sum SE maximization problem. It is compared the performance of the WMMSE method with the deep Q-network (DQN) method through training on the complete dataset in both CL and CF-mMIMO systems. Furthermore, the PC problem in CL/CF-mMIMO systems is effectively tackled through the application of ML-based algorithms. These algorithms present highly efficient solutions with significantly reduced computational complexity [3]. Several ML methods are proposed for CL/CF-mMIMO systems, tailored explicitly to address the PC problem in CL/CF-mMIMO systems. Among them are the innovative proposed Fuzzy/DQN method, proposed DNN/GA method, proposed support vector machine (SVM) method, proposed SVM/RBF method, proposed decision tree (DT) method, proposed K-nearest neighbour (KNN) method, proposed linear regression (LR) method, and the novel proposed fusion scheme. The fusion schemes expertly combine multiple ML methods, such as system model 1 (DNN, DNN/GA, DQN, fuzzy/DQN, and SVM algorithms) and system model 2 (DNN, SVM-RBF, DQL, LR, KNN, and DT algorithms), which are thoroughly evaluated to maximize the sum spectral efficiency (SE), offering a viable alternative to computationally intensive heuristic algorithms. Subsequently, the DNN method is singled out for its exceptional performance and is further subjected to in-depth analysis. Each of the ML methods is trained on a merged dataset to extract a novel feature vector, and their respective performances are meticulously compared against the WMMSE method in the context of CL/CF-mMIMO systems. This research promises to pave the way for more robust and efficient PC solutions, ensuring enhanced SE and ultimately advancing the field of CL/CF-mMIMO systems. The results reveal that the DNN method outperforms the other ML methods in terms of sum SE, while exhibiting significantly lower computational complexity compared to the WMMSE algorithm. Therefore, the DNN method is chosen for examining its transferability across two datasets (dataset A and B) based on their shared common features. Three scenarios are devised for the transfer learning method, involving the training of the DNN method on dataset B (S1), the utilization of model A and dataset B (S2), and the retraining of model A on dataset B (S3). These scenarios are evaluated to assess the effectiveness of the transfer learning approach. Furthermore, three different setups for the DNN architecture (DNN1, DNN2, and DNN3) are employed and compared to the WMMSE method based on performance metrics such as mean squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE). Moreover, the research evaluates the impact of the number of base stations (BSs), access points (APs), and users on PC in CL/CF-mMIMO systems using ML methodology. Datasets capturing diverse scenarios and configurations of mMIMO systems were carefully assembled. Extensive simulations were conducted to analyze how the increasing number of BSs/APs affects the dimensionality of the input vector in the DNN algorithm. The observed improvements in system performance are quantified by the enhanced discriminative power of the model, illustrated through the cumulative distribution function (CDF). This metric encapsulates the model's ability to effectively capture and distinguish patterns across diverse scenarios and configurations within mMIMO systems. The parameter of the CDF being indicated is the probability. Specifically, the improved area under the CDF refers to an enhanced probability of a random variable falling below a certain threshold. This enhancement denotes improved model performance, showcasing a greater precision in predicting outcomes. Interestingly, the number of users was found to have a limited effect on system performance. The comparison between the DNN-based PC method and the conventional WMMSE method revealed the superior performance and efficiency of the DNN algorithm. Lastly, a comprehensive assessment of the DNN method against the WMMSE method was conducted for addressing the PC optimization problem in both CL and CF system architectures. In addition to, this thesis focuses on enhancing spectral efficiency (SE) in wireless communication systems, particularly within cell-free (CF) mmWave massive MIMO environments. It explores the challenges of optimizing SE through traditional methods, including the weighted minimum mean squared error (WMMSE), fractional programming (FP), water-filling, and max-min fairness approaches. The prevalence of access points (APs) over user equipment (UE) highlights the importance of zero-forcing precoding (ZFP) in CF-mMIMO. However, ZFP faces issues related to channel aging and resource utilization. To address these challenges, a novel scheme called delay-tolerant zero-forcing precoding (DT-ZFP) is introduced, leveraging deep learning-aided channel prediction to mitigate channel aging effects. Additionally, a cutting-edge power control (PC) method, HARP-PC, is proposed, combining heterogeneous graph neural network (HGNN), adaptive neuro-fuzzy inference system (ANFIS), and reinforcement learning (RL) to optimize SE in dynamic CF mmWave-mMIMO systems. This research advances the field by addressing these challenges and introducing innovative approaches to enhance PC and SE in contemporary wireless communication networks. Overall, this research contributes to the advancement of PC optimization in CL/CF-mMIMO systems through the application of ML techniques, demonstrating the potential of the DNN method, and providing insights into system performance under various scenarios and network configurations
    corecore