8 research outputs found

    Deformation-compensated modeling of flexible material processing based on T-S fuzzy neural network and fuzzy clustering

    Get PDF
    According to the factors that influence flexible material processing (FMP), the deformation compensation modeling method based on T-S fuzzy neural network is proposed. This method combines T-S fuzzy reasoning with a fuzzy neural network. Firstly, fuzzy clustering is introduced to extract fuzzy membership functions and the fitness of fuzzy rules of T-S fuzzy neural network antecedent from the past processing data. Secondly, with the steepest descent method, back-propagation iteration is used to calculate the connection weights of the network. The processing of experiments shows that T-S fuzzy neural network modeling is superior to typical T-S model. The angle error and the straightness error processed by NTS-FNN is 40.4 %, 28.8 % lower than those of STS-FNN. The minimum processing time processed by NTS-FNN is lower by 46.1 % than that of STS-FNN

    Deformation-compensated modeling of flexible material processing based on T-S fuzzy neural network and fuzzy clustering

    Get PDF
    According to the factors that influence flexible material processing (FMP), the deformation compensation modeling method based on T-S fuzzy neural network is proposed. This method combines T-S fuzzy reasoning with a fuzzy neural network. Firstly, fuzzy clustering is introduced to extract fuzzy membership functions and the fitness of fuzzy rules of T-S fuzzy neural network antecedent from the past processing data. Secondly, with the steepest descent method, back-propagation iteration is used to calculate the connection weights of the network. The processing of experiments shows that T-S fuzzy neural network modeling is superior to typical T-S model. The angle error and the straightness error processed by NTS-FNN is 40.4 %, 28.8 % lower than those of STS-FNN. The minimum processing time processed by NTS-FNN is lower by 46.1 % than that of STS-FNN

    Deformation-compensated modeling of flexible material processing based on T-S fuzzy neural network and fuzzy clustering

    Get PDF
    According to the factors that influence flexible material processing (FMP), the deformation compensation modeling method based on T-S fuzzy neural network is proposed. This method combines T-S fuzzy reasoning with a fuzzy neural network. Firstly, fuzzy clustering is introduced to extract fuzzy membership functions and the fitness of fuzzy rules of T-S fuzzy neural network antecedent from the past processing data. Secondly, with the steepest descent method, back-propagation iteration is used to calculate the connection weights of the network. The processing of experiments shows that T-S fuzzy neural network modeling is superior to typical T-S model. The angle error and the straightness error processed by NTS-FNN is 40.4 %, 28.8 % lower than those of STS-FNN. The minimum processing time processed by NTS-FNN is lower by 46.1 % than that of STS-FNN

    Intelligent Decentralized Adaptive Controller Design for a Class of Large Scale Nonlinear Non-affine Systems: Nonlinear Observer-based Approach

    Get PDF
    Abstract: In this study, an observer based decentralized Fuzzy Adaptive Controller (FAC) is designed for a class of large scale non-affine nonlinear systems with unknown functions of the subsystems and interactions. The proposed controller has the following main characteristics: 1) On-line adaptation of both controller and observer parameters, 2) stabilization of the closed loop system, 3) convergence of both tracking and observer errors to zero, 4) boundedness of all signals involved, 5) being prone to employing experts' knowledge in controller design procedure, 6) chattering avoidance. An illustrative example is given to show the promising performance of the proposed method

    Um sistema difuso para controle de temperatura de unidades de processamento em batelada

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia de Produção.Sistemas de controle difuso representam uma metodologia formal para a estruturação de estratégias de controle a partir de conhecimento heurístico. Da mesma forma que apresentam-se como de compreensão mais fácil, em relação aos métodos lineares de controle, exigem do engenheiro/operador de uma planta industrial conhecimentos de conjuntos difusos, pouco disseminados, limitando a aplicação em ampla escala. Este trabalho visa fornecer os conceitos matemáticos de conjuntos difusos de forma ampla e clara, bem como propor uma estratégia de controle de temperatura para unidades de processamento em batelada. Explicitam-se também métodos de ajuste para a definição de uma técnica viável para aplicação final. As técnicas de ajuste foram aplicadas em um sistema em batelada típico, um tanque de mistura, considerando processos com e sem reação química. Como reação química foi utilizada a reação de polimerização do Estireno em suspensão. O alvo do controlador foi definido como a temperatura do sistema, a partir da manipulação das correntes quente e fria alimentadas à camisa do tanque de mistura. Dois controladores difusos foram implementados, um para cada corrente, a partir das medidas do desvio da temperatura do valor desejado e da variação da temperatura ao longo do tempo. Para a experimentação foi desenvolvido um sistema de controle completo, envolvendo desde a especificação do hardware até o software de controle. Os resultados indicam que a forma mais simples de implementar um sistema de controle difuso para reatores tipo batelada envolve o acoplamento entre as informações que produzem as ações de controle para aquecimento e resfriamento. O acoplamento foi definido com base no conhecimento heurístico sobre processos desta natureza. Para permitir um ajuste rápido foi implementado um algoritmo para manipulação, em grupo, dos parâmetros dos conjuntos difusos, com bons resultados. Análises sobre a influência de diversos parâmetros de ajuste foram realizadas com aplicações experimentais

    Advances in gain-scheduling and fault tolerant control techniques

    Get PDF
    This thesis presents some contributions to the state-of-the-art of the fields of gain-scheduling and fault tolerant control (FTC). In the area of gain-scheduling, the connections between the linear parameter varying (LPV) and Takagi-Sugeno (TS) paradigms are analyzed, showing that the methods for the automated generation of models by nonlinear embedding and by sector nonlinearity, developed for one class of systems, can be easily extended to deal with the other class. Then, two measures, based on the notions of overboundedness and region of attraction estimates, are proposed in order to compare different models and choose which one can be considered the best one. Later, the problem of designing state-feedback controllers for LPV systems has been considered, providing two main contributions. First, robust LPV controllers that can guarantee some desired performances when applied to uncertain LPV systems are designed, by using a double-layer polytopic description that takes into account both the variability due to the varying parameter vector and the uncertainty. Then, the idea of designing the controller in such a way that the required performances are scheduled by the varying parameters is explored, which provides an elegant way to vary online the behavior of the closed-loop system. In both cases, the problem reduces to finding a solution to a finite number of linear matrix inequalities (LMIs), which can be done efficiently using the available solvers. In the area of fault tolerant control, the thesis first shows that the aforementioned double-layer polytopic framework can be used for FTC, in such a way that different strategies (passive, active and hybrid) are obtained depending on the amount of available information. Later, an FTC strategy for LPV systems that involves a reconfigured reference model and virtual actuators is developed. It is shown that by including the saturations in the reference model equations, it is possible to design a model reference FTC system that automatically retunes the reference states whenever the system is affected by saturation nonlinearities. In this way, a graceful performance degradation in presence of actuator saturations is incorporated in an elegant way. Finally, the problem of FTC of unstable LPV systems subject to actuator saturations is considered. In this case, the design of the virtual actuator is performed in such a way that the convergence of the state trajectory to zero is assured despite the saturations and the appearance of faults. Also, it is shown that it is possible to obtain some guarantees about the tolerated delay between the fault occurrence and its isolation, and that the nominal controller can be designed so as to maximize the tolerated delay.Aquesta tesi presenta diverses contribucions a l'estat de l'art del control per planificació del guany i del control tolerant a fallades (FTC). Pel que fa al control per planificació del guany, s'analitzen les connexions entre els paradigmes dels sistemes lineals a paràmetres variants en el temps (LPV) i de Takagi-Sugeno (TS). Es demostra que els mètodes per a la generació automàtica de models mitjançant encastament no lineal i mitjançant no linealitat sectorial, desenvolupats per una classe de sistemes, es poden estendre fàcilment per fer-los servir amb l'altra classe. Es proposen dues mesures basades en les nocions de sobrefitació i d'estimació de la regió d'atracció, per tal de comparar diferents models i triar quin d'ells pot ser considerat el millor. Després, es considera el problema de dissenyar controladors per realimentació d'estat per a sistemes LPV, proporcionant dues contribucions principals. En primer lloc, fent servir una descripció amb doble capa politòpica que té en compte tant la variabilitat deguda al vector de paràmetres variants i la deguda a la incertesa, es dissenyen controladors LPV robustos que puguin garantir unes especificacions desitjades quan s'apliquen a sistemes LPV incerts. En segon lloc, s'explora la idea de dissenyar el controlador de tal manera que les especificacions requerides siguin programades pels paràmetres variants. Això proporciona una manera elegant de variar en línia el comportament del sistema en llaç tancat. En tots dos casos, el problema es redueix a trobar una solució d'un nombre finit de desigualtats matricials lineals (LMIs), que es poden resoldre fent servir algorismes numèrics disponibles i molt eficients. En l'àrea del control tolerant a fallades, primerament la tesi mostra que la descripció amb doble capa politòpica abans esmentada es pot utilitzar per fer FTC, de tal manera que, en funció de la quantitat d'informació disponible, s'obtenen diferents estratègies (passiva, activa i híbrida). Després, es desenvolupa una estratègia de FTC per a sistemes LPV que fa servir un model de referència reconfigurat combinat amb la tècnica d'actuadors virtuals. Es mostra que mitjançant la inclusió de les saturacions en les equacions del model de referència, és possible dissenyar un sistema de control tolerant a fallades que resintonitza automàticament els estats de referència cada vegada que el sistema es veu afectat per les no linealitats de la saturació en els actuadors. D'aquesta manera s'incorpora una degradació elegant de les especificacions en presència de saturacions d'actuadors. Finalment, es considera el problema de FTC per sistemes LPV inestables afectats per saturacions d'actuadors. En aquest cas, es porta a terme el disseny de l'actuador virtual de tal manera que la convergència a zero de la trajectòria d'estat està assegurada tot i les saturacions i l'aparició de fallades. A més, es mostra que és possible obtenir garanties sobre el retard tolerat entre l'aparició d'una fallada i el seu aïllament, i que el controlador nominal es pot dissenyar maximitzant el retard tolerat

    Hybridization of fuzzy systems for modeling and control

    Full text link
    [EN] Fuzzy logic has revolutionized, in a short period of time, the technology through a combination of mathematical fundamentals, logic and reasoning. Its inherent hybridization ability and intrinsic robustness, have allowed to fuzzy logic get numerous successes in the field of modeling and control of systems, impulsing the intelligent control. In this paper, the more usual hybrid fuzzy systems and its importance in the field of modeling and control of dynamic systems are studied. The paper presents several examples that illustrate, for different hybridization techniques, how these enhance the innate qualities of fuzzy logic for modeling and control of dynamic systems. Also, more than a hundred and fifty references are included, which allow the interested reader to delve into the field of fuzzy logic, and more specifically, in its hybridization techniques with application to modeling and fuzzy control.[ES] La lógica borrosa ha conseguido en un breve periodo de tiempo revolucionar la tecnología mediante la conjunción de los fundamentos matemáticos, la lógica y el razonamiento. Su inherente capacidad de hibridación y su robustez intrínseca han permitido a la lógica borrosa cosechar numerosos éxitos en el campo del modelado y el control de sistemas, impulsando el control inteligente. En este artículo se estudian los sistemas borrosos híbridos más usuales y su importancia en el campo del modelado y control de sistemas dinámicos. El trabajo presenta varios ejemplos que ilustran, para diferentes técnicas de hibridación, cómo éstas potencian las cualidades innatas de la lógica borrosa para el modelado y control de sistemas dinámicos. Así mismo, se incluyen más de ciento cincuenta referencias bibliográficas que permitirán al lector interesado profundizar en el campo de la lógica borrosa, y más concretamente en el de sus técnicas de hibridación con aplicación al modelado y control borroso.Este artículo es una contribución del proyecto DPI2010-17123 financiado por el Ministerio de Economía y Competitividad, y del proyecto TEP-6124 financiado por la Junta de Andalucía. Ambos proyectos están cofinanciados con fondos FEDER.Andújar, JM.; Barragán, AJ. (2014). Hibridación de sistemas borrosos para el modelado y control. Revista Iberoamericana de Automática e Informática industrial. 11(2):127-141. https://doi.org/10.1016/j.riai.2014.03.004OJS127141112Al-Hadithi, B.M., Barragán, A.J., Andújar, J.M., Jiménez, A., Oct. 2013. Variable structure control with chattering elimination and guaranteed stability for a generalized t-s model. Applied Soft Computing 13 (12), 4802-4812. DOI: http://dx.doi.org/10.1016/j.asoc.2013.07.026.Al-Hadithi, B.M., Matía, F., Jiménez, A., Apr. 2007. Análisis de estabilidad de sistemas borrosos. Revista Iberoamericana de Automática e Informática Industrial (RIAI) 4 (2), 7-25.Albertos, P., Sala, A., Jul. 2004. Control borroso. Una metodología integradora. Revista Iberoamericana de Automática e Informática Industrial (RIAI) 1 (2), 22-31.Altrock, C. v., 1994. Fuzzy logic technologies in automotive engineering. En: Embedded systems conference. Vol. 2. pp. 407-422.Altrock, C. v., Krause, B., Zimmermann, H.J., 1992. Advanced fuzzy logic control technologies in automotive applications. En: IEEE Conference on Fuzzy Systems. pp. 831-842.Anderson, J.A., Silverstein, J.W., Ritz, S.A., Jones, R.S., Sep. 1977. Distinctive features, categorical perception, and probability learning: some applications of a neural model. Psychological Review 84 (5), 413-451. DOI: 10.1037/0033-295X.84.5.413.Andújar, J.M., Aroba, J., Torre, M.L. d. l., Grande, J.A., Jan. 2006a. Contrast of evolution models for agricultural contaminants in ground waters by means of fuzzy logic and data mining. Environmental Geology 49 (3), 458-466. DOI: 10.1007/s00254-005-0103-2.Andújar, J.M., Barragán, A.J., Sep. 2005. A methodology to design stable nonlinear fuzzy control systems. Fuzzy Sets and Systems 154 (2), 157-181. DOI: 10.1016/j.fss.2005.03.006.Andújar, J.M., Barragán, A.J., Jul. 2010. A formal methodology for the analysis and design of nonlinear fuzzy control systems. En: Fuzzy Systems (FUZZ), 2010 IEEE International Conference on. No. 1. Barcelona, Spain, pp. 66-74. DOI: 10.1109/FUZZY. 2010.5583980.Andújar, J.M., Barragán, A.J., Córdoba, J.M., Fernández, I., Jan. 2006b. Diseño de sistemas de control borroso: modelado de la planta. Revista Iberoamericana de Automática e Informática Industrial (RIAI) 3 (1), 75-81.Andújar, J.M., Barragán, A.J., Gegúndez, M.E., Oct. 2009. A general and formal methodology for designing stable nonlinear fuzzy control systems. IEEE Transactions on Fuzzy Systems 17 (5), 1081-1091. DOI: 10.1109/TFUZZ. 2009.2021984.Andújar, J.M., Barragán, A.J., Gegúndez, M.E., Maestre, M., 2007. Control borroso multivariable basado en heurística. un caso práctico: Grúa porta contenedortes. Revista Iberoamericana de Automática e Informática Industrial (RIAI) 4 (2), 81-89+123.Andújar, J.M., Bravo, J.M., Mar. 2005. Multivariable fuzzy control applied to the physical-chemical treatment facility of a cellulose factory. Fuzzy Sets and Systems 150 (3), 475-492. DOI: 10.1016/j.fss.2004.03.023.Andújar, J.M., Bravo, J.M., Peregrín, A., Dec. 2004. Stability analysis and synthesis of multivariable fuzzy systems using interval arithmetic. Fuzzy Sets and Systems 148 (3), 337-353. DOI: 10.1016 issn = 0165-0114,/j.fss.2004.01.008.Angelov, P., Buswell, R., Oct. 2002. Identification of evolving fuzzy rule-based models. IEEE Transactions on Fuzzy Systems 10 (5), 667-677. DOI: 10.1109/TFUZZ. 2002.803499.Angelov, P., Xydeas, C., Filev, D., july 2004. On-line identification of MIMO evolving Takagi–Sugeno fuzzy models. En: Fuzzy Systems, 2004. Proceedings. 2004 IEEE International Conference on. Vol. 1. pp. 55-60. DOI: 10.1109/FUZZY. 2004.1375687.Angelov, P.P., 2002. Evolving Rule-Based Models: A Tool for Design of Flexible Adaptive Systems. Vol. 92 of Studies in Fuzziness and Soft Computing. Physica-Verlag, Springer, New York.Angelov, P.P., Filev, D.P., Feb. 2004. An approach to online identification of Takagi–Sugeno fuzzy models. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 34 (1), 484-498. DOI: 10.1109/TSMCB. 2003.817053.Aracil, J., 2000. Stability Issues in Fuzzy Control. Springer-Verlag New York, Inc., Secaucus, NJ, USA.Aracil, J., Ollero, A., Garcia-Cerezo, A., Sep. 1989. Stability indices for the global analysis of expert control systems. IEEE Transactions on Systems, Man, and Cybernetics 19 (5), 998-1007. DOI: 10.1109/21.44014.Aroba, J., Grande, J.A., Andújar, J.M., De La Torre, M.L., Riquelme, J.C., Sep. 2007. Application of fuzzy logic and data mining techniques as tools for qualitative interpretation of acid mine drainage processes. Environmental. Geology 53 (1), 135-145. DOI: 10.1007/s00254-006-0627-0.Assilian, S., 1974. Artificial intelligence in the control of real dynamical systems. Ph.D. thesis, Queen Mary College, London University. Babuška, R., Mar. 1995. Fuzzy modeling – a control engineering perspecti ve. En: Proceedings of FUZZ-IEEE/IFES’95. Vol. 4. Yokohama, Japan, pp. 1897-1902. DOI: 10.1109/FUZZY. 1995.409939.Barragán, A.J., 2009. Síntesis de sistemas de control borroso estables por diseño. Universidad de Huelva. URL: http://uhu.es/antonio.barragan/thesis.Barragán, A.J., Al-Hadithi, B.M., Jiménez, A., Andújar, J.M., 2013. A general methodology for online TS fuzzy modeling by the extended kalman filter. Applied Soft Computing, in–press. DOI: 10.1016/j.asoc.2013.09.005.Baumann, B., Washington, G., Glenn, B., Rizzoni, G., Mar. 2000. Mechatronic design and control of hybrid electric vehicles. IEEE/ASME Transactions on Mechatronics 5 (1), 58-72. DOI: 10.1109/3516.828590.Bellman, R.E., Zadeh, L.A., Dec. 1970. Decision–making in a fuzzy environment. Management Science 17 (4), B141-B164.Berenji, H.R., Khedkar, P., Sep. 1992. Learning and tuning fuzzy logic controllers through reinforcements. IEEE Transactions on Neural Networks 3 (5), 724-740. DOI: 10.1109/72.159061.Bezdek, J.C., Dunn, J.C., Aug. 1975. Optimal fuzzy partitions: A heuristic for estimating the parameters in a mixture of normal distributions. IEEE Transactions on Computers C-24 (8), 835-838.Bezdek, J.C., Ehrlich, R., Full, W.E., 1984. FCM: The fuzzy c-means clustering algorithm. Computers and Geosciences 10 (2-3), 191-203. DOI: 10.1016/0098-3004(84)90020-7.Bonissone, P.P., Chen, Y.H., Goebel, K.F., Khedkar, P.S., 1999. Hybrid soft computing systems: Industrial and commercial applications. Proceedings of the IEEE 87 (9), 1641-1667. DOI: 10.1109/5.784245.Bravo, J.M., Sánchez, O., Andújar, J.M., Fernández, E., 2002. Stability analysis and synthesis of fuzzy systems using interval arithmetic. En: 2002, E.S.L., (Ed.), 15th IFAC World Congress. No. 15. Barcelona, Spain, pp. 79-79. DOI: 10.1016/j.fss.2004.01.008.Bulteau, J., Vial, J., Feb. 1983. Curvilinear path and trust region in unconstrained optimization: a convergence analysis. Mathematical Programming Study 1, 82-101.Cao, Y.Y., Frank, P.M., Apr. 2000. Analysis and synthesis of nonlinear timedelay systems via fuzzy control approach. IEEE Transactions on Fuzzy Systems 8 (2), 200-211. DOI: 10.1109/91.842153.Chen, O.T., Lu, Y.-C., Chang, H.-T., 1995. Fuzzy reasoning processor for camera image autofocus. En: Wu, L.T., (Ed.), Visual Communications and Image Processing’95. Vol. 2501. SPIE, pp. 347-354. DOI: 10.1117/12.206740.Cherry, A., Jones, R., Mar. 1995. Fuzzy logic control of an automotive suspension system. En: IEE Proceedings: Control Theory and Applications. IEE, Stevenage, United Kingdom, pp. 149-160. DOI: 10.1049/ip-cta:19951736.Chiu, S., 1994. Fuzzy model identification based on cluster estimation. En: Journal of Intelligent & Fuzzy Systems. Vol. 2. pp. 267-278.Chua, L.O., Desoer, C.A., Kuh, E.S., 1987. Linear and nonlinear circuits. McGraw-Hill series in electrical and computer engineering: Circuits and systems. McGraw-Hill Book Company, New York.Cordón, O., Gomide, F., Herrera, F., Ho_mann, F., Magdalena, L., Jan. 2004. Ten years of genetic fuzzy systems: Current framework and new trends. Fuzzy Sets and Systems 141 (1), 5-31. DOI: 10.1016/S0165-0114(03)00111-8.Cordón, O., Herrera, F., Lozano, M., 1995. A classified review on the combination fuzzy logic-genetic algorithms bibliography. Tech. Rep. DECSAI-95129, Dept. of Computer Science and A.I., University of Granada.Denaï, M.A., Palis, F., Zeghbib, A.H., Jun. 2007. Modeling and control of nonlinear systems using soft computing techniques. Applied Soft Computing 7 (3), 728-738. DOI: 10.1016/j.asoc.2005.12.005.Dennis Jr., J., 1977. Nonlinear least-squares. State of the art in numerical analysis. Academic Press, pp. 269-312.Dennis Jr., J., Schnabel, R.B., 1996. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Vol. 16 of Classics in Applied Mathematics. Soc for Industrial & Applied Math.Dorigo, M., Di Caro, G., Gambardella, L.M., 1999. Ant algorithms for discrete optimization. Artificial Life 5 (2), 137-172. DOI: 10.1162/106454699568728.Dorigo, M., Maniezzo, V., Colorni, A., Feb. 1996. Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 26 (1), 29-41. DOI: 10.1109/3477.484436.Driankov, D., Hellendoorn, H., Reinfrank, M., 1993. An introduction to fuzzy control. Springer-Verlag, New York, USA.Dunn, J.C., 1973. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics 3, 32-57.Feng, G., Cao, S.G., Rees, N.W., Oct. 2002. Stable adaptive control of fuzzy dynamic systems. Fuzzy Sets and Systems 131 (2), 217-224. DOI: 10.1016/S0165-0114(01)00236-6.Ferrer, J., Rodrigo, M.A., Seco, A., Penya-roja, J.M., 1998. Energy saving in the aeration process by fuzzy logic control. Water Science and Technology 38 (3), 209-217. DOI: 10.1016/S0273-1223(98)00463-6.Freeman, J.A., Skapura, D.M., 1991. Neural networks: algorithms, applications, and programming techniques. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA.Gajate, A., 2010. Modelado y control neuroborroso de sistemas complejos. Aplicación a procesos de mecanizado de alto rendimiento. Ph.D. thesis, Dpto. de Informática Industrial, Centro de Automática y Robótica (CSICUPM).Gajate, A., Haber, R.E., Jan. 2009. Networked neurofuzzy control. An application to a drilling process. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial 6 (1), 31-38+127.Goguen, J.A., Apr. 1969. The logic of inexact concepts. Synthese 19 (3-4), 325-373. DOI: 10.1007/BF00485654.Grande, J.A., Andújar, J.M., Aroba, J., De La Torre, M.L., Beltrán, R., Apr. 2005. Precipitation, pH and metal load in AMD river basins: An application of fuzzy clustering algorithms to the process characterization. Journal of Environmental Monitoring 7 (4), 325-334. DOI: 10.1039/b410795k.Grewal, M.S., Andrews, A.P., 2001. Kalman Filtering: Theory and Practice Using MATLAB, 2nd Edición. John Wiley & Sons, Inc., Hoboken, New Yersey.Grippo, L., Lampariello, F., Lucidi, S., 1986. A nonmonotone line search technique for newton's method. SIAM Journal on Numerical Analysis 23 (4), 707-716. DOI: 10.1137/0723046.Grossberg, S., 1987. Competitive learning: from interactive activation to adaptive resonance. Cognitive Science 11 (1), 23-63. DOI: 10.1016/S0364-0213(87)80025-3.Gupta, M., 2000. Soft Computing and Intelligent Systems. Theory and Applications. Academic Press, Hamilton, Ontario, Canada.Han, Y.F., Shi, P., Jan. 2007. An improved ant colony algorithm for fuzzy clustering in image segmentation. Neurocomputing 70 (4-6), 665-671. DOI: 10.1016/j.neucom.2006.10.022.Haruki, T., Kikuchi, K., Aug. 1992. Video camera system using fuzzy logic. IEEE Transactions on Consumer Electronics 38 (3), 624-634. DOI: 10.1109/30.156746.Hayashi, I., Takagi, H., May 1988. Formulation of fuzzy reasoning by neural network (in japanese). En: IFSA Japan. pp. 55-60.Hofbauer, P., Arend, H.O., Pfannstiel, D., 1993. New heating systems controls based on the use of fuzzy logic. En: First European Congress on Fuzzy and Intelligent Technologies. Aachen, pp. 1036-1042.Hopfield, J.J., Apr. 1982. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79 (8), 2554-2558.Horikawa, S.-I., Furuhashi, T., Uchikawa, Y., Sep. 1992. On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm. IEEE Transactions on Neural Networks 3 (5), 801-806. DOI: 10.1109/72.159069.Jang, J.-S., 1992. Neuro-fuzzy modeling: architectures, analyses, and applications. Ph.D. thesis, University of California, Berkeley.Jang, J.-S. R., 1991. Fuzzy modeling using generalized neural networks and kalman filter algorithm. AAAI’91, Proceedings of the ninth National conference on Artificial intelligence 91, 762-767.Jang, J.-S. R., May 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23 (3), 665-685. DOI: 10.1109/21.256541.Jang, J.-S. R., Sun, C.-T., Mar. 1995. Neuro-fuzzy modeling and control. Proceedings of the IEEE 83 (3), 378-406. DOI: 10.1109/5.364486.Jensen, R.P., Shen, Q., Jan. 2005. Fuzzy-rough data reduction with ant colony optimization. Fuzzy Sets and Systems 149 (1), 5-20. DOI: 10.1016/j.fss.2004.07.014.Jiang, T., Li, Y.T., Aug. 1996. Generalized defuzzification strategies and their parameter learning procedures. IEEE Transactions on Fuzzy Systems 4 (1), 64-71. DOI: 10.1109/91.481845.Jiménez, A., Aroba, J., de la Torre, M.L. d. l., Andújar, J.M., Grande, J.A., 2009. Model of behaviour of conductivity versus pH in acid mine drainage water, based on fuzzy logic and data mining techniques. Journal of Hydroinformatics 2 (11), 147-153. DOI: 10.2166/hydro.2009.015.Juang, C.F., Lu, C.M., Lo, C., Wang, C.Y., Mar. 2008. Ant colony optimization algorithm for fuzzy controller design and its fpga implementation. IEEE Transactions on Industrial Electronics 55 (3), 1453-1462. DOI: 10.1109/TIE. 2007.909762.Kalman, R.E., 1960. A new approach to linear filtering and prediction problems. Transactions on ASME-Journal of Basic Engineering 82 (series D), 35-45.Karr, C.L., Jul. 1991. Design of an adaptive fuzzy logic controller using a genetic algorithm. En: 4th International Conference on Genetic Algorithms, ICGA’91. Morgan Kaufmann, San Diego, CA, USA, pp. 450-457.Karr, C.L., Freeman, L.M., Meredith, D.L., Nov. 1989. Improved fuzzy process control of spacecraft autonomous rendezvous using a genetic algorithm. En: SPIE Conf. on Intelligent Control and Adaptive Systems. Vol. 1196. pp. 274-283. URL: http://dx.doi.org/10.1117/12.969926 DOI: 10.1117/12.969926.Kim, H.M., Dickerson, J., Kosko, B., Dec. 1996. Fuzzy throttle and brake control for platoons of smart cars. Fuzzy Sets and Systems 84 (3), 209-234. DOI: 10.1016/issn = 0165-0114,0165-0114(95)00326-6.Kohonen, T., 1988. Self Organization and Associative Memory. Springer Series in Information Sciences. Springer London, Limited.Kosko, B., Nov. 1994. Fuzzy systems as universal approximators. IEEE Transactions on Computers 43 (11), 1329-1333. DOI: 10.1109/12.324566.Lako_, G., Oct. 1973. Hedges: A study in meaning criteria and the logic of fuzzy concepts. Journal of Philosophical Logic 2 (4), 458-508. DOI: 10.1007/BF00262952.Layne, J.R., Passino, K.M., Yurkovich, S., Jun. 1993. Fuzzy learning control for antiskid braking systems. IEEE Transactions on Control Systems Technology 1 (2), 122-129. DOI: 10.1109/87.238405.LeCun, Y., 1985. Une procedure d’apprentissage pour reseau a seuil symetrique (in french). Cognitiva. CESTA, Paris, France 85, 599-604.Lee, H.-D., Sul, S.-K., Aug. 1998. Fuzzy-logic-based torque control strategy for parallel-type hybrid electric vehicle. IEEE Transactions on Industrial Electronics 45 (4), 625-632. DOI: 10.1109/41.704891.Lee, Y., Zak, S., Apr. 2002. Designing a genetic neural fuzzy antilock-brakesystem controller. IEEE Transactions on Evolutionary Computation 6 (2), 198-211. DOI: 10.1109/4235.996019.Lennon,W. K., Passino, K.M., Mar. 1999. Intelligent control for brake systems. IEEE Transactions on Control Systems Technology 7 (2), 188-202. DOI: 10.1109/87.748145.Li, Y., Yonezawa, Y., 1991. Stability analysis of fuzzy control systems by the hyperstability theorem. Japanese journal of fuzzy theory and systems 3 (2), 209-214.Liang, W., John, Y., Feb. 1999. Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter. Fuzzy Sets and Systems 101 (3), 353-362. DOI: 10.1016/S0165-0114(97)00098-5.Lin, C.-F.,Wang, S.-D., Mar. 2002. Fuzzy support vector machines. IEEE Transactions on Neural Networks 13 (2), 464-471. DOI: 10.1109/72.991432.Lin, C.-T., Lee, C., Dec. 1991. Neural-network-based fuzzy logic control and decision system. IEEE Transactions on Computers 40 (12), 1320-1336. DOI: 10.1109/12.106218.Lin, H.-R., Wang, W.-J., Nov. 1998. L2-stabilization design for fuzzy control systems. Fuzzy Sets and Systems 100 (1-3), 159-172. DOI: 10.1016/S0165-0114(97)00131-0.López-Baldán, M.J., García-Cerezo, A., Cejudo, J.M., Romero, A., Apr. 2002. Fuzzy modeling of a thermal solar plant. International Journal of Intelligent Systems 17 (4), 369-379. DOI: 10.1002/int.10026.Lughofer, E.D., Dec. 2008. FLEXFIS: A robust incremental learning approach for evolving Takagi-Sugeno fuzzy models. IEEE Transactions on Fuzzy Systems 16 (6), 1393-1410. DOI: 10.1109/TFUZZ. 2008.925908.Maeda, M., Murakami, S., 1991. Stability analysis of fuzzy control systems using phase planes. En: Japanese journal of fuzzy theory and systems. Vol. 3. pp. 149-160.Malki, H.A., Li, H., Chen, G., Nov. 1994. New design and stability analysis of fuzzy proportional-derivative control systems. IEEE Transactions on Fuzzy Systems 2 (4), 245-254. DOI: 10.1109/91.324804.Mamdani, E.H., Dec. 1974. Application of fuzzy algorithms for control of a simple dynamic plant. Proceedings of the IEEE 121 (12), 1585-1588. DOI: 10.1049/piee.1974.0328.Mamdani, E.H., Dec. 1977. Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on Computers C-26 (12), 1182-1191. DOI: 10.1109/TC. 1977.1674779.Mamdani, E.H., Assilian, S., 1975. An experimental in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7 (1), 1-13.Mauer, G.F., Nov. 1995. Fuzzy logic controller for an ABS braking system. IEEE Transactions on Fuzzy Systems 3 (4), 381-388. DOI: 10.1109/91.481947.Maybeck, P.S., 1979. Stochastic models, estimation, and control. Vol. 141 of Mathematics in Science and Engineering. Academyc Press, 11 Fifth Avenue, New York.McCulloch, W.S., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics 5 (4), 115-133. DOI: 10.1007/BF02478259.Meseguer, J., Sols, I., 1975. Automata in semimodule categories. En: Proceedings of the First International Symposium on Category Theory Applied to Computation and Control. Springer-Verlag, London, UK, pp. 193-198.Mościński, J., Ogonowski, Z., 1995. Advanced control with MATLAB and SIMULINK. Ellis Horwood, Upper Saddle River, NJ, USA.Mudi, R., Pal, N., Feb. 1999. A robust self-tuning scheme for PI- and PD-type fuzzy controllers. IEEE Transactions on Fuzzy Systems 7 (1), 2-16. DOI: 10.1109/91.746295.Negoita, C.V., 1969. Information retrieval systems. Ph.D. thesis, Polytechnical Institute, Bucharest, Romania.Negoita, C.V., 1974. Fuzzy systems and artificial intelligence. Cybernetes 3, 173-178.Nguyen, H.T., Sugeno, M., Tong, R.M., Yager, R.R., 1995. Theoretical aspects of fuzzy control. John Wiley Sons, New York, NY, USA.Nijmeijer, H., Schaft, A. v. d., 1990. Nonlinear dynamical control systems. Springer Verlag, Berlin.Nomura, H., Hayashi, I., Wakami, N., 1993. A self–tuning method of fuz
    corecore