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Abstract

The paradigm shift from 4G to 5G communications, anticipated to enable ultra-reliable
low-latency communications (URLLC), will enforce a radical change in the design of
wireless communication systems. Unlike in 4G systems, where the main objective is to
provide a large transmission rate, in URLLC, as implied by its name, the objective is to
enable transmissions with low latency and, simultaneously, very high reliability. Since
low latency implies the use of short data packets, the tension between blocklength and
reliability is studied in URLLC.

Several key enablers for URLLC communications have been designated in the liter-
ature. Of special importance are diversity-enabling technologies such as multiantenna
systems and feedback protocols. Furthermore, it is not only important to introduce ad-
ditional diversity by means of the above examples, one must also guarantee that the
scarce number of channel uses are used in an optimal way. Therefore, it is imperative
to develop design guidelines for how to enable reliable detection of incoming data, how
to acquire channel-state information, and how to construct efficient short-packet channel
codes. The development of such guidelines is at the heart of this thesis.

This thesis focuses on the fundamental performance of URLLC-enabling technologies.
Specifically, we provide converse (upper) bounds and achievability (lower) bounds on the
maximum coding rate, based on finite-blocklength information theory, for systems that
employ the key enablers outlined above. With focus on the wireless channel, modeled
via a block-fading assumption, we are able to provide answers to questions like: how
to optimally utilize spatial and frequency diversity, how far from optimal short-packet
channel codes perform, how multiantenna systems should be designed to serve a given
number of users, and how to design feedback schemes when the feedback link is noisy.
In particular, this thesis is comprised out of four papers.

In Paper A, we study the short-packet performance over the Rician block-fading chan-
nel. In particular, we present achievability bounds for pilot-assisted transmission with
several different decoders that allow us to quantify the impact, on the achievable perfor-
mance, of imposed pilots and mismatched decoding. Furthermore, we design short-packet
channel codes that perform within 1 dB of our achievability bounds.
Paper B studies multiuser massive multiple-input multiple-output systems with short

packets. We provide an achievability bound on the average error probability over quasi-
static spatially correlated Rayleigh-fading channels. The bound applies to arbitrary
multiuser settings, pilot-assisted transmission, and mismatched decoding. This makes
it suitable to assess the performance in the uplink/downlink for arbitrary linear sig-
nal processing. We show that several lessons learned from infinite-blocklength analyses
carry over to the finite-blocklength regime. Furthermore, for the multicell setting with
randomly placed users, pilot contamination should be avoided at all cost and minimum
mean-squared error signal processing should be used to comply with the stringent re-
quirements of URLLC.
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In Paper C, we consider sporadic transmissions where the task of the receiver is to
both detect and decode an incoming packet. Two novel achievability bounds and a
novel converse bound are presented for joint detection-decoding strategies. It is shown
that errors associated with detection deteriorates performance significantly for very short
packet sizes. Numerical results also indicate that separate detection-decoding strategies
are strictly suboptimal over block-fading channels.
Finally, in Paper D, variable-length codes with noisy stop-feedback are studied via a

novel achievability bound on the average service time and the average error probability.
We use the bound to shed light on the resource allocation problem between the forward
and the feedback channel. For URLLC applications, it is shown that enough resources
must be assigned to the feedback link such that a NACK-to-ACK error becomes rarer
than the target error probability. Furthermore, we illustrate that the variable-length
stop-feedback scheme outperforms state-of-the-art fixed-length no-feedback bounds even
when the stop-feedback bit is noisy.

Keywords: Block-fading channels, ultra-reliable low-latency, short packets, joint detec-
tion and decoding, channel estimation, imperfect CSI, multiuser massive MIMO, variable-
length stop-feedback, HARQ.
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CHAPTER 1

Introduction

Since the advent of the first generation of (analog) wireless cellular systems in the seven-
ties, the last 50 years have been subject to a rapid development of the communications
infrastructure. As next generation wireless communications are established, new use
cases are enabled that are not only targeted to be utilized by humans. These use cases
fall under what is referred to as the Internet of things (IoT) and will enable devices such
as home appliances and cars to be connected. The number of IoT devices is expected to
have an annual growth rate of 30 percent, yielding a staggering 23.3 billion devices in
2023 [1]. However, realizing the IoT vision is a tremendous task that requires engineers
and researchers to rethink wireless system design. The standardization groups of 5G
have identified three separate use cases as [2]:

i) enhanced mobile broadband (EMBB) treats large data packets and how to deliver
them at a large data rate. This can be seen as an extension of the already established
long term evolution (LTE) system that is designed for the very same use case.

ii) machine-type communications (MTC) is a new use case in which a massive num-
ber of devices, e.g., sensors, send sporadic updates to a base station. Here, both
the data rate and the latency is secondary but what is important is the power
consumption and ability to handle a large number of user equipments (UE’s) si-
multaneously. Hence, one of the main challenges is how to create asynchronous
transmission protocols such that the power consumed at a device is minimized.

iii) ultra-reliable low-latency communications (URLLC) targets transmission of data at
a very small error probability without violating a fixed, stringent, latency constraint.
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Figure 1.1: Latency and reliability requirements for some URLLC applications.

For this use case, the data rate is typically small and the challenge resides in
designing protocols with very little overhead that exploits the available diversity to
enhance the reliability.

This thesis targets URLLC. The low-latency requirement in URLLC implies that the
time-duration of the data packets must be short. Furthermore, ultra-reliable transmission
translated into very few erroneously received messages. Traditionally, reliable transmis-
sion is achieved by the means of forward-error correction codes whose blocklength is on
the order of 104 − 105 bits—much longer than what is targeted for URLLC. Hence, to
achieve the stringent requirements of URLLC, innovations are needed in the design of
wireless communication systems.
It is expected that URLLC will enable use cases such as self-driving vehicles, profes-

sional audio, smart grids, a tactile Internet, and automated factories. In Fig. 1.1, the
most stringent reliability and latency constraints of the aforementioned applications are
shown [3]–[6]. For example, according to [3], the most stringent use case for self-driving
cars will allow one message in 105 transmissions to be in error while the latency is not
allowed to exceed 10 ms. In Fig. 1.1, the state of the LTE wireless standard, before the
standardization of 5G was initiated, is also illustrated. To extend the area covered by
LTE in Fig. 1.1, the 3rd generation partnership project (3GPP) have identified some of
the key enablers for URLLC as follows:
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• A shortened transmission time interval (TTI), i.e., a reduction of the smallest num-
ber of orthogonal frequency-division multiplexing (OFDM) symbols that can be
scheduled for transmission [7], [8]. For example, in LTE release 13, a TTI cor-
responds to 0.5 ms. In next generation’s wireless systems, however, a transmit
duration down to 0.14 ms is anticipated [9].

• Feedback schemes are an important component in today’s communication sys-
tems [10, Ch. 13]. In comparison to no-feedback schemes, theoretical findings
promise that the average error probability can be reduced with feedback-based
schemes operating at the same average blocklength [11]. As feedback schemes re-
quire two-way transmission, it is important that also the feedback transmission
delay is considered and, furthermore, that it is resilient to noise. Therefore, the
resource allocation between the forward data transmission and the feedback trans-
mission is an important consideration for URLLC.

• Exploitation of diversity. Due to the latency constraint, there may be no time
diversity to exploit. Hence, other sources of diversity such as frequency diversity,
exploited by transmitting over a bandwidth that spans several channel coherence
bandwidths, and/or diversity in space, by utilizing multiple transmit and receive an-
tennas, i.e., multiple-input multiple-output (MIMO), will be key [12]. Recently, due
to its abundant spatial diversity, massive MIMO has been suggested in conjunction
with URLLC [13]. Massive MIMO brings several interesting features such as serving
multiple users simultaneously on the same time-frequency resources [14], channel
hardening [15, Ch. 2], and asymptotically unlimited spectral efficiencies [16].

• In scenarios pertaining to event-triggered communications, such as fault-detection,
transmissions occur sporadically. As the receiver is not cognizant of incoming pack-
ets, it must first detect that data is incoming and then attempt to decode the data.
For simplicity, detection and decoding are typically performed separately in prac-
tical systems. Superior performance in terms of error probability and latency can,
however, be achieved with a joint design [13, Fig. 3].

• It is standard in wireless communications literature to assume that the receiver
operates with perfect or imperfect channel state information (CSI). However, the
resources required to obtain the CSI is seldomly accounted for. In short-packet com-
munications, CSI acquisition via, e.g., pilot transmission, may claim a significant
portion of the available channel uses. Hence, it becomes vital to properly model
the performance impact of the resource allocation associated with CSI acquisition
in URLLC.

• The design of short-packet channel codes will play an important role in URLLC.
As CSI is costly to acquire, it is not clear whether one should rely on estimated CSI
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or if noncoherent communications is preferred, i.e., to not rely on CSI but only the
fading statistics [17], [18]. When designing codes for URLLC, it is also important
to consider the decoding time. As iterative decoders must wait for the entire code-
word to be received, they may not be suitable for URLLC. Furthermore, iterative
decoders have been shown to perform poorly for short blocklengths since their de-
sign relies on density evolution and EXIT charts which are inherently asymptotic
in the blocklength [19].

In the process of designing URLLC protocols based on the technologies listed above, it
is imperative to know their fundamental limits. In previous generation wireless systems,
e.g., in 4G, fundamental performance metrics rely on an infinite-blocklength assumption,
e.g., the ergodic capacity and the outage capacity. While such metrics yield accurate
predictions on the fundamental performance in systems designed for long packets, they
greatly over-estimate the performance when the packet size is small [20], [21]. Instead, for
short-packet communications, accurate performance metrics should be based on finite-
blocklength information theory that characterizes, e.g., the maximum coding-rate achiev-
able for a target error probability and a given blocklength [20]. The importance of using
an accurate metric should not be underestimated: if a short-packet system designer is ex-
pecting a new design to perform close to, e.g., the ergodic capacity, the design might seem
very poor. However, if the correct benchmark based on finite-blocklength information
theory is used, it may turn out that the design is exceptional.
To model the wireless channel, we will make use of the so-called block-fading model.

This model assumes that the wireless channel is piece-wise constant over blocks in time
and frequency. The size of the blocks is derived from the physical propagation environ-
ment. To use the block-fading model, one has to decide on:

• channel state information: CSI can be available at the transmitter, the receiver,
both the transmitter and the receiver, or at neither.

• fading dynamics: A transmitted packet may span several time-frequency blocks
depending on the channel dynamics. For example, the channel may vary every
symbol (fast fading), over blocks of symbols, or remain constant over the entire
packet (quasi-static fading).

• fading distribution: For line-of-sight (LOS) and non-LOS channels, the fading
gain is typically assumed to be Rayleigh distributed (non-LOS) and Rician dis-
tributed (LOS), respectively.

In this thesis, we will be concerned with the no-CSI case, i.e., neither the transmitter or
the receiver have a priori CSI. Different fading dynamics and fading distributions will
be considered. The properties of the wireless channel are discussed in more detail in
Chapter 2.
The objective of the thesis is to characterize the fundamental performance, in terms of

rate and average error probability, of communication systems operating over the block-
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1.1 Thesis Organization

fading channel in the URLLC regime. In particular, four major topics are covered: the
impact of CSI acquisition, joint detection-decoding strategies, multi-user massive MIMO
communications, and variable-length codes with imperfect one-bit feedback. For these
topics, we present novel fundamental results that can be used to provide guidelines for
the design of high-performing systems targeted towards URLLC.

1.1 Thesis Organization
This thesis consists of two parts. In Part I, an overview over the field of finite-blocklength
information theory targeted towards wireless communications is provided. We further
discuss the key enablers outlined in the introduction and how they can be incorporated
in the analysis of communication systems designed for URLLC applications. The bulk
of part I serves as a background for the models and tools considered in the appended
papers that make up part II of the thesis.

More specifically, in Chapter 2, we derive the block-fading MIMO channel that is used
to model the propagation environment. Chapter 3 gives an overview over some of the
most common tools used in finite-blocklength information theory. Chapter 4 gives a
background on imperfect CSI and mismatched decoding which is the topic of Paper A.
Multiuser massive MIMO communications is the topic of Paper B. Analyses of massive
MIMO systems are almost exclusively based on asymptotic metrics. In Chapter 5, we
argue that such analyses are not accurate for URLLC applications. Chapter 6 intro-
duces a system model for sporadic transmission with imperfect detection and provides
an overview of the joint detection-decoding problem which is the topic of Paper C. Next,
we go on to study variable-length stop-feedback (VLSF) schemes, a general family of
stop-feedback schemes to which commonly used feedback schemes such as automatic re-
peat request (ARQ) and hybrid automatic repeat request (HARQ) belong. Chapter 7
introduces VLSF codes along with a brief review of the relevant results that inspired
our contribution on variable-length codes with noisy stop-feedback in Paper D. Finally,
Chapter 8 summarizes the first part of the thesis by outlining the contributions, possible
extensions, and concluding remarks.

1.2 Notation
Scalar random variables are denoted by upper case letters such asX and their realizations
are written in lower case, e.g., x. We use bold-faced upper case letters to denote random
vectors, e.g., X, and bold-faced lower-case letters such as x to denote their realizations.
Two special fonts are used to denote deterministic matrices (e.g., X) and random matrices
(e.g., X). The superscripts T, H, and ∗ stand for transposition, Hermitian transposition,
and complex conjugation, respectively. The identity matrix of size n × n is written as
In. We denote by R the set of real numbers, R+ the set of positive real numbers, and by
C, the set of complex numbers. The distribution of a complex Gaussian random variable
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with mean µ and variance σ2 is denoted by CN
(
µ, σ2). We write log(·) and log2(·) to

denote the natural logarithm and the logarithm to the base 2, respectively. We let 1{A}
denote the indicator function of the event A, probabilities are written as P[·], E[·] is the
expectation operator, tr{} denotes the trace of a matrix, and Q(·) denotes the Gaussian
Q-function. For two functions f(x) and g(x), the notation f(x) = O(g(x)) means that
lim supx→∞|f(x)/g(x)| < ∞, and f(x) = o(g(x)) means that lim supx→∞|f(x)/g(x)| =
0.
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CHAPTER 2

The Wireless Channel

When designing a wireless communication system, it is important to account for the
propagation environment. Since an exact model of the environment is not feasible, sim-
plifying channel models are utilized. Naturally, there is a tension between accuracy and
simplicity of the model. To not end up with a model too tailored towards a specific
environment, several simplifying assumptions are typically made to describe the propa-
gation environment statistically. The aim of this chapter is to introduce the underlying
simplifying assumptions that are used to motivate the block-fading channel model. The
block-fading model will then be used throughout the thesis to model the propagation
environment between the transmitter and the receiver.

2.1 Propagation Model
When an electromagnetic wave is signalled from a transmitter, it gets reflected, refracted,
and diffracted as it interacts with physical objects in the environment. This interaction
may separate the wave into so-called multipath components that arrive at the receiver
with a potentially different delay, amplitude, phase, and angle. The impact of the radio
channel is explicitly described through the input-output relation [22, Ch. 6.3.1]

y(t) =
∫ ∞
−∞

x(t− τ)h(t, τ)dτ (2.1)

where x(t) denotes the complex baseband signal emanating from the transmitter at time
t, y(t) is the received signal, and h(t, τ) denotes the time-varying impulse response of the
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radio channel where the τ variable describes the delay.
It should be noted that the impulse response in (2.1) is dependent on the transmit-

ter and receiver antennas via the corresponding radiation patterns Gtx(φ) and Grx(ψ)
where φ and ψ denotes the angle of departure (AoD) and the angle of arrival (AoA),
respectively. Indeed, h(t, τ) is obtained from the double-directional time-varying impulse
response h(t, τ,φ,ψ) as [23]

h(t, τ) =
∫
φ

Gtx(φ)
[∫
ψ

Grx(ψ)h(t, τ,φ,ψ) dψ
]
dφ (2.2)

where the system-independent propagation over the wireless channel can be described as
a sum over several multipath components as [23] 1

h(t, τ,φ,ψ) =
N∑
`=1

h`(t, τ,φ,ψ) . (2.3)

For a given multipath component `, the AoA is the incident angle on the receive antenna
and the AoD is the departure angle from the transmitter. Note that the AoD and the
AoA are spatial angles corresponding to points on the unit sphere that characterize both
the azimuth and the elevation angles, see Fig 2.1. Furthermore, N denotes the total
number of multipath components reaching the receiver.
The time-variance in (2.3) may be due to a to a moving transmitter, a moving receiver,

or a changing propagation environment caused by, e.g., moving scatterers. Therefore,
the delay and angles of the `th multipath component, i.e., (τ`,φ`,ψ`), may change over
time for all ` = 1, . . . , N . Note that also the number of multipath components N may
change with time. For our purposes, though, the time variation of these variables is slow
and they may be considered to be time-invariant. If we also assume that all multipath
components are due to point scatterers, we may express the `th multipath component
of (2.3) as [24, Eq. 2]

h`(t, τ,φ,ψ) = c`(t)δ(τ − τ`)δ(φ− φ`)δ(ψ −ψ`) (2.4)

where c`(t), τ`, φ`, and ψ` denote the complex amplitude, delay, AoD, and AoA of the
`th multipath component, and δ(·) denotes the Dirac delta-function.
From (2.4), we note that only c`(t) varies over the time scale of interest. The time-

variation of c`(t) is due to phase changes that results from Doppler effects which causes
frequency dispersion. Naturally, the faster the transmitter/receiver moves or the envi-
ronment changes, the faster the variations and the larger the frequency dispersion. A
Doppler spectrum is associated with each amplitude c`(t) and describes its development
over time. It is common to assume wide-sense stationarity (WSS), which implies that

1Typically, polarization is also modeled in the impulse response [22, Ch. 7.4.4]. It is omitted here for
simplicity.
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Transmitter Receiver
Environment

Figure 2.1: Multipath components associated with a subset of the available spatial direc-
tions.

multipath components with different Doppler shifts are uncorrelated [22, Ch. 6.4.1].
The multipath components travel along different paths on their way to the receiver.

This is captured partly by the delay τ . At the receiver, multipath components with
different delay cause time-dispersion. For a given frequency, multi-path components
with different delays correspond to different phase shifts of the same signal in frequency
domain. Hence, the addition of multipath components with different delays give rise to
interference. If the multipath components interfere destructively, the associated output
power of the channel can be very small. As the phase shifts depend on the frequency,
the same multipath components may exhibit constructive interference for one frequency
and destructive for another, this is called frequency selectivity. A common simplifying
assumption is to assume that the scattering is uncorrelated which implies that multipath
components with different delays are uncorrelated [22, Ch. 6.4.2].

In some scenarios, only parts of the transmitter and the receiver spheres are associated
with multipath components. As an example, Fig. 2.1 illustrate a scenario where the AoDs
and AoAs are limited to a subset of the spatial directions which is highlighted in blue.
Three multipath components are also shown. The AoDs and AoAs are typically modelled
as random variables centered around a mean AoD and a mean AoA, corresponding to
the middle of the blue circles. Common distributions used to describe the AoDs and the
AoAs over the shaded blue area in Fig. 2.1 are, e.g., the truncated Laplace distribution
and the truncated Gaussian distribution [25, Ch. 4]. In a rich isotropic environment,
multipath components arrive at the receiver from all directions and the distributions of
the AoDs and AoAs are therefore assumed to be uniform over all angles, in Fig. 2.1 it
would correspond to the spheres being colored in blue.

To give a complete stochastic description of the time-varying impulse response, we
would require the joint probability density function (PDF) of the complex amplitudes
at all times, delays, and angles. In practice, this is not feasible and one is typically
interested in the autocorrelation function as an approximate description to how the
impulse-response behaves [22, Ch. 6.3.2]. Note that if N is large, according to the
central-limit theorem, h(t, τ,φ,ψ) in (2.3) is approximately a complex Gaussian random
process. In this case, the time-varying impulse response is completely described by the
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mean and autocorrelation function.
To this end, it is convenient to consider the spreading function, i.e., the Fourier trans-

form of the time-varying impulse response with respect to t, as

s(ν, τ,φ,ψ) =
∫ ∞
−∞

h(t, τ,φ,ψ) e−j2πνtdt (2.5)

where ν denotes the Doppler frequency. The spreading function in (2.5) describes the
frequency dispersion in the Doppler domain. Due to the assumptions of WSS and un-
correlated scattering, we obtain the autocorrelation function as [22, Eq. 6.53]

E[s(ν, τ,φ,ψ)∗s(ν′, τ ′,φ′,ψ′)] = S(ν, τ,φ,ψ)δ(ν − ν′)δ(τ − τ ′)δ(φ− φ′)δ(ψ −ψ′)
(2.6)

where S(ν, τ,φ,ψ) is called the Scattering function and characterizes the channel output
power as a function of τ , ν, φ, and ψ. By using (2.6), we can derive quantities that
approximately describe how fast the channel changes in the time domain, frequency
domain, and over the angular domains.
The time and frequency variations are most easily understood by integrating (2.6)

over the angular domains and then by Fourier transforming the result with respect to
the dispersion parameters ν, ν′, τ , and τ ′. This results in the time-frequency correlation
function RH(∆t,∆f) which quantifies how the radio channel correlates over time and
frequency where ∆t = t − t′ and ∆f = f − f ′. Note that RH(∆t,∆f) can also be
obtained as the correlation of the time-frequency response H(t, f) where H(t, f) is the
Fourier transform of h(t, τ) in (2.2).
The coherence time Tc measures how fast the channel changes in time and is defined as

the time duration for which the channel remains correlated. Mathematically, it is defined
as [22, Ch. 6.5.4]

Tc = arg max
∆t>0

{
|RH(∆t, 0|
RH(0, 0) = α

}
(2.7)

for some α ∈ [0, 1]. Similarly, in frequency, the coherence bandwidth Bc measures how
fast the channel changes in frequency and is defined as the largest frequency separation
for which the channel remains correlated. It is defined as

Bc = arg max
∆f>0

{
|RH(0,∆f |
RH(0, 0) = α

}
(2.8)

where α ∈ [0, 1]. The value of α in (2.7) and (2.8) depends on the application. In
this thesis, we shall assume that α is chosen to be large enough such that the channel
remains essentially unchanged for time durations Tc and frequency separations Bc. We
will refer to time-frequency blocks of bandwidth Bc and time duration Tc as a coherence

12



2.1 Propagation Model

Time [ms]

Fr
eq
ue

nc
y
[M

H
z]

0

1

2

3

4

5

6

7

8

9

0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 2.2: Realization of |H(t, f)| for a non-line-of-sight highway wireless channel.

block. In Fig. 2.2, the magnitude of a frequency-selective time-varying wireless channel,
integrated over all AoDs and AoAs with isotropic radiation patterns, is illustrated. The
channel model is based on the highway channel model in [26]. It can be seen that the
channel experiences large variations in both time and in frequency with a coherence time
Tc ≈ 0.1 ms and a coherence bandwidth Bc ≈ 1 MHz.

As the variations in time and frequency have been quantified, what remains is to
quantify the variations of the channel output power over the AoDs and AoAs. To this
end, we will make use of the angular power spectrum (APS). Since the APS for the AoD
and the AoA are obtained analogously, we shall focus here on the AoA. The APS in the
AoA domain measures how the channel output power varies with ψ and is defined as [22,
Eq. 6.57]

APS(ψ) =
∫
τ

∫
φ

∫
ν

S(ν, τ,φ,ψ)Gtx(φ)dνdφdτ. (2.9)

Based on (2.9), we can define a PDF as

PΨ(ψ) = APS(ψ)∫
ψ
APS(ψ)dψ

(2.10)

that quantifies the fraction of the channel output power that is received in a given AoA.
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If the transmitter, the receiver, and the scatterers are located on the same height, most
of the power will be received over the azimuth plane. In this case, we have ψ = ψ and
the angular spread σψ quantifies how dispersive the the multipath components are over
the AoAs. The angular spread is defined as the second central moment [22, Eq. 6.58]

σψ =

√∫
ψ

ψ2PΨ(ψ)dψ −
(∫

ψ

ψPΨ(ψ)dψ
)2
. (2.11)

As already mentioned, PDF in (2.10) is typically modelled by a known probability dis-
tribution, e.g., the truncated Laplace distribution or the truncated Gaussian distribu-
tion [25, Ch. 4]. Notice that both of these distributions are parametrized based on a
scale factor that is related to the angular spread σψ in (2.11).

2.2 The Multiantenna Block-fading Model
In Section 2.1, we derived several quantities that characterize the variability of wireless
propagation channels: the coherence time Tc describes the dynamics in time; the coher-
ence bandwidth Bc describes how fast the channel varies in frequency; and the angular
spread σψ describes the angular variation of the multipath components. These quanti-
ties are important as they provide insights on how to design a communication system
operating over the wireless channel. Next, we would like to turn the propagation channel
into a MIMO channel by specifying the system bandwidth and antenna arrays. In the
previous section, we considered correlation in time and frequency. In MIMO channels,
correlation is present also in the spatial dimension.
Let us consider a MIMO system with nt transmit antennas and nr receive antennas.

The channel gains between the transmit and the receive antennas can be compactly
written as

H(t, τ) =


h1,1(t, τ) · · · h1,nt(t, τ)
h2,1(t, τ) · · · h2,nt(t, τ)

...
. . .

...
hnr,1(t, τ) · · · hnr,nt(t, τ)

 (2.12)

where the fading gain hj,i(t, τ) between transmit antenna i and receive antenna j is
obtained from (2.2).
Let us assume that our wireless system operates using a bandwidth B Hz. If we choose

B � Bc, the channel will be perceived as frequency invariant over the bandwidth or, in
other words, narrowband. Similarly, if we let the duration of the transmitted signal be T
seconds and we choose T � Tc, the transmitted signal will experience a time-invariant
channel, i.e., the channel is slow-fading. Hence, if B and T are chosen such that the
channel is narrowband and slow-fading, we may exploit temporal and frequency diversity
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by dividing the transmission in blocks that are transmitted over different coherence blocks
with independent fading gains. The fading gain for each coherence block is described as

H =


h1,1 · · · h1,nt

h2,1 · · · h2,nt

...
. . .

...
hnr,1 · · · hnr,nt

 . (2.13)

As discussed in Section 2.1, each entry in (2.13) may be modeled as a complex Gaussian
random variable. Hence, we have that H ∼ CN (M,R) where M = E[H] denotes the LOS
component and the covariance matrix R is given as [25, Eq. (6.20)]

R = E
[
vec(H−M) vec(H−M)H

]
(2.14)

where vec(H) stacks the columns of H into a vector. It is common to assume that
the transmitter and receiver propagation environments are independent and adopt the
Kronecker model for the covariance matrix in (2.14) as [25, Ch. 6.5]

R = 1
tr{Rrx}

Rtx⊗Rrx (2.15)

where

Rrx = E
[
(H−M)(H−M)H] (2.16)

Rtx = E
[
(H−M)T(H−M)∗

]
. (2.17)

Although φ and ψ are in general spatial angles, we shall consider angles located in the
azimuth plane, i.e., φ = φ and ψ = ψ. This simplifying assumption is accurate when the
transmitter, the receiver, and the scatterers are approximately confined to the azimuth
plane [27]. As the covariance matrices in (2.16)– (2.17) are obtained in the same way,
we consider only (2.16). When H has zero mean, the (m,n)th entry of the covariance
matrix in (2.16) is given as [15, Ch. 2.6]

[Rrx]m,n = E

[
N∑
`=1
|c`|2

]∫ π

−π
exp(j∆m,n(ψ))PΨ(ψ) dψ (2.18)

where ∆m,n(ψ) is the phase difference of the planar wave impinging on receive antenna
m and receive antenna n, PΨ(ψ) is given in (2.10), and c` is the complex fading gain of
the `th multipath component. Different antenna arrays yield different phase differences.
For example, if the antennas are separated by half a wavelength and uniformly placed,
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we obtain ∆m,n(ψ) as [27]

linear array: ∆m,n(ψ) = π(m− n) sin(ψ̄ − ψ) (2.19)

circular array: ∆m,n(ψ) = π cos(ψ̄ − φm − ψ) cos(ψ̄ − φn − ψ)√
2(1− cos(ϕ))

(2.20)

where ψ̄ is the mean angle of the multipath components, φm is the angle of the mth
antenna in the circular array, and ϕ is the angle between two neighboring antennas in
the circular array [27].
The block-fading model was originally presented in [28] and can be an accurate model

for systems employing, e.g., frequency hopping, block-interleaving, or OFDM. In this
thesis, the block-fading model is important as it enables us to capture the memory effect
in the propagation channel via a simple stair-case approximation that will further allow
us to exploit the diversity offered by the wireless channel. Note that fast-fading and
quasi-static fading are obtained as special cases of the block-fading model by consid-
ering a coherence block spanning one transmitted symbol and all transmitted symbols,
respectively.
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CHAPTER 3

Finite-Blocklength Toolbox

In this chapter, we review some of the main tools used in finite-blocklength information
theoretic analyses. The chapter is focused on codes with a deterministic blocklength
which is relevant to Paper A, Paper B, and Paper C. Although the tools presented in
this chapter applies to arbitrary channel models, we shall focus on their application in
wireless communications and use the block-fading model presented in Chapter 2.

3.1 Probabilistic Tools
In this section, we review results related to i.i.d. random variables. Let X1, . . . , Xn be
i.i.d. real random variables with finite mean µ, variance σ2 > 0, and finite third central
moment ξ. The moment-generating function (MGF) of Xi is defined as

m(τ) = E[exp(τXi)] (3.1)

and the cumulant-generating function (CGF) is given as κ(τ) = log(m(τ)) where τ ∈ R.
We denote the first, second, and third derivatives of κ(τ) by κ′(τ), κ′′(τ), and κ′′′(τ),
respectively. Let Sn =

∑n
i=1Xi denote the sum of X1, . . . , Xn. In the upcoming sections,

the tail probability

P[Sn ≥ γ] , (3.2)

with γ ≥ 0, will be the main quantity of interest. Therefore, in what follows, we shall
consider results related to tail probabilities as in (3.2). More specifically, we shall con-
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Chapter 3 Finite-Blocklength Toolbox

sider: i) results on (3.2) when n is finite, ii) the limiting behavior of (3.2) as n tends to
infinity, and iii) approximations on (3.2).

Nonasymptotic Tools

When the distribution of Sn is unknown or when γ deviates significantly from the mean
of Sn, the tail probability in (3.2) is challenging to evaluate. Sometimes, though, a
change of measure can enable the use of Monte-Carlo methods that, otherwise, would
be deemed unfeasible. Let P denote the probability distribution of Sn and be absolutely
continuous with respect to another, auxiliary, probability distribution Q. By expressing
the tail probability (3.2) as an expectation, we have

P[Sn ≥ γ] = EP [1{Sn ≥ γ}] = EQ

[
dP
dQ (Sn)1{Sn ≥ γ}

]
(3.3)

where dP/dQ denotes the Radon-Nikodym derivative of P w.r.t. Q [29, Ch. V.3].1 Notice
that the tail probability in (3.2) can now be evaluated by sampling from the auxiliary
distribution Q.
To use (3.3), one must choose a suitable distribution Q. A common method is to use an

exponentially tilted distribution, sometimes referred to as exponential change of measure,
that shifts the mean of Sn to be centered around the threshold γ. The exponentially
tilted PDF is given as [29, Ch. XVI.7]

Q(x) = exp(τx− nκ(τ))P (x) (3.4)

where τ is inside the region of convergence of the MGF in (3.1). It follows that EQ[Sn] =
nκ′(τ). Hence, by choosing τ such that nκ′(τ) = γ, the mean of the tilted random
variable is shifted to γ. If one is able to sample from the tilted distribution (3.4), the
tail probability in (3.2) may be easily obtained via Monte-Carlo methods. For this
reason, the exponentially tilted measure in (3.4) is commonly used in, e.g., importance
sampling [30]. In general, though, the choice of auxiliary distributions depends on the
situation and other methods than exponential tilting may be more suitable.
If a change of measure is not feasible, one may instead attempt to upper-bound the

tail probability. To this end, the Chernoff bound, given below, is useful

P[Sn ≥ γ] ≤ inf
s≥0

exp(−(sγ − nκ(s))) . (3.5)

Note that to find the optimal value of s, one must in general rely on stochastic optimiza-
tion tools.

1For continuous distributions P and Q, the Radon-Nikodym derivative can simply be thought of as a
ratio between two PDF’s.
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Asymptotic Tools
In some situations, an exact evaluation of (3.2), as in the previous section, is formidable.
In this case, (3.2) may be approximated by using probabilistic results as n → ∞. One
of the most fundamental results in probability theory is the law of large numbers (LLN)
that concerns the mean of Sn as [29, Ch. VII.8]

lim
n→∞

P

[
1
n
Sn ≥ γ

]
= 1{γ ≤ µ} . (3.6)

The LLN states that Sn concentrates around its mean as n tends to infinity. However,
note that (3.6) does not entail any information about the rate at which Sn tends to its
mean. In nonasymptotic analyses though, one is often interested in the speed at which
Sn approaches its asymptotic limit.

The behavior of Sn as n grows large can be refined via the central limit theorem
(CLT) [29, Ch. VIII.4]. The CLT states that the distribution of (Sn − nµ)/

√
nσ2 tends

to a standard Normal distribution as n grows large but it does not describe how large n
must be for it to be accurate. To understand the quality of approximating (3.2) using
the Normal distribution, the Berry-Esseen theorem is useful [29, Ch. XVI.5]. The Berry-
Esseen theorem states that the absolute error between the distribution of (Sn−nµ)/

√
nσ2

and the standard Normal distribution is upper bounded as∣∣∣P[Sn − nµ√
nσ2

≥ γ
]
−Q(γ)

∣∣∣ ≤ 3ξ
σ3√n

(3.7)

for any real valued γ. Hence, (3.7) quantifies the error induced by using the Normal
distribution in place of the distribution of Sn. It is, however, important to observe that
the bound in (3.7) does not depend on the threshold γ. As γ increases, the probability
terms on the left-hand side decrease and the bound in (3.7) eventually becomes loose.

When γ is large, the theory of large deviations can be used to study the tail probabil-
ity (3.2). Provided that m(τ) is finite in a neighborhood around zero,2 a fundamental
result in the analysis of large deviations entails that [31, Ch. 5.11, Th. 4]

lim
n→∞

− 1
n

log
(

P

[
1
n
Sn ≥ γ

])
= sup

τ∈R
{γτ − κ(τ)} = E(γ) (3.8)

where E(γ), in communications, is referred to as the error exponent [32]. The result
in (3.8) states that the tail probability decays to zero exponentially fast with an exponent
given by E(γ), i.e., P

[ 1
nSn ≥ γ

]
= exp(−n(E(γ) + o(1))). When n is not large, however,

there may be sub-exponential terms, captured by the o(1) term, that influence how fast
the tail-probability decays.

So far, we have presented (3.7), which is accurate for small values of γ, and (3.8),
2This is holds if the PDF of the underlying random variable has exponentially decaying tails [31,
Prob. 5.11.3].
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which is accurate for large values of γ. To obtain a result that is accurate in both of
these regimes, the saddlepoint expansion, which characterizes the relative error commit-
ted by replacing the exponentially tilted distribution with a Normal distribution, can be
used [29, Ch. XVI.7]. To obtain the saddlepoint expansion, one first performs an expo-
nential tilting on Sn to shift the mean as in (3.4), whereafter the CLT is applied on the
tilted random variable to yield the saddlepoint expansion [29, Ch. XVI.7][33, Prop. 6.1].3
The result is given as

P

[
1
n
Sn ≥ γ

]
= e−nE(γ)

(
f(τ, n) + K(τ, n)√

n
+ o

(
1√
n

))
(3.9)

where τ is chosen such that nκ′(τ) = γ and

f(τ, n) = en
τ2κ′′(τ)

2 Q
(
τ
√
nκ′′(τ)

)
, (3.10)

K(τ, n) = κ′′′(τ)
6
√

2πκ′′(τ)3/2

(
τ2κ′′(τ)n− 1−

√
2πτ3κ′′(τ)3/2n3/2f(τ, n)

)
. (3.11)

The approximation obtained by ignoring the error term in (3.9) is sometimes referred to
as saddlepoint approximation.

Binary Hypothesis Testing

Hypothesis testing is intrinsic to communications. For example, the decoding operation
can be viewed as a multiple hypothesis testing problem. Recent results have demon-
strated a close connection between the fundamental limits of short-packet communica-
tions and binary hypothesis testing [20]. Therefore, we next present the binary hypothesis
testing problem.
Let W be a random variable, defined on a set W, and assume that it was generated

according to one of the two probability distributions P and Q. The task of the binary
hypothesis test is to observe W = w and decide if it was generated from P or from Q.
As there are only two outcomes, the test can be viewed as a random variable Z(w) where
Z(w) = 0 indicates that Q was chosen and Z(w) = 1 indicates that P was chosen.
The power of the binary hypothesis testing problem is defined as [34, Def. (12.1)]

βα(P,Q) = inf
EP [1{Z(W )=1}]≥α

EQ[1{Z(W ) = 1}] (3.12)

and describes the smallest classification error achievable when Q is the correct distribu-
tion among all the tests that are able to correctly classify P with a probability larger
or equal to α. The optimal test in (3.12) is obtained from the Neyman-Pearson lemma

3This procedure requires the third derivative of m(τ) to be finite in a neighborhood around zero. Note
that this is more restrictive than the conditions in (3.7) and (3.8).
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as [35]

Z(w) = 1

{
dP
dQ (w) ≥ γ

}
(3.13)

where γ in (3.13) is chosen such that

EP [1{Z(W ) = 1}] = α (3.14)

and where W is assumed to be a continuous random variable. Hence, to evaluate
βα(P,Q), one has to obtain two quantities that are related to tail probabilities with
respect to P and Q, respectively.

From the previous discussions on tail probabilities, it is clear that βα(P,Q) can be very
difficult to evaluate. When this is the case, the following bound will turn out useful [34,
Th. 12.5]

βα(P,Q) ≥ sup
γ>0

1
γ

(
α− EP

[
1

{
log
(

dP
dQ (W )

)
> log(γ)

}])
. (3.15)

Note that (3.15) provides a lower bound on βα(P,Q) that only requires the evaluation
of a tail probability with respect to P .

3.2 Information Theoretic Tools
In this section, we introduce the finite-blocklength information theoretic tools that are
used in Paper A, Paper B, and Paper C. Although the results reviewed in this section
apply to general channels, we shall, for simplicity, consider the single-input single-output
(SISO) block-fading channel introduced in Chapter 2. The input-output relation for the
SISO block-fading channel with a coherence block of nc symbols is given as

Yk = Hkxk +Zk, k = 1, . . . , L. (3.16)

Here, L is the number of coherence blocks used during the transmission, i.e., diversity
branches, and, for simplicity we assume the blocklength to be n = Lnc. The channel
input and output in the kth coherence block are denoted by xk ∈ X and Yk ∈ Cnc ,
respectively. The set X denotes the set of allowed input vectors of length nc and typically
includes all the input vectors that satisfy some given power constraint. The fading gains
{Hk}Lk=1 are i.i.d. and assumed to be stationary, and {Zk}Lk=1, which are independent of
the fading gains, denote the additive white Gaussian noise (AWGN) at the receiver, i.e.,
Zk ∼ CN (0, In). The input-output relationship in (3.16) is probabilistically described by
a channel law PY |X(yk|xk) for each k = 1, . . . , L. Next, we define a channel code.
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Definition 1. An (Lnc,M, ε)–channel code for the input-output relation (3.16) consists
of:

• An encoder f : {1, . . . ,M} → XL that maps the message J , which is uniformly
distributed on the set {1, . . . ,M}, to a codeword cL(J) = [c1(J), . . . , cL(J)] where
ck(J) ∈ X for k = 1, . . . , L.

• A decoder g : (Cnc)L → {1, . . . ,M} that maps the channel output Y L, induced by
the codeword cL(J), to a message estimate Ĵ = g(Y L). The decoder satisfies the
average error probability constraint

Pr{Ĵ 6= J} ≤ ε. (3.17)

The performance of (Lnc,M, ε)–channel codes is typically assessed, for a fixed block-
length Lnc and average error probability ε, via the maximum coding rate as

R∗(Lnc, ε) = log2(M∗(Lnc, ε))
Lnc

(3.18)

where

M∗(Lnc, ε) = sup{M : ∃(Lnc,M, ε)–channel code} . (3.19)

The supremum in (3.19) is with respect to all the encoder/decoder pairs that make
up an (Lnc,M, ε)–channel code. As the problem of exactly characterizing R∗(Lnc, ε)
is, in general, NP-hard [36], nonasymptotic information theoretic analyses are typically
concerned with upper-bounding and lower-bounding R∗(Lnc, ε). Note that bounds on
R∗(Lnc, ε) can be converted into bounds on the average error probability for a fixed M
and Lnc as

ε∗(Lnc,M) = inf{ε : ∃(Lnc,M, ε)–channel code} . (3.20)

To introduce the finite-blocklength tools, we will consider the metric out of (3.18)
and (3.20) that is the most suitable for the given situation. These tools are introduced
next.

Achievability Bounds
As the name implies, an achievability bound in communications entails the achievable
performance using a feasible encoder/decoder pair. An achievability bound can be ob-
tained simply by evaluating the performance of a given encoder/decoder pair. However,
the design of an explicit high-performing encoder/decoder pair is very challenging and
depends on the situation. Instead of designing an explicit encoder/decoder pair, an al-
ternative strategy is to simply show the existence of a high-performing encoder/decoder
pair via the random-coding argument. The random-coding argument is as follows: for
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given encoding and decoding rules, an upper bound on the average error probability (av-
eraged over some ensemble of randomly generated codebooks) implies the existence of at
least one codebook for which the bound holds. Examples of commonly used ensembles
are: the i.i.d. ensemble where the elements of the codewords are chosen i.i.d. from an
arbitrary distribution; the Gaussian ensemble, where codewords are chosen i.i.d. accord-
ing to a Gaussian distribution; and the shell ensemble, where codewords are chosen i.i.d.
and uniformly from the surface of a high-dimensional shell.

The maximum likelihood (ML) decoder, which is known to minimize the average error
probability, is the most commonly analyzed decoder. However, to align the analysis more
with reality, it may be of interest to consider a richer class of decoders. Here, we shall
consider a general non-negative decoding metric q : XL × (Cnc)L → R+ and a decoder
that makes decisions based on the following rule

Ĵ = arg max
j∈{1,...,M}

{
q(xL(j),yL)

}
(3.21)

where the message index of the codeword is explicitly shown. The ML metric is obtained
as a special case in (3.21) by letting q

(
xL,yL

)
= PY L|XL(yL|xL).

Based on (3.21), we note that an error is committed if q(x̃L,yL) > q(xL,yL) where xL
is the transmitted codeword and x̃L denotes any other codeword. This observation leads
to the random-coding union (RCU) bound [20, Th. 16] which is the best non-asymptotic
achievability bound available in the literature. The RCU bound states that there exists
an encoder/decoder pair operating with M messages and blocklength Lnc such that

ε∗(Lnc,M) ≤ E
[
min

{
1, (M − 1) P

[
q
(
X̃L,Y L

)
≥ q
(
XL,Y L

)
|XL,Y L

]}]
(3.22)

where PX̃L,XL,Y L(x̃L,xL,yL) = PXL(x̃L)PXL(xL)PY L|XL(yL|xL) and PXL is the dis-
tribution of a random codeword.
The bound in (3.22) is typically formidable to compute since M is in general very

large. For example, if each codeword carries 100 information bits, we haveM = 2100 and,
consequently, the probability term in (3.22) must be smaller than 2−100 to yield usable
results. Such small error probabilities are out of reach for common Monte-Carlo methods.
To circumvent this issue, we may relax Theorem 3.22 via the Chernoff bound (3.5). The
result is referred to as the random-coding union bound with parameter s (RCUs) and
entails the existence of an encoder-decoder pair with M messages and blocklength Lnc

that satisfies [37, Th. 1]

ε∗(Lnc,M) ≤ inf
s≥0

P
[
ıs
(
XL,Y L

)
≤ log(M − 1) + log(U)

]
(3.23)

where PXL,Y L(xL,yL) = PXL(xL)PY L|XL(yL|xL) and

ıs
(
xL,yL

)
= log

(
q(xL,yL)s

E[q(XL,yL)s]

)
(3.24)
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is referred to as the generalized information density [37, Eq. (3)]. When s = 1 and the
ML decoding rule is used, (3.24) is referred to as the information density whose statistical
average equals the well-known mutual information [38, Ch. 2.5]. The RCUs bound will
be used in Paper A and Paper B.
The last achievability bound we shall consider is referred to as the ββ-bound which

is valid for ML decoding and is particularly useful in scenarios where the information
density is challenging to compute [39]. The ββ-bound has been shown to generalize
several non-asymptotic bounds such as the dependence-testing bound [20, Th. 22] and
the κβ-bound [20, Th. 25]. It states that there exists an encoder-decoder pair that
achieves an average error probability ε with blocklength Lnc such that the number of
messages M is lower bounded as [39, Th. 1]

M∗(Lnc, ε) ≥ sup
0<τ<ε

sup
QY L

2βτ (PY L , QY L)
β1−ε+τ (PXLPY L|XL , PXLQY L) . (3.25)

Here, PY L is the output distribution induced by the input distribution PXL and QY L is
an arbitrary probability distribution on (Cnc)L. The main idea behind the proof of (3.25)
is to relate the power of two binary hypothesis tests (see (3.12)), that are connected via
the same auxillary probability distribution. We shall leverage on this technique to prove
achievability results on joint detection-decoding strategies in Paper C.

Converse Bounds
As aforementioned, an achievability result is obtained simply by evaluating the perfor-
mance of a single encoder/decoder pair. A converse bound, on the other hand, entails
what performance is not possible to achieve and must, therefore, be valid for all en-
coder/decoder pairs that form a valid (Lnc,M, ε)–code.
Here, we shall present a general converse result referred to as the meta-converse

bound [20, Th. 27]. The meta-converse bound is based on the power of a binary hy-
pothesis testing problem between the channel law PY L|XL and an auxillary channel law
QY L|XL , see [20, Th. 26]. If the auxillary channel law is chosen to be independent of
the input, i.e., QY L|XL = QY L , the meta-converse bound yields an upper bound on the
number of messages M of any (Lnc,M, ε)–code as

M∗(Lnc, ε) ≤ sup
PXL

inf
QY L

1
β1−ε

(
PXLPY L|XL , PXLQY L

) (3.26)

where the outer optimization in (3.26) is over all valid input distributions and is typically
formidable to carry out. However, if the beta function in (3.26) is invariant to the input
XL, the optimization over PXL can be dropped [20, Lem. 29]. This property is by far not
general but may hold true under certain power constraints with symmetry properties.
Furthermore, note that the inner optimization may be ignored by fixing an auxillary
distribution QY L at the expense of a looser bound. Choosing a QY L such that (3.26)
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yields a good upper bound requires domain knowledge. A common choice is to let QY L
be the capacity-achieving output distribution but other choices may yield better results.
Some guidelines on how to choose a suitable QY L are provided in [40, Ch. 3.4].
If the auxillary distribution QY L is fixed and if the beta-function is invariant to

XL, (3.26) boils down to the evaluation of two tail probabilities; one with respect to
PY L|XL and the other with respect to QY L . These tail-probabilities may still be chal-
lenging to evaluate. An alternative is to relax (3.26) using (3.15) into the so-called
generalized Verdú-Han bound as [41, Lem. 3.8.2]

ε∗(Lnc,M) ≥ sup
γ≥0

{
P
[
(xL,Y L) ≤ γ

]
− exp(γ − log(M))

}
(3.27)

where Y L ∼ PY L|XL=xL and

(xL,yL) = log
(
PY L|XL(yL|xL)

QY L(yL)

)
(3.28)

is referred to as the mismatched information density [42]. Note that (3.27) involves only
a single tail-probability. We shall make use of the results presented in this section in
Paper A and in Paper C.

Approximations

The achievability and converse bounds characterize the fundamental performance of
(Lnc,M, ε)–codes. However, the computational complexity of the bounds is still high
and typically grows as ε is decreased. Since applications targeted towards URLLC op-
erate at ε as small as 10−9, it is important to obtain accurate and easy-to-compute
approximations of the bounds. This section provides a guide to how the most common
approximations of the nonasymptotic bounds are obtained. As both the converse and
the achievability bounds relate to tail probabilities, the results in Section 3.1 will turn
out useful.

To get a feeling for how to approximate the bounds, we shall consider the converse
bound in (3.27) and keep in mind that all of the techniques in this section are applicable
also to the achievability bounds. To use the converse bound (3.27), we have to choose an
auxillary distribution QY L . We let QY L factorize over the coherence blocks such that

QY L(yL) =
L∏
k=1

QY (yk). (3.29)

A good and flexible choice turns out to beQY (yk) = 1
c(s) E

[
PY |X(yk|X)s

]1/s whereX ∼
PX , c(s) is a normalization such that QY is a probability distribution and s > 0. Note
that when s = 1, we have QY L(yL) = PY L(yL), i.e., the induced output distribution
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from PXL(xL).
We shall assume that PXL is chosen according to the capacity-achieving input distri-

bution. We do this for the sake of our example although the capacity-achieving input
distribution for the block-fading channel when CSI is not a priori available to the receiver
is in general unknown. In fact, for our scenario, the capacity-achieving input distribution
is known only in the asymptotic regimes of large SNR or large coherence blocks. In these
cases, it is known to be given by the unitary space-time modulation (USTM) [28], [43],
[44].
Due to (3.29) and the block-fading assumption, the mismatched information density

in (3.28) can be written as

s(XL,Y L) =
L∑
k=1

s(Xk,Yk) (3.30)

where the parameter s is shown explicitly. For convenience, we define µs = E[s(X1,Y1)],
σ2
s = Var(s(X1,Y1)) > 0, and ξs = E

[
|s(X1,Y1)− µs|3

]
. Note that µ1 corresponds to

the mutual information. Furthermore, we denote the MGF and CGF of s by ms(τ) and
κs(τ), respectively.
Now, we shall consider what happens when the number of diversity blocks L grows

large. Let us first consider what happens when the LLN is applied to the tail probability
in (3.27). By choosing s = 1 and a threshold γ = Lµ1 the LLN in (3.6) yields

lim
L→∞

ε∗(Lnc,M) ≥ max
{

lim
L→∞

P

[
1
L

L∑
k=1

1(Xk,Yk) ≤ µ1

]
− eLµ1−log(M), 0

}
(3.31)

= max
{

1− lim
L→∞

eLnc(C−R), 0
}

(3.32)

where C = µ1/nc is the ergodic capacity and R is the coding rate. We observe that
ε∗(Lnc,M)→ 1 if R > C, i.e., if R is chosen to be larger than the ergodic capacity, the
average error probability goes to one. If R ≤ C, the average error probability approaches
zero. Hence, (3.32) yields a converse for the channel coding theorem, i.e., all rates R ≤ C
are achievable if L→∞. An important question then follows: how large must L be for
R to be close to C?
If ξ1 < ∞, the result in (3.32) can be refined via the CLT in (3.7). This approach

becomes more straightforward by rewriting (3.27) as a bound on the maximum coding
rate rather than the error probability and by considering an arbitrary γ > 0 as

R∗(Lnc, ε) ≤
1
Lnc

[
γ − log

(
P

[
L∑
k=1

1(Xk,Yk) ≤ γ
]
− ε

)]
. (3.33)

By subtracting the mean Lµ1 and dividing by
√
Lσ2

1 in the probability term of (3.33),
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we can apply the Berry-Esseen bound (3.7) to get

R∗(Lnc, ε) ≤
γ

Lnc
−

log
(
Q

(
−γ−Lµ1√

Lσ2
1

)
− 3ξ1

σ3
1
√
L
− ε
)

Lnc
. (3.34)

Since γ is arbitrary, we may choose γ to cancel ε in (3.34) as γ = Lµ1 −
Q−1

(
ε+ 6ξ1

σ3
1
√
L

)√
Lσ2

1 . Finally, a Taylor expansion of Q−1(·) around ε results in

R∗(Lnc, ε) ≤ C −

√
σ2

1
Ln2

c
Q−1(ε) +O

(
log(L)
L

)
(3.35)

which is the converse part of the commonly used normal approximation [20]. The achiev-
ability can be similarly obtained from the RCUs bound.

From (3.35), one notes that the cost of communicating at a finite blocklength is a back-
off, quantified by the so-called channel dispersion σ2

1 , from the ergodic capacity. The
normal approximation has successfully been used to approximate converse and achiev-
ability bounds for a plethora of channels including the AWGN channel [20, Sec. IV], the
MIMO block-fading channel with CSI at the receiver [45], and for large SNR in the SISO
and MIMO block-fading channel with no a priori CSI [46], [47].

As touched upon in Section 3.1, the CLT is asymptotic in nature and is accurate
when the threshold in the tail probability is close to the mean of the underlying random
variable. Hence, for the normal approximation in (3.35) to be accurate, one is required
to operate at a rate close to the channel capacity and with a large blocklength. However,
in URLLC applications, the rate is typically far below the channel capacity in order
to satisfy the stringent error probability targets. This renders the usage of the normal
approximation in URLLC applications questionable.

If ms(τ) has a finite third derivative in a neighborhood around zero, the saddlepoint
expansion (3.9) can be applied to the tail probability in (3.26) [42, Th. 7]. This results
in

ε∗(Lnc,M) ≥ e−LE
(

log(M)
L

)[
f(τ, L) + K(τ, L)√

L
+ o

(
1√
L

)]
− eµs−κ

′
s(τ)/s−nc

log(M)
L (3.36)

where E(log(M)/L) is the error exponent [32, Ch. 5] given in (3.8) and s and τ are opti-
mization parameters. By dropping the small-o term in (3.36), we obtain the saddlepoint
approximation.

The saddlepoint approximation bridges the gap between the normal approximation
and the error exponent and does in fact recover both [48]. For example, by choosing τ
and s appropriately, it can be shown that [33, Ch. 6.4]

ε∗(Lnc,M) ≈ exp
(
−LE

(
log(M)
L

))
. (3.37)
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Figure 3.1: Example of the bounds and approximations for the Rayleigh block-fading
channel with L = 14, nc = 12.

Achievability results on the error exponent for noncoherent block-fading channels can be
found in [49] for MIMO Rayleigh fading and for SISO Rician fading in [50].
Some of the nonasymptotic bounds and the different approximations are illustrated in

Fig. 3.1 for L = 14 and nc = 12. We consider sub-codewords, see Definition 1, that are
uniformly distributed on the surface of a sphere embedded in nc dimensions. The radius
of the nc-dimensional sphere can be thought of as the transmit power of the sub-codeword
and equals ncρ where ρ = 6 dB. In Fig. 3.1, it can be seen that the meta-converse bound
and the RCUs bound tightly characterize R∗(Lnc, ε) for all values of ε down to 10−7.
For ε < 10−7, the bounds are very demanding to evaluate and, hence, not shown. The
saddlepoint approximation is indistinguishable from the bounds but is significantly less
complex to evaluate for small ε. Furthermore, as expected, the normal approximation is
accurate for large rates, closer to the channel capacity, while the error exponent becomes
accurate as ε decreases. As can be seen, the saddlepoint approximation yield superior
performance among the approximations and is the preferred tool for URLLC applications.
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CHAPTER 4

Channel Estimation at Finite Blocklength

The performance of a wireless communication system depends heavily on the CSI avail-
able at the transmitter and at the receiver. When the blocklength is large, the resources
required to estimate the channel are negligible. Hence, it is reasonable to equip the re-
ceiver with perfect CSI while the transmitter operates noncoherently, i.e., without CSI.
However, in short-packet applications, channel estimation can account for a large portion
of the blocklength and will therefore have a strong impact on the overall performance.

Another important component is the decoder. The ML decoder is known to mini-
mize the average error probability but requires knowledge of the underlying channel law.
When the channel law is not known to the receiver, the channel estimate may be used
with a scaled nearest-neighbor (SNN) decoder. Obviously, this may incur a penalty on
the performance as the receiver is not matched to the underlying channel. In this chap-
ter, we introduce pilot-assisted transmission with mismatched decoding for short-packet
communications over the block-fading SISO channel.

4.1 System Model
Pilot-assisted transmission gives rise to a tradeoff between channel estimation quality
and data transmission. This tradeoff is not assessable from analyses that assume perfect
CSI or no CSI at the receiver. Indeed, by assuming perfect CSI, the cost of estimating
the channel is absent in the analysis. On the other hand, by considering a noncoherent
receiver, no attempt in estimating the fading gains is performed.

To capture the performance impact of pilot-assisted transmission, pilot symbols may
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Figure 4.1: Pilot-assisted transmission over the block-fading SISO channel.

be imposed on the packet structure in the channel code in Definition 1. The transmission
over each coherence block is then divided into a training phase and a data phase. The
training phase accounts for the transmission of a deterministic sequence of np channel
uses that is used at the receiver to obtain an estimate of the fading gain. Thereafter,
a data sequence of nd channel uses is transmitted and decoded at the receiver with the
aid of the channel estimate. The resources assigned to the training and the data phases
equals the number of channel uses within the coherence interval, i.e., nc = np + nd.
This is illustrated in Fig. 4.1 where Bc and Tc denotes the coherence bandwidth and the
coherence time from Chapter 2.
Let us assume that the channel offers L diversity branches and consider diversity branch

k where k ∈ {1, 2, . . . , L}. The input-output relation of the training phase is given as

Y
(p)
k = Hkx(p) +Z(p)

k (4.1)

where x(p) is a deterministic sequence of np complex symbols that is common for all
coherence blocks, Y (p)

k is the channel output, Hk is the random fading gain, and Z(p)
k ∼

CN (0, Inp) denotes the AWGN at the receiver. A simple way to obtain a channel estimate
ĥk is by means of ML estimation as we outline next. By multiplying (4.1) by

(
x(p))H on

both sides, (4.1) can be written as

Hk =
(
x(p))H

Y
(p)
k

‖x(p)‖2
−
(
x(p))H

Z
(p)
k

‖x(p)‖2
. (4.2)
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4.2 Overview

For a given observation Y (p)
k = y(p)

k , the ML channel estimate is obtained as

ĥk = arg max
h̃

PH|Y (p)(h̃|y(p)
k ) =

(
x(p))H y(p)

k

‖x(p)‖2
(4.3)

where we used that PH|Y (p)=y(p) = CN ((x(p))Hy(p)/‖x(p)‖2, (1/‖x(p)‖2)Inp). Note that
the quality of the channel estimate increases with the power of the pilot sequence.

The input-output relation of the data phase is given as

Y
(d)
k = Hkx(d)

k +Z(d)
k (4.4)

where x(d)
k is the nd-dimensional input vector andZ(d)

k denotes the AWGN at the receiver.
The receiver decodes based on both the channel estimate ĥk and the observed output
y(d)
k from the data phase. For our purposes, there are two decoding metrics of interest:

the ML metric conditioned on the channel estimate and the SNN metric given as

q(xL, ({ĥk}Lk=1,yL)) =
L∏
k=1

P
Y (d)|X(d),Ĥ

(y(d)
k |x

(d)
k , ĥk) (4.5)

q(xL, ({ĥk}Lk=1,yL)) =
L∏
k=1

exp(−‖y(d)
k − ĥkx

(d)
k ‖

2), (4.6)

respectively. The metric in (4.5) adjusts the channel law of the input-output relation
based on the channel estimate and may be used to assess the impact of the imposed pilot
structure. The SNN metric in (4.6) may be used to assess the performance impact of
both the imposed pilot structure and the mismatched SNN decoder.

4.2 Overview
Pilot-assisted transmission is a practical method to simplify receiver design for unknown
channels [51]. Traditionally, information theoretic tools such as the ergodic channel
capacity has been used analyze the impact of inserting pilot symbols. In [52], based on a
lower bound on the ergodic channel capacity for the block-fading channel, pilot-assisted
transmission was shown to be close to optimal for large SNR and slow fading dynamics,
i.e., large coherence blocks. For small SNR, however, the use of pilots may result in poor
channel estimates which deteriorates the performance. In dynamic environments, i.e.,
small coherence blocks, separate channel estimation and decoding has been shown to be
strictly suboptimal [53]. The generalized mutual information has been used to assess the
impact of SNN decoding with imperfect CSI in [54]. It was shown that the performance
of SNN decoding is sensitive to the fading dynamics and the estimation quality. Results
on the mismatched error exponent are presented in [55].

Short-packet wireless communications has mainly been considered with ML decoding
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Figure 4.2: Bounds on the maximum coding rate for noncoherent communications with
ML decoding and communications with pilot-assisted transmission and SNN
decoding. Here, ε = 10−3 and SNR = 6 dB.

in conjunction with perfect a priori CSI [45], [56], [57] or no CSI [58]. For imperfect CSI
and ML decoding, a converse bound was recently presented in [59]. There are few results
on mismatched decoding applicable to nonasymptotic information theory, see [60] for an
overview.
In Paper A, by relying on the results introduced in Chapter 3, we obtain lower-bounds

on the maximum coding rate of pilot-assisted transmission with SNN decoding. Since
there is no converse bound for mismatched decoding, the new bounds are compared to
the meta-converse bound and the RCUs bound for the noncoherent setting with ML
decoding. This allows us to assess the performance deterioration due to imperfect CSI
and mismatched decoding.
In Fig. 4.2, we illustrate the RCUs bound for imperfect CSI, optimized over the number

of pilots symbols np, along with the noncoherent converse and achievability bounds. As
seen, pilot-assisted transmission and SNN decoding deteriorates the performance signifi-
cantly. For example, at L = 14 diversity branches, the rate achievable using pilot-assisted
transmission and SNN decoding is 0.6 bits per channel use which is about 75% of the
rate achievable with a noncoherent transmission strategy.

32



CHAPTER 5

Short-packet Transmission in Multiuser Massive MIMO

To satisfy the stringent reliability targets of URLLC, it is necessary to exploit the avail-
able diversity. In the previous chapter, we considered a communication link between
a single-antenna transmitter, e.g., a UE and a single-antenna base station (BS). When
there are multiple UE’s that demand URLLC simultaneously, the situation is even more
challenging. Indeed, the frequency diversity utilized in Chapter 4 must either be shared
or divided among the UE’s which causes interference or a decrease in diversity.

