7,136 research outputs found

    Theory and design of causal stable IIR PR cosine-modulated filter banks

    Get PDF
    This paper proposes a novel method for designing two-channel and M-channel causal stable IIR PR filter banks using cosine modulation. In particular, we show that the PR condition of the two-channel IIR filter banks is very similar to the two-channel FIR case. Using this formulation, it is relatively simple to satisfy the PR condition and to ensure that the filters are causal stable. Using a similar approach, we propose a new class of M-channel causal stable IIR cosine modulated filter banks. Design examples are given to demonstrate the usefulness of proposed approach.published_or_final_versio

    A new method for designing causal stable IIR variable fractional delay digital filters

    Get PDF
    This paper studies the design of causal stable Farrow-based infinite-impulse response (IIR) variable fractional delay digital filters (VFDDFs), whose subfilters have a common denominator. This structure has the advantages of reduced implementation complexity and avoiding undesirable transient response when tuning the spectral parameter in the Farrow structure. The design of such IIR VFDDFs is based on a new model reduction technique which is able to incorporate prescribed flatness and peak error constraints to the IIR VFDDF under the second order cone programming framework. Design example is given to demonstrate the effectiveness of the proposed approach. © 2007 IEEE.published_or_final_versio

    On the theory and design of a class of PR uniform and recombination nonuniform causal-Stable IIR cosine modulated filter banks

    Get PDF
    This paper studies the theory and design of a class of perfect reconstruction (PR) uniform causal-stable infinite-impulse response (IIR) cosine modulated filter banks (CMFBs). The design approach is also applicable to the design of PR recombination nonuniform (RN) IIR CMFBs. The polyphase components of the prototype filters of these IIR CMFBs are assumed to have the same denominator so as to simplify the PR condition. In designing the proposed IIR CMFB, a PR FIR CMFB with similar specifications is first designed. The finite-impulse response prototype filter is then converted to a nearly PR (NPR) IIR CMFB using a modified model reduction technique. The NPR IIR CMFB so obtained has a reasonably low reconstruction error. Its denominator is designed to be a polynomial in z M, where M is the number of channels, to simplify the PR condition. Finally, it is employed as the initial guess to constrained nonlinear optimization software for the design of the PR IIR CMFB. Design results show that both NPR and PR IIR CMFBs with good frequency characteristics and different system delays can be obtained by the proposed method. By using these IIR CMFBs in the RN CMFBs, new RN NPR and PR IIR CMFBs can be obtained similarly. © 2008 IEEE.published_or_final_versio

    Dsign of I-D Recursive Digital Filters With Linear Phase Using Two All-Pass Filters With/Without Integer Coefficients

    Get PDF
    Digital signal processing is becoming increasingly important, and is finding applications in speech processing and telecommunications in the area of 1-D signal processing. One of the important branches 1n digital signal processing 1s digital filtering. Among the numbers of structure of digital filters, the recursive(IIR) filter is known for its computational efficiency compared to the FIR counterparts. In this thesis, an alternative approach to the direct design of 1-D recursive digital filters satisfying prescribed magnitude specifications with or without constant group delay characteristic using two all-pass filters is presented. It is known that, by this approach, the most computationally efficient realization can be obtained among IIR filters for meeting the filter specifications. The method uses unconstrained optimization techniques for the filter design to approximate both the group delay and the magnitude response of the desired filter simultaneously if the constant group delay characteristic is required. Two different approaches are chosen for the stability of the filter. In the first approach, a new stability test is used to generate the stable polynomials. In the second approach, one-variable Hurwitz polynomials(HPs) using properties of positive definite matrices are generated. Bilinear transformations are applied to the HPs to obtain the stable polynomials in z domain. The polynomials generated using the approaches explained above are imposed on the filter\u27s denominator polynomials through the variable subs ti tut ion method, hence ensuring the stability .of the designed filter. The designed filters using this method are stable in nature and neither stability check nor stabilization procedure is required. To illustrate the usefulness of the technique, the results obtained are compared with a well known direct method design using a general 1-D IIR transfer function. Once the infinite precision filter is obtained, through a procedure based on discretization and reoptimization technique we discretize all coefficients to integer values. By this algorithm, the error caused by truncating the filter coefficients is minimized. Examples are given with comparisons in order to demonstrate the usefulness of the algorithm

    A new class of two-channel biorthogonal filter banks and wavelet bases

    Get PDF
    We propose a novel framework for a new class of two-channel biorthogonal filter banks. The framework covers two useful subclasses: i) causal stable IIR filter banks. ii) linear phase FIR filter banks. There exists a very efficient structurally perfect reconstruction implementation for such a class. Filter banks of high frequency selectivity can be achieved by using the proposed framework with low complexity. The properties of such a class are discussed in detail. The design of the analysis/synthesis systems reduces to the design of a single transfer function. Very simple design methods are given both for FIR and IIR cases. Zeros of arbitrary multiplicity at aliasing frequency can be easily imposed, for the purpose of generating wavelