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To circumvent the prohibitive complexity of linear minimum mean
square error detection in a massive multiple-input multiple-output sys-
tem, several iterative methods have been proposed. However, they can
still be too complex and/or lead to non-negligible performance degra-
dation. In this letter, a Chebyshev acceleration technique is proposed to
overcome the limitations of iterative methods, accelerating the conver-
gence rates and enhancing the performance. The Chebyshev accelera-
tion method employs a new vector combination, which combines the
spectral radius of the iteration matrix with the receiver signal, and also
the optimal parameters of Chebyshev acceleration have also been de-
fined. A detector based on iterative algorithms requires pre-processing
and initialisation, which enhance the convergence, performance, and
complexity. To influence the initialisation, the stair matrix has been pro-
posed as the first start of iterative methods. The performance results
show that the proposed technique outperforms state-of-the-art meth-
ods in terms of error rate performance, while significantly reducing the
computational complexity.

Introduction: Massive MIMO is a key technology for fifth-generation
(5G) communication systems to achieve higher data rate, lower latency,
higher reliability, and more connected users [1, 2]. Despite all of its ad-
vantages, massive MIMO requires complex transceiver signal process-
ing. MIMO symbol detection is one of the most complex blocks of the
baseband processing chain. Linear detection algorithms such as zero-
forcing (ZF) and means square error (MMSE) schemes were proposed
as reduced-complexity alternatives to optimum detection. However, they
still involve matrix inversions, whose complexity can be very high, es-
pecially in massive MIMO scenarios. Recently, several iterative meth-
ods have been proposed to reduce the complexity of inversion matrix by
one magnitude order [3], such Jacobi (JA), successive over relaxation
(SOR) and, Gauss–Seidal (GS), and Richardson iteration (RI), but the
performance achieved with these methods can still be visibly worse than
the performance of the corresponding linear schemes, especially when
the number of iterations is not high enough (which corresponds to the
scenario of interest, since the complexity increases with the number of
iterations).

In this letter, we propose an acceleration method that is combined
with recent iterative methods to improve the convergence. Our method
is able to approach the linear MMSE performance with much lower com-
putational complexity. We use a Chebyshev acceleration [4] that rewrites
the iterative method with a new vector combination using the spectral
radius of iteration matrix and part of the iterative method. To influence
the initialisation, the stair matrix [5] has been proposed as the first start
of iterative methods. Our performance results show that the Chebyshev
acceleration combined with iterative methods are able to approach the
linear MMSE performance, outperforming state-of-the-art methods in
terms of error rate performance and computational complexity.

System model: We consider the uplink transmission of a massive MIMO
system employing N antennas at a base station that serves K users over
the same time-frequency resources. The received signal can be written
as size-N vector

y = Hx + n, (1)

where x is the transmitted signal for the K users (i.e. a size-K vector),
H ∈ C

N×K indicates the uplink channel matrix (we assume Rayleigh fad-
ing) between the user and the BS, and n is the additive white Gaussian
noise (AWGN) with distribution CN (0, σ 2).

To estimate the transmitted signal we use a linear MMSE receiver,
leading to

x̂ = (HH H + σ 2
n IN )−1HH ŷ = W−1yMF , (2)

where ŷ = HH y is corresponding the matched-filter output of y, and the
MMSE weight matrix W is denoted by

W = G + σ 2
n IN , (3)

Calculating the MMSE inversion matrix W−1 is the main challenge,
since it has cubic complexity.

Proposed method: As already pointed out, the convergence of iterative
methods like Gauss–Seidel (GS) Jacobi (JA), successive over relaxation
(SOR), and Richardson iteration (RI) can be relatively slow. By employ-
ing Chebyshev acceleration we can improve the convergence rates. To
do this, the matrix to be inverted, W, is decomposed as

W = D − L − U, (4)

where D = diag(W), L and U are strictly lower and strictly upper trian-
gular matrices, respectively.

The mathematical description of the different iterative methods for
the ith iteration is:

• GS-based approach

xi+1 = (D − L)−1Uxi + UyMF = Bxi + C. (5)

• JA approach

xi+1 = D−1(D − W)xi + D−1yMF = Bxi + C. (6)

• SOR-based approach

xi+1 = (D − ωL)−1((1 − ω)D + ωU)xi

+ (D − ωL)−1yMF = Bxi + C (7)

• Richardson-based approach

xi+1 = (I − ωW)xi + ωyMF = Bxi + C. (8)

In the previous equations, ω of SOR belongs to the interval [0, 2]) and
ω of Richardson belongs to the interval [0, 2/λ], where λ is the largest
eigenvalue [3]. In the initial solution x0, we apply a stair matrix, which
is a special tridiagonal matrix, with partial pivoting [5]. The stair matrix
can be expressed as

S = stair(W(N, N − 1); W(N, N ); W(N, N + 1). (9)

Thus, the initial solution of x0 is replaced by a stair matrix, S0. The
convergence rate of these methods can be further improved by adopting
a polynomial acceleration scheme called the Chebyshev acceleration [4].
We generalise the aforementioned iterative detection schemes as (see ref.
[4])

xi+1 = Bxi + c, (10)

where B = M−1N and c = N−1yMF . Based on Equation (10), these iter-
ative methods can generate reasonable approximations of signal vector,
x. However, their convergence rate is slow and there are rooms to accel-
erate the convergence of such iterative detection methods. The Cheby-
shev acceleration is a good method to accelerate the convergence rate,
(xi)∞i=0. Based on the signal vector sequence (xi )∞i=0, we construct a new
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linear combination (ym )∞i=1, which features faster convergence towards
the accurate solution xi of (10), known as secondary iteration:

ym =
m∑

i=1

γm,ix
i. (11)

Note that the scalars γm,i must satisfy
∑m

i=0 γm,i = 1. Since if
x0 = x1 = · · · = x, we also have ym = x. Then, the error between the
new combination of polynomial acceleration ym and a signal vector x
can be written as

ym − x =
m∑

i=1

γm,n(xi − x) =
m∑

i=1

γm,iB
i(x0 − x) = pm(B)(x0 − x), (12)

where pm(B) = ∑m
i=1 γm,iBi is polynomial of degree m with pm(1) = 1,

and pm(z) = ∑m
i=1 γm,izi.

The mth Chebyshev polynomial is defined by the three-term recur-
rence relation

Tm+1(z) = 2zTm(z) − Tm−1(z), m ≥ 1, (13)

where initial parameters are T0(z) = 1 and T1(z) = z. A polynomial pa-
rameter

pm(z) = Tm(z/ρ )

Tm(1/ρ )
, (14)

can provide minimum error, while ρ is spectral radius of the matrix
B belonging to [λmin, λmax]. If the spectral radius of iterative methods
achieves ρ(B) < 1 or limk→∞ Bk = 0, the iterative method will con-
verge for each kth user. According to random matrix theory [6], the
spectral radius of B is given by

ρ(B) = max |λ(B)|, (15)

where λ(B) donates the eigenvalue of matrix B. The spectral radius of W
[2] and the largest and smallest eigenvalues of W can be approximated
as

ρ(W) = |λmax(W)| = N
(

1 +
√

ξ
)2

, (16)

ρ(W) = |λmin(W)| = N
(

1 −
√

ξ
)2

, (17)

where ξ = N/K is the ratio between the number of antennas and the
number of users. The optimal iteration polynomials pm(z) can be ob-
tained from the Chebyshev polynomials as

pm(z) =
Tm(1 + 2 z−ε

ε−η
)

Tm(1 + 2 r−ε
ε−η

)
, ε = λmax + λmin

λmax − λmin
, η = λmax + λmin

2
. (18)

The ε and η donate the optimal parameters of polynomials and they are
defined by the smallest and the largest eigenvalues of the iteration matrix
B, respectively. Here, r is an scalar satisfying the coefficients of polyno-
mials. Let us assume that μm = 1/Tm(1/ρ ), so pm(B) = μm/Tm(B)/ρ ),
and γ0,0 = 1, γ1,0 = 0, γ1,1 = 1. Then, the properties of μm becomes

1

μm+1
= 2

1

ρμm
− 1

μm−1
, (19)

To employ the Chebyshev polynomial method in our purposed tech-
nique, we rewrite the equation of ym, which also satisfies a three-term-
recurrence. After some mathematical manipulations, the secondary iter-
ation can be defined as

ym+1 = 2
μm

ρμm+1
Bym − μm−1

μm+1
ym−1 + 2

μm

ρμm+1
c, (20)

where y0 = x0 and y1 = x1. Therefore Chebyshev polynomials can be
employed to design iterative methods.

Table 1. Computational complexity comparison

Method Number of multiplications

GS [3] i4K2 + K − 3

JA [3] i(4K2 − 2K ) + K − 3

RI [3] i(4K2 + 2K ) + K − 3

SOR i(16K + 8K2 ) + K − 3

Chebyshev-RI i(4K2 + 4K + 1) + K − 3

Chebyshev-SOR i(16K + 8K2 ) + K − 3

Chebyshev-GS i

(
5

2
K2 + 5

2
K

)
+ K − 3

Chebyshev-JA i(K2 + 3K ) + K − 3

MMSE K3 + K2

Fig. 1 BER performance for 64-QAM in a N × K = 128 × 16 scheme and i
iterations

Computational complexity: In this section, we outline the computa-
tional complexity of the computation of W−1 in terms of the number
of multiplications required. The computational complexities are roughly
divided into two parts: 1) The iterative approach; 2) The iterative method
combined with Chebyshev acceleration method. In general, the iterative
methods have complexity of O(K2), which is lower than the conven-
tional MMSE procedure, which has O(K3) complexity. Although the
current iterative methods can also reduce the complexity to O(K2), but
they still require a large number of iterations, which compromises the
overall complexity. As a result, the number of iterations necessary to
attain a certain level of estimation accuracy reduces. The first step of
stair matrix require a K − 3 multiplications. Table 1 shows the overall
complexities of the proposed methods.

Performance results: To evaluate the proposed methods based on the
Chebyshev acceleration, we provide the BER performance as a func-
tion of the signal-to-noise ratio (SNR) simulation, which are compared
with conventional iterative methods. We consider a 64-QAM modulation
scheme and a massive MIMO configuration of N = 128 and K = 16. We
adopt Rayleigh fading channel model and a perfect synchronisation and
channel estimation at the receiver.

Figure 1 shows the BER performance comparison between the iter-
ative methods based on the GS, JA, RI, SOR, where i represents the
number of iterations. It is clear that the iterative methods require more
iterations to approach the linear MMSE performance, which leads to
increased computation complexity. We can also observe that the perfor-
mance of RI method since it has a factor of a overexertion ω [3].

Figure 2 shows the BER performance comparison between the
iterative methods combined with the Chebyshev acceleration method.
Figure 2 also demonstrates that we get a faster convergence with our
acceleration methods compared to conventional iterative methods. For
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Fig. 2 BER performance for 64-QAM in a N × K = 128 × 16 scheme and i
iterations

instance, the RI method has almost the MMSE performance with two
iterations (the same applies to the other methods). It is clear from this
result that Chebyshev acceleration method can improve the performance
and achieve a fast convergence rate, requiring only two iterations to
approach the linear MMSE performance.

Conclusion: In this letter we considered low complexity detection for
massive MIMO schemes and proposed an acceleration technique based
on the Chebyshev method to speed up the existing iterative methods. It
was shown that our technique can be employed in different methods, out-
performing state-of-the-art methods in terms of error rate performance
and computational complexity.
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