169 research outputs found

    Matching under Preferences

    Get PDF
    Matching theory studies how agents and/or objects from different sets can be matched with each other while taking agents\u2019 preferences into account. The theory originated in 1962 with a celebrated paper by David Gale and Lloyd Shapley (1962), in which they proposed the Stable Marriage Algorithm as a solution to the problem of two-sided matching. Since then, this theory has been successfully applied to many real-world problems such as matching students to universities, doctors to hospitals, kidney transplant patients to donors, and tenants to houses. This chapter will focus on algorithmic as well as strategic issues of matching theory. Many large-scale centralized allocation processes can be modelled by matching problems where agents have preferences over one another. For example, in China, over 10 million students apply for admission to higher education annually through a centralized process. The inputs to the matching scheme include the students\u2019 preferences over universities, and vice versa, and the capacities of each university. The task is to construct a matching that is in some sense optimal with respect to these inputs. Economists have long understood the problems with decentralized matching markets, which can suffer from such undesirable properties as unravelling, congestion and exploding offers (see Roth and Xing, 1994, for details). For centralized markets, constructing allocations by hand for large problem instances is clearly infeasible. Thus centralized mechanisms are required for automating the allocation process. Given the large number of agents typically involved, the computational efficiency of a mechanism's underlying algorithm is of paramount importance. Thus we seek polynomial-time algorithms for the underlying matching problems. Equally important are considerations of strategy: an agent (or a coalition of agents) may manipulate their input to the matching scheme (e.g., by misrepresenting their true preferences or underreporting their capacity) in order to try to improve their outcome. A desirable property of a mechanism is strategyproofness, which ensures that it is in the best interests of an agent to behave truthfully

    Solving stable matching problems using answer set programming

    Get PDF
    Since the introduction of the stable marriage problem (SMP) by Gale and Shapley (1962), several variants and extensions have been investigated. While this variety is useful to widen the application potential, each variant requires a new algorithm for finding the stable matchings. To address this issue, we propose an encoding of the SMP using answer set programming (ASP), which can straightforwardly be adapted and extended to suit the needs of specific applications. The use of ASP also means that we can take advantage of highly efficient off-the-shelf solvers. To illustrate the flexibility of our approach, we show how our ASP encoding naturally allows us to select optimal stable matchings, i.e. matchings that are optimal according to some user-specified criterion. To the best of our knowledge, our encoding offers the first exact implementation to find sex-equal, minimum regret, egalitarian or maximum cardinality stable matchings for SMP instances in which individuals may designate unacceptable partners and ties between preferences are allowed. This paper is under consideration in Theory and Practice of Logic Programming (TPLP).Comment: Under consideration in Theory and Practice of Logic Programming (TPLP). arXiv admin note: substantial text overlap with arXiv:1302.725

    A Collection of Constraint Programming Models for the Three-Dimensional Stable Matching Problem with Cyclic Preferences

    Get PDF
    We introduce five constraint models for the 3-dimensional stable matching problem with cyclic preferences and study their relative performances under diverse configurations. While several constraint models have been proposed for variants of the two-dimensional stable matching problem, we are the first to present constraint models for a higher number of dimensions. We show for all five models how to capture two different stability notions, namely weak and strong stability. Additionally, we translate some well-known fairness notions (i.e. sex-equal, minimum regret, egalitarian) into 3-dimensional matchings, and present how to capture them in each model. Our tests cover dozens of problem sizes and four different instance generation methods. We explore two levels of commitment in our models: one where we have an individual variable for each agent (individual commitment), and another one where the determination of a variable involves pairing the three agents at once (group commitment). Our experiments show that the suitability of the commitment depends on the type of stability we are dealing with. Our experiments not only led us to discover dependencies between the type of stability and the instance generation method, but also brought light to the role that learning and restarts can play in solving this kind of problems

    Pairwise Preferences in the Stable Marriage Problem

    Get PDF
    We study the classical, two-sided stable marriage problem under pairwise preferences. In the most general setting, agents are allowed to express their preferences as comparisons of any two of their edges and they also have the right to declare a draw or even withdraw from such a comparison. This freedom is then gradually restricted as we specify six stages of orderedness in the preferences, ending with the classical case of strictly ordered lists. We study all cases occurring when combining the three known notions of stability - weak, strong and super-stability - under the assumption that each side of the bipartite market obtains one of the six degrees of orderedness. By designing three polynomial algorithms and two NP-completeness proofs we determine the complexity of all cases not yet known, and thus give an exact boundary in terms of preference structure between tractable and intractable cases
    corecore