Massive MIMO is a multi-user technology that can be used to salvage the situation.
By using a large number of antenna elements at the BS, large spatial diversity gains are
introduced in the system that can be used to separate UE’s in the spatial domain. This
enables the UE’s to transmit over the same time-frequency resources without introducing
an overwhelming amount of interference at the BS. In this chapter, we review the mas-
sive MIMO setup and outline our contributions on URLLC in conjunction with massive
MIMO.

5.1 System Model
Massive MIMO systems rely heavily on the use of CSI in both the uplink (UL) and in the
downlink (DL). In the UL, CSI is used to process the received signals in order to suppress
interference and separate the UE signals. This operation is referred to as combining. In
the DL, by relying on channel reciprocity, the same CSI is used to steer the transmitted
signals towards the UE’s, an operation that is referred to as precoding. As the CSI is
used solely by the BS, time-division duplexing (TDD) is typically employed to schedule
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Figure 5.1: A single-cell massive MIMO setup with K = 3 UE’s operating according to
a TDD protocol.

the transmission into a UL training phase consisting of np channel uses, a UL data phase
of nul channel uses, and a DL data phase that consists of ndl channel uses [15, Ch. 2.1].
To introduce the system model, we consider a single cell populated with K single-

antenna UE’s and a massive MIMO BS with B antenna elements. We consider quasi-
static correlated Rayleigh block-fading channels between the UE’s and the BS. In par-
ticular, we denote the channel between UE k and the BS by a vector Hk ∼ CN (0,Rk)
of length B where the B×B covariance matrix Rk depends on the position of UE k and
the BS antenna geometry, see Chapter 2. The setup is illustrated in Fig. 5.1.

The Pilot Phase

The transmission is initiated by the UE’s where UE k, k = 1, . . . ,K, transmits a de-
terministic pilot sequence xp

k of length np to the BS. The power of the pilot sequence
satisfies ‖xp

k‖2 = ρnp. The input-output relation of the pilot transmission phase is given
as

Y p =
K∑
k=1

Hk(xp
k)H +Zp (5.1)

where Zp ∈ CB×np has i.i.d. CN (0, σ2
ul) entries that are independent of {Hk}Kk=1. Al-

though there are multiple methods available to estimate the channel fading gains, here
we consider minimum mean-squared error (MMSE) channel estimation. The MMSE es-
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5.1 System Model

timate for UE k is the vector ĥk that minimizes E
[
‖Hk − ĥk‖2

]
and is given by [15,

Th. 3.1]

ĥk = √ρnpRkΦk(Y pxp
k) (5.2)

where Φk = (
∑
i:xp

i
=xp

k
ρnpRi + σ2

ulIB)−1. There are a few things to note regarding (5.2).
First, to obtain the MMSE channel estimate, the BS is required to have knowledge about
the covariance matrix for each UE. As the covariance matrix Rk varies with the UE
position, its dynamics is relatively slow. Therefore, an estimate of Rk may be obtained
via the methods, e.g., in [61], and then used over several transmissions. Second, if any
of the UE’s use the same pilot sequence, their channel estimates will be correlated. For
example, if there are two UE’s that use the same pilot sequence, we have Φ1 = Φ2 and
therefore ĥ1 = R1R−1

2 ĥ2. This phenomenon is called pilot contamination and typically
has a detrimental impact on the system performance.

The UL Data Phase

After the pilot phase, the UE’s transmit data simultaneously to the BS. From the per-
spective of the BS, the input-output relation for UE k can be expressed as

Y [ν] = HkXk[ν]︸ ︷︷ ︸
desired signal

+
K∑
i6=k

HiXi[ν]︸ ︷︷ ︸
interference

+Z[ν]︸︷︷︸
noise

, ν = 1, . . . nul. (5.3)

Here, Xk[ν] ∼ CN (0, ρ) denotes the νth transmitted symbol from UE k, Y [ν] ∈ CB is
the received signal, and Z[ν] is the additive noise with i.i.d. CN (0, σ2

ul) entries that are
independent of {Hk}Kk=1. Upon reception, the BS performs linear combining based on
the channel estimates to reduce the interference [15, Ch. 4]. This accounts to multiply-
ing (5.3) by a combining vector vk. Popular choices are maximum ratio (MR) combining,
vk = ĥk, which maximizes the power of the desired signal in (5.3) and the MMSE com-
bining,

vk =
((

σ2
ul
ρ

)
IB +

K∑
i=1

ĥiĥH
i + ρnpRiΦiRi

)−1

ĥk, (5.4)

which minimizes the conditional MMSE E
[
|Xk[ν]− vH

kY [ν]|2|{ĥi}Ki=1

]
. The combined

output for UE k is given as

vH
kY [ν] = vH

kHkXk[ν] +
K∑
i 6=k

vH
kHiXi[ν] + vH

kZ[ν]. (5.5)
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Chapter 5 Short-packet Transmission in Multiuser Massive MIMO

Note that, due to the interference term in (5.5), the noise is not Gaussian. As the
probability distribution for the noise is unknown, the ML decoder is unfeasible. Instead,
we consider a decoder that operates based on the assumption that the interference is
Gaussian and decodes by means of an SNN decoder.

The DL Data Phase
In the DL data phase, the BS transmits a response to all the UE’s that were active in the
UL data phase. Before the transmission, the BS performs a precoding operation on each
data symbol such that each antenna apply a different phase shift and amplitude scaling
to the symbol. The precoding operation effectively accounts to a steering of each data
symbol towards the corresponding UE. The received signal at UE k is given as

Yk[ν] = (Hk)H wkXk[ν]︸ ︷︷ ︸
desired signal

+
K∑
i 6=k

(Hi)H wiXi[ν]︸ ︷︷ ︸
interference

+Zk[ν]︸ ︷︷ ︸
noise

, ν = 1, . . . , ndl. (5.6)

Differently from the UL, the received signal depends on the precoding vectors for all
UE’s. Hence, the optimal choice of precoding vectors must be considered jointly for
all the UE’s. A common heuristic is to use wk = vk/‖vk‖ which relies on the UL-DL
duality [15, Th. 4.8]. Since no CSI estimate is available at the UE’s, also the decoding
strategy differ from the UL. Indeed, due to the large number of BS antennas, UE k may
rely on channel hardening, i.e.,

(Hk)H wk → E
[
(Hk)H wk

]
as B →∞, (5.7)

to estimate the channel of the desired signal in (5.6). If the expected value in (5.7)
is known to the UE, it can be used with an SNN decoder to obtain an estimate of
the transmitted message. Note that even if B is finite, the LLN result in (5.7) holds
approximately for values of B in the massive MIMO regime, see Fig. [15, Fig. 2.7].

5.2 Overview
The spectral efficiency of MIMO systems with large antenna arrays was originally studied
by Marzetta for packets of infinite size [14]. The results in [14] applies to MR combining
and illustrates that the effect of uncorrelated noise and fast fading vanish as the number
of antennas grow to infinity. However, impairments due to pilot contamination, resulting
from pilot-reuse among cells, do not vanish with the number of antennas and, there-
fore, fundamentally limits the rates achievable over uncorrelated fading channels [14]. A
similar result holds also for the more sophisticated MMSE combining approach [62].
In practical systems, however, the reception over the antenna elements are corre-
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Figure 5.2: Asymptotic approximations and RCUs bound for an UL link with perfect CSI.
Here, we let the average receive power ρ = 5 dB, the blocklength nul = 100,
and the rate R = 1.6 bits per channel use.

lated [61]. When the fading channel is correlated, it has been recently shown that,
even in the presence of pilot contamination, the capacity of MMSE combining is growing
without bound when the number of BS antennas tend to infinity [16]. For MR combining,
however, the capacity is in general bounded [16].

In URLLC with limited frequency diversity, the channel can be modeled by a quasi-
static fading model for which the ergodic capacity is zero. A more suitable performance
metric in this setting is the outage probability

P
[
log(1 + ‖H‖2ρ) < R

]
(5.8)

where R denotes the transmission rate and ρ is the average received SNR. In [57], it
was shown that the channel dispersion is zero for quasi-static MIMO fading channels
provided that the fading distribution is sufficiently smooth. Hence, it is tempting to
rely on the outage metric to assess short-packet performance in massive MIMO systems,
see, e.g., [63]. However, due to channel hardening (5.7), the massive MIMO channel
tends to an AWGN channel and the dispersion result in [57] is no longer valid. Other
attempts to analyze the short-packet performance of massive MIMO utilize the normal
approximation of the AWGN channel [64]. However, as discussed in Chapter 3, the
normal approximation is not accurate for the error probabilities considered in URLLC.
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Chapter 5 Short-packet Transmission in Multiuser Massive MIMO

Instead of using the above asymptotic approximations of the short-packet performance,
one may take a step back and consider fundamental bounds on the performance. This
is the approach undertaken in Paper B where an upper bound on the average error
probability is provided for the UL and the DL based on the results in [37].
In Fig. 5.2 we illustrate in what regimes the outage probability and the normal ap-

proximation are accurate proxies for the performance of short-packet communications.
For simplicity, we consider the UL with perfect CSI and a fixed average receive SNR of
ρ = 5 dB, a blocklength nul = 100, and a rate R = 1.6 bits per channel use. The RCUs
bound (3.23), the outage probability (5.8), and the AWGN normal approximation (3.35)
with Gaussian inputs [65] are illustrated as a function of the number of BS antennas. As
can be seen, for B < 10, the outage capacity agrees well with the RCUs bound. For a
large number of BS antennas, the channel hardens and the AWGN normal approximation
is a better approximation. When the number of BS antennas is in the range (10, 500),
neither of the approximations are good. Hence, it is hard to tell if the outage probability
or the normal approximation is valid in a given setting. By using the nonasymptotic
bounds presented in Chapter 3, one does not have to worry about this issue.
An important metric in cellular massive MIMO is the network availability. The network

availability is defined as the probability that a randomly placed UE has an average error
below a given target in the presence of randomly placed interfering UE’s. The network
availability, also known as the metadistribution, has previously been used in conjunction
with stochastic geometry [66] and to account for uncertainties in the channel knowledge at
the transmitter [67]. In the short-packet massive MIMO setting the network availability
turns out to be related to the generalized information density introduced in Chapter 3.
In Paper B, we study the network availability in both the UL and in the DL of a multicell
environment.
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CHAPTER 6

Joint Detection-Decoding at Finite Blocklength

A common assumption in information theoretic analyses is that the receiver is informed
about incoming packets. Such an assumption is well motivated in systems where trans-
missions are scheduled on beforehand. However, in URLLC applications related to, e.g.,
sensor networks, energy harvesting, and event-triggered communications, data packets
may sporadically arrive at the receiver. Under such circumstances, the receiver must
detect, locate, and decode the incoming packet. In this chapter, we introduce sporadic
transmission with imperfect detection under the simplifying assumption that a codeword
is perfectly located if it is detected.

6.1 System Model
We consider an arbitrary channel law PY |X where the input vector X and the output
vector Y are of length n. To denote an idle transmitter, we use a special message ? that
is mapped into a codeword c?. When the inputs are continuous, c? may be the all-zero
vector as no power is consumed at the transmitter. For discrete-input channels, there
may be no natural mapping for ? and the input space may have to be extended. We
denote by X the set of messages available to the transmitter provided that it is active
and Y denotes the output space.

The task of the receiver is to first detect an incoming packet and then to decode it.
Therefore, we shall be interested in both detection errors, i.e., the probability of false
alarm εfa and the probability of misdetection εmd, as well as the decoding error probability
εd. The definition of a channel code for the perfect-detection case in Definition 1 can be
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Chapter 6 Joint Detection-Decoding at Finite Blocklength

extended to account for imperfect detection as follows.

Definition 2. An (M,n, εd, εmd, εfa)–code for imperfect detection consists of
• An encoder f : {1, . . . ,M} ∪ {?} → X ∪ {c?} that maps the message J into a code-

word in the set of length n codewords {c1, . . . , cM , c?}. Here, the special message ?
denotes an idle transmitter.

• A decoder g : Y → {1, . . . ,M} ∪ {?} that maps the channel output Y into Ĵ and
satisfies the following probability constraints

P
[
Ĵ 6= J |J 6= ?

]
≤ εd (6.1)

P
[
Ĵ 6= ?|J = ?

]
≤ εfa (6.2)

P
[
Ĵ = ?|J 6= ?

]
≤ εmd. (6.3)

As a performance metric, we are primarily interested in the maximum coding rate R∗
for a given n, εd, εmd, and εfa, measured in information bits per channel use, defined as

R∗(n, εd, εmd, εfa) = sup
{

log2(M)
n

: ∃(M,n, εd, εmd, εfa) –code
}
. (6.4)

That is, we seek the largest number of information bits that can be transmitted in a slot
of length n while the the constraints on the decoding error probability (6.1), probability
of false alarm (6.2), and probability of misdetection (6.3) are simultaneously satisfied.

6.2 Overview
The setup we consider was originally proposed in [68] where the error exponents
of the probability of false-alarm, misdetection, and decoding error, denoted by
(Efa(R), Emd(R), Ed(R)), were analyzed for a given rate R. In [68], the achievable region
of Efa(R) and Emd(R) were characterized with no constraint on the decay of the decoding
error, i.e., Ed(R) = 0. It was also shown that the error exponents achieved by separate
detection and decoding strategies are strictly suboptimal for all rates and that the sub-
optimality is more significant at larger rates [68, Th. 3.8]. For constant-composition
codes, the exact (Efa(R), Emd(R), Ed(R))-region was found in [69]. The key step in [69]
is to base the analysis on the optimal detection rule obtained through the generalized
Neyman-Pearson lemma [70, Th. 3.6.1]. The optimal detection rule, given in, e.g., [69,
Sec. III], decides for a codeword by taking into account not only if the observed symbols
look different from the noise but also how reliable a message estimate would be. The re-
sults in [69] was further extended in [71] to account for unequal prior probabilities on the
messages by combining the Neyman-Pearson formulation with a Bayesian cost function.
Sporadic transmission with imperfect detection is related to the unequal error protec-

tion (UEP) problem in which messages belong to different classes with different relia-
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Figure 6.1: Converse and achievability bounds for perfect detection, joint decoding-
detection, and separate detection-detection strategies. Here, SNR = 6 dB,
the coherence block is nc = 20, εd = 10−5, εmd = 10−5, and εfa = 10−5.

bility requirements [72]. However, different from our setup, misdetections and decoding
errors are treated jointly in UEP. A nonasymptotic analysis of the UEP problem is
presented in [73] where several results from [20] are extended to the UEP setting. In par-
ticular, the dependence-testing achievability bound [Th. 17][20] and the meta-converse
bound [Th. 27][20] are presented for both joint and separate classification and decoding
strategies. By considering simple discrete memoryless channels (DMCs), it is concluded
that separate classification is sometimes suboptimal.

A nonasymptotic treatment of sporadic transmissions with imperfect detection is lack-
ing in the literature. In Paper C, we address this issue by presenting novel achievability
and converse bounds on the maximum coding rate that applies to joint detection and
decoding strategies. Our achievability bounds build on the change of measure technique
used in the ββ bound, discussed in Chapter 3.2, whereas the converse bound rely on
the meta-converse framework. The bounds are readily extended to separate detection-
decoding strategies where a part of the transmitted codeword is used for detection and
the remaining part is used for data transmission.

In Fig. 6.1, we illustrate the maximum coding-rate regions for the SISO Rayleigh
block-fading channel with SNR = 6 dB and where the size of a coherence block is set
to nc = 20 channel uses and the blocklength equals ncL. Intuitively, the shorter the
incoming packet is, the harder it is to detect. This is clearly seen in the figure as the
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Chapter 6 Joint Detection-Decoding at Finite Blocklength

joint detection and decoding strategy results in a maximum coding rate that is inferior
to the one obtained with perfect detection when L ≤ 6. When L > 6, detection is no
longer the bottleneck and similar coding rates as for perfect-detection are achievable.
The separate detection-decoding strategy rely on an energy detector and ML decoding
and is strictly suboptimal in this setting.
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CHAPTER 7

Variable-Length Stop-Feedback Codes

In this section, we introduce feedback to the communication system and define what will
be referred to as a VLSF code. In a VLSF code, the receiver is allowed to reveal to
the transmitter, via one-bit ACK/NACK messages, if decoding is complete or if more
information is required. Hence, as the name implies, the blocklength of a VLSF code
varies depending on the observations at the receiver. This is a fundamentally different
feature compared to the fixed-length channel code defined in Chapter 3 for which the
blocklength is deterministic. Practical realizations of VLSF codes are HARQ and ARQ
which are implemented on the MAC and Link layers in modern communication systems,
e.g., in LTE and 5G-NR.

VLSF codes can be used to improve the reliability in communication systems. However,
this comes at the cost of increased latency due to the feedback transmission. For this
reason, it is not clear if VLSF schemes have a role to play in the design of URLLC systems
where the latency must satisfy a stringent constraint. In this chapter, we define VLSF
codes and review results suggesting that VLSF codes are indeed viable for low-latency
applications. The chapter is concluded by an overview of what is known about VLSF
codes in the finite-blocklength regime.

7.1 System Model
We consider a scheme where the transmission of a codeword is divided into a number of
rounds not exceeding a positive integer `m. We consider a SISO Rayleigh block-fading
channel where the fading gains are independent over transmission rounds. A codeword
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Transmitter Receiver

ENC PY |X

Forward channel

Y1· · ·Yν

Buffer
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J Xν Yν

(ACK/NACK)

Ĵ

Figure 7.1: System model of VLSF code during transmission round 1 ≤ v ≤ `m.

consists of `m sub-codewords that are created from a common low-rate codeword. For
simplicity, we here restrict ourselves to sub-codewords of equal length nc that are trans-
mitted over a single coherence block. The input-output relation in round ν is given
as

Yν = Hνxν +Zν , ν = 1, . . . , `m (7.1)

where xν is the nc-length input vector, constrained to some input set X ; Yν ∈ Cnc denotes
the channel output; Hν ∼ CN (0, 1) is the fading gain; and Zν denotes the AWGN at the
receiver. To simplify notation, we denote the concatenations of the first ν subcodewords
as xν = [x1, . . . ,xν ]. A VLSF code for the input-output relation (7.1) is formally defined
as follows [74, Def. 1].

Definition 3. An (`,M, ε, `m)-VLSF code, where M and `m are positive integers, ` ≥ 1,
and 0 ≤ ε ≤ 1, consists of
1) A random variable U defined on a set U with cardinality | U| ≤ 2, whose realization

is revealed to both the transmitter and the receiver before the start of transmission.

2) An encoder f : U × {1, . . . ,M} → X `m , that maps a message J , which is uniformly
distributed on {1, . . . ,M}, to a codeword in the set {c(1), . . . , c(M)}. Each code-
word is structured as c(J) = [c1(J), . . . , c`m(J)] where ci(k) ∈ X for i = 1, . . . , `m
and k = 1, . . . ,M .

3) A sequence of decoders gν : U × (Cnc)ν → {1, . . . ,M}, 1 ≤ ν ≤ `m, and a stopping
time τ that is adapted to the filtration {σ(U,Y ν)}`mν=1 and satisfies

E[τ ] ≤ `. (7.2)

4 A final estimate Ĵ = {1, . . . ,M} ∪ e, where Ĵ = gτ (U,Y τ ) if τ ≤ `m and Ĵ = e
otherwise. The message estimate satisfies the average error-probability constraint

P
[
Ĵ 6= J

]
≤ ε. (7.3)
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The VLSF code for a given round ν is illustrated in Fig. 7.1. Similarly to fixed-length
no-feedback codes, the performance metric is given by the average maximum coding rate

R∗(`, ε, `m) = sup
{

log2(M)
`nc

: ∃(`,M, ε, `m) -VLSF code
}

(7.4)

which is now defined with respect to the average blocklength `nc.
Next, we explain the usage of the random variable U in Definition 3. Recall the ran-

dom coding argument for fixed-length codes without feedback: for given (deterministic)
encoding and decoding rules, an upper bound on the average error probability, averaged
over an ensemble of randomly generated codebooks, implies the existence of at least one
of the codebooks in the ensemble for which the bound applies. This argument does not
work in the above setup since two quantities need to be bounded: the average decoding
time (7.2), and the average error probability (7.3). Specifically, the problem is that an
upper bound on the average decoding time and the average error probability, both av-
eraged over a codebook ensemble, does not guarantee the existence of a single codebook
that satisfies both bounds. To solve this problem, one uses a randomized coding strategy
enabled by the random variable U : each time transmission occurs a new code is drawn
from the ensemble. It turns out that randomization among two deterministic codebooks
is sufficient, hence, the bound on the cardinality of U in Definition 3 [75].

7.2 Overview
Full-feedback refers to the scenario in which the transmitter is provided with a noise-free
version of the channel output at the receiver. It is known that full-feedback does not
improve the channel capacity [76]. However, for variable-length codes with full-feedback,
the error exponent is drastically increased compared to the fixed-length no-feedback
setup [11]. In fact, the error exponent also for variable-length codes with noise-free
stop-feedback, is superior to the fixed-length setup [77]. Hence, for a given average
blocklength, VLSF codes are able to achieve a smaller error probability than fixed-length
no-feedback codes. This is a promising result for URLLC applications.

It turns out that VLSF codes are very competitive also in the finite-blocklength
regime [74]. Of specific interest to us is the VLSF achievability bound in [74, Th. 3]
that was used to illustrate the superiority of VLSF codes compared to fixed-length codes
for the binary-symmetric channel (BSC). The achievability bound in [74, Th. 3] was
derived for an infinite number of transmission rounds, decoding attempts upon each re-
ceived symbol, and without accounting for feedback delay. For URLLC applications,
these assumptions may not be realistic. For this reason, [74, Th. 3] was extended in [78]
to a finite number of transmissions and block-wise decoding. It was shown, for the BSC
and the binary-input additive white Gaussian noise (BI-AWGN) channel, that block-wise
decoding incurs a rate penalty compared to symbol-wise decoding; however, VLSF codes
still outperform fixed-length no-feedback codes [78, Fig. 3]. In [78], the transmission is
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restarted if the `m rounds are exceeded. In [79] and [80], a similar setup was considered
but an error was declared if the decoding is not completed within `m rounds. This is the
setup of interest to us and for which the following achievability bound applies.

Theorem 1. Fix a scalar γ > 0 and a positive integer `m. Let (X1,X2, . . . ) be a
stationary memoryless stochastic process with marginal distribution PX where Xν ∈ X
for every integer ν ≥ 1. Let Yν ∼ PY |X=Xν

and consider a second stationary memoryless
process (X̃1, X̃2, . . . ) with marginal distribution PX , independent of both (X1,X2, . . . )
and (Y1,Y2, . . . ). Finally define a sequence of information density functions X ν×Cνnc →
R as

ıν(xν ,yν) = log
PY ν |Xν (yν |xν)

PY ν (yν) , ν = 1, 2, . . . (7.5)

and two stopping times

τ = inf{ν ≥ 0 : ıν(Xν ,Y ν) ≥ γ} (7.6)
τ = inf

{
ν ≥ 0 : ıν(X̃ν ,Y ν) ≥ γ

}
. (7.7)

Then, there exists an (`,M, ε, `m)-VLSF code such that

` ≤ E[min{τ, `m}] (7.8)
ε ≤ (M − 1) P[τ ≤ min{τ, `m}] + P[τ > `m] . (7.9)

Theorem 1 is intuitively explained as follows. Transmission stops either when the
receiver decodes or when `m rounds have been exceeded. Hence, the average number
of rounds (7.8) is given by averaging the minimum of the two. For the average error
probability (7.9): the first term accounts for the event that a codeword, different from
the one transmitted, causes the receiver to send an ACK while the second term accounts
for the event of exhausting the allowed number of transmission rounds which results in
an erasure.
Theorem 1 is derived under the assumption of noise-free stop feedback. However,

practical channels are noisy and an erroneously received feedback bit may result in a
malfunctioning system. The analysis of noisy stop-feedback schemes is challenging since
the transmitter and the receiver easily falls out of synchronization. In Paper D, we
alleviate this issue by considering a sequence number inserted in the transmissions over
the forward channel that is observed with no errors at the receiving end, i.e., the receiver
has knowledge of the received feedback bit at the transmitter. In this setting, different
feedback errors impacts the system differently:

• A NACK→ACK error will cause the transmitter to discard the current message
and initiate transmission of the next. The receiver, will notice this and declare an
erasure for the corresponding message in the next round. Hence, this kind of error
results in a larger error probability.
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• An ACK→NACK error will result in an additional transmission given that another
round is allowed. The receiver will not update its decision in the next round but
simply send another ACK. Therefore, this type of feedback error will not increase
the probability of error but will result in an increased average blocklength.

The impact of unreliable acknowledgments can be mitigated through coding on the feed-
back channel. However, this comes at a cost in terms of a feedback delay. In LTE, the
ACK→NACK errors and the NACK→ACK errors are typically on the order of 10−2 and
10−4, respectively [81, Ch. 10]. The reason for protecting the NACK→ACK error event
more is that such events have to be corrected by mechanisms on higher layers which
causes a significant overhead and waste of resources.

There are limited results in the literature on VLSF codes with noisy stop-feedback.
For a system based on convolutional coding and binary phase-shift keying, it has been
shown that the average coding rate may significantly outperform the coding rate of
fixed-length no-feedback schemes [82]. For noisy full-feedback, it has been shown that
the error exponent is superior to that of fixed-length no-feedback schemes for some simple
channels [83]–[85].

Finally, we emphasize that undetected errors are typically neglected in the analysis of
HARQ protocols. This simplifying assumption is unsuitable for the analysis of URLLC
systems. In practical systems, a cyclic redundancy check (CRC) is typically used to
detect errors at the receiver [81, Ch. 6.4]. Obviously, the longer the CRC, the lower the
undetected error probability. However, for a given latency requirement, increasing the
length of the CRC results in a reduction of the rate of the inner channel code. Hence,
there is a fundamental trade-off that needs to be accounted for in the design of URLLC
systems. Our analysis in Paper D sheds light on this trade-off.
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CHAPTER 8

Summary

This chapter concludes Part I of the thesis by summarizing the main findings and con-
clusions. Furthermore, we discuss the limitations of our results and provide directions
for future research.

8.1 Contributions

In this thesis, we study the performance of wireless communication systems that operate
in the URLLC regime. The thesis includes nonasymptotic information-theoretic studies
on:

• pilot-assisted transmission over point-to-point block-fading channels with ML de-
coding and with mismatched SNN decoding,

• multicell multiuser massive MIMO communications over spatially correlated quasi-
static Rayleigh-fading channels,

• joint detection-decoding strategies over arbitrary channels,

• variable-length coding with noisy stop-feedback and mismatched decoding over ar-
bitrary channels.

The author’s contributions are presented in Part II of the thesis in the form of four
attached papers that are summarized below.
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Paper A: “Short Packets over Block-Memoryless Fading Channels: Pilot-Assisted or
Noncoherent Transmission?”

In Paper A, the tradeoff between channel estimation quality and data transmission rate
is studied. By imposing a deterministic pilot sequence in the beginning of each code-
word, which is used for channel estimation, short-packet achievability bounds are derived
for both the ML decoder and the SNN decoder. These bounds are then compared to
noncoherent converse and achievability bounds based on ML decoding. It is shown that
pilot-assisted transmission with one pilot symbol and ML decoding achieves the same
performance as noncoherent schemes. With mismatched decoding, however, it is shown
that a significant penalty is introduced in comparison to the noncoherent bounds. Fi-
nally, we construct actual channel codes based on pilot-assisted transmission, tail-biting
convolutional codes, and ordered-statistics decoding that are able to operate within 1 dB
of our derived bounds.

Paper B: “URLLC with Massive MIMO: Analysis and Design at Finite Blocklength”

In Paper B, we derive a short-packet achievability bound on the average error probabil-
ity for multiuser massive MIMO systems with linear signal processing over quasi-static
correlated Rayleigh-fading channels. A saddlepoint approximation is provided to facili-
tate evaluation of the bound for small error probabilities as is characteristic in URLLC
applications.
It is shown that large-blocklength performance metrics may be inaccurate. Further-

more, spatial correlation is shown to improve on the performance compared to the uncor-
related case and pilot contamination is shown to significantly deteriorate the performance.
When pilot contamination is present, we prove that MMSE combining is able achieve
arbitrary low error probabilities as the number of BS antennas approach infinity. This is
not true for MR combining which converges to a non-zero error probability as the num-
ber of BS antennas grows large. Finally, in a multicell multiuser setup with randomly
placed UE’s, to provide a large network availability, MMSE combining/precoding should
be used and pilot contamination should be avoided; MR combining/precoding does not
suffice.

Paper C: “Short-Packet Transmission with Imperfect Detection”

In Paper C, a point-to-point link is considered where the transmitter is allowed to be idle.
The task of the receiver is to both detect and to decode incoming messages. Two novel
achievability bounds and a converse bound on the average decoding error probability,
false alarm probability, and misdetection probability are presented for joint detection-
decoding strategies. Straightforward extensions to separate detection-decoding strategies
are also presented.
The bounds are then illustrated for the ternary BSC, the ternary AWGN channel, and

the noncoherent block-fading Rayleigh fading channel. It is shown that nonasymptotic
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bounds based on a perfect-detection assumption are optimistic for sporadic short-packet
transmission when the blocklength is on the order of 100 symbols. As the blocklength
increases, detection becomes increasingly simple and impacts the performance less. It is
also shown that a separate detection-decoding strategy deteriorates the maximum coding
rate and, in some cases, is strictly suboptimal.

Paper D: “Short-packet Transmission via Variable-Length Codes in the Presence of
Noisy Stop Feedback”

Variable-length noise-free stop-feedback codes are known to improve on the theoreti-
cal performance of communication systems in comparison to fixed-length coding. In
Paper D, the impact of noise on the stop-feedback messages are investigated. To this
end, an achievability bound on the average blocklength and average error probability
for variable-length codes with noisy stop-feedback is presented. The new bound gen-
eralizes earlier nonasymptotic bounds on VLSF codes and is able to shed light on the
tradeoff between resource allocation over the forward channel and the feedback chan-
nel. The achievability bound is then applied to a wireless communications setting where
the forward channel and the feedback channel are modeled as independent uncorrelated
Rayleigh block-fading channels. Over the forward channel, pilot-assisted transmission
and mismatched SNN decoding is used whereas the feedback transmission rely on an
energy detection strategy. It is shown that noise on the stop-feedback messages incurs
a significant penalty in performance compared to the noise-free setting. It is also shown
that variable-length coding with noisy stop-feedback achieves superior performance com-
pared to fixed-length no-feedback coding since the variable-length scheme is able to utilize
the available diversity more efficiently.

8.2 Future Work
The bounds presented in Paper A, Paper C, and Paper D include the evaluation of
tail probabilities that are evaluated by means of Monte-Carlo simulations. Clearly, as
the error probability gets smaller, the bounds become increasingly computationally de-
manding. Therefore, a natural path to follow is to find accurate approximations with
significantly lower computational complexity. As seen in Chapter 3, a strong candidate
is the saddlepoint approximation which has proven to deliver exceptional performance in
the noncoherent Rayleigh block-fading channel with ML decoding [42]. The saddlepoint
approximation requires the evaluation of the CGF which may not be known in closed
form. In this case, the CGF can still be approximated using Monte-Carlo methods at a
significantly lower cost than evaluating the bounds directly. If it is unfeasible to obtain
the CGF, an alternative to the saddlepoint approximation is the normal approximation.

Another interesting extension to Paper A is to include practical components in the
modelling that may be of interest in URLLC applications. For instance, in a factory
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automation setting, due to power-tool usage, electromagnetic spikes may occur and dis-
tort the signals that are transmitted. The block-fading channel considered in this thesis
cannot describe such behavior and one may have to consider alternative channel models
that takes into account impulsive noise [86]. Also, a possible direction is to consider
imperfect hardware, e.g., low-resolution analog-to-digital converters at the receiver.
An important missing component in Paper B is a nonasymptotic converse bound for

mismatched decoding. As there is no converse bound for the mismatched capacity, it
seems formidable to obtain a general nonasymptotic converse bound. However, as the
results in Paper B applies to Gaussian signalling, a mismatched converse result applicable
to the Gaussian ensemble would be sufficient for our purposes. This is an interesting path
that is worthy of investigation.
Recently, the idea of cell-free massive MIMO has been proposed in [87]. In this setting,

a massive number of antennas are distributed in space instead of being located at a
BS. The framework provided in Paper B is applicable also to this setting. Hence, an
interesting research path is to first study the performance of cell-free massive MIMO for
short packets and then to compare it to the performance of the cellular massive MIMO
setting in Paper B.
The detection-decoding strategies in Paper C operate noncoherently, i.e., without CSI.

An interesting extension is to incorporate the ideas from Paper A into the framework of
Paper C to account also for pilot-assisted transmission, imperfect CSI, and mismatched
decoding.
A very relevant scenario for machine-type communications is the massive random-

access channel where a large set of UE’s are in the vicinity of a BS but only a subset
of the UE’s are active. The task of the BS is then to identify the active UE’s and then
to decode their corresponding messages. Initial results on the massive random-access
problem from a nonasymptotic viewpoint was recently presented in [88]. It would be
interesting to investigate if the framework presented in Paper C can be extended to this
setting.
A straightforward generalization to the results in Paper D is to allow the power and

blocklength of the subcodewords to vary over different transmission rounds. Furthermore,
it would be interesting to compare our bound to actual variable-length stop-feedback
codes, e.g., the convolutional codes with reliability output Viterbi decoding in [89]. It is
also possible to extend the bound in Paper D to perform joint coding and queuing analysis
as in [90]. Such analysis would be able to capture also the delay resulting from a packet
waiting in a buffer before transmission. One may then consider performance metrics
relevant to the design of communication networks such as delay-violation probability
and peak-age of information [91].
In Paper D, the receiver is assumed to know when a new message has been transmit-

ted. This assumption prevents the transmitter and the receiver to operate on different
messages. If this assumption is dropped, desynchronization events must be taken into
account and suitable mechanisms to recover synchronization must be considered. An
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interesting direction could be to apply the framework of tracking stopping times through
noisy observations in [92].

Finally, we acknowledge that there is no converse result for VLSF codes, even with
noise-free feedback. Hence, we are unable to assess the tightness of our achievability
bound in Paper D. A converse bound for VLSF codes would be a very valuable contri-
bution to the community.

8.3 Conclusions
The topic of the thesis is short-packet communications with strict reliability constraints
over the Rayleigh block-fading channel. In the attached papers, we provide nonasymp-
totic tools that can be used to assess the performance of wireless communication systems.
Based on our nonasymptotic results, the conclusions of the included works are summa-
rized as follows:

SISO block-fading channels:

• For large blocklengths, the fading channel can be estimated to arbitrary accuracy
and, hence, scaled nearest neighbor decoding is optimal. For short-packet commu-
nications, the channel estimate will be imperfect and a significant penalty in terms
of performance is incurred from nearest-neighbor decoding.

• Pilot-assisted transmission and maximum-likelihood decoding achieves almost iden-
tical performance as noncoherent transmission if the number of pilot symbols are
very few otherwise a performance degradation occurs.

• For SNR values relevant in URLLC and blocklengths on the order of one-hundred,
pilot-assisted transmission and mismatched nearest-neighbor decoding incur a sig-
nificant performance degradation compared to noncoherent transmission.

• Our nonasymptotic tools accurately predict the performance of state-of-the-art
short-packet channel codes. Tail-biting convolutional codes with ordered-statistics
decoding are very competitive for short-packet communications.

• For SNR values relevant in URLLC, separate detection-decoding strategies, where
a part of the codeword is allocated for packet detection and the remainder for data
transmission, are strictly suboptimal for Rayleigh block-fading channels.

• For decoding error probabilities of interest in URLLC, detection is a bottleneck
when the packet size is around 100 symbols. As the blocklength increases, detection
is facilitated and decoding errors become the bottleneck.

• When the blocklength is very short (less than 100), it can be beneficial to cluster
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codewords together, i.e., to reduce the codeword separation. This facilitates an
easier detection phase at the expense of a reduced coding rate.

Quasi-static multiuser massive MIMO channels:

• The number of antennas and the SNR dictate whether common approximations
such as the outage probability and the normal approximation are accurate bench-
marks. Typically, outage probability is accurate for few antennas whereas the
normal approximation becomes accurate for a very large number of antennas.

• Communications over spatially correlated fading channels achieve a smaller average
error probability compared to communications over uncorrelated fading channels.

• Pilot contamination causes a significant performance degradation. Even so, as the
number of BS antennas grow large, MMSE combining/precoding is able to drive
the average error probability towards zero. MR combining, though, saturates to a
non-zero error probability as the number of BS antennas grow large.

• In multicell environments with randomly placed UE’s, enough pilots should be
allocated such that pilot contamination is eliminated. Furthermore multicell MMSE
combining/precoding should be used to limit the number of antennas required to
satisfy a given network availability.

• The DL, which relies on channel hardening for decoding, is more sensitive to the
assigned number of pilot resources than the UL where the channel estimate is used
in the decoding.

Variable-length coding with noisy stop-feedback:

• A noisy feedback link causes a significant performance degradation of variable-
length stop-feedback (VLSF) codes in comparison to when the stop-feedback is
noise-free.

• For fading channels, VLSF codes seem to achieve superior performance to fixed-
length codes without feedback even when the feedback link is noisy.
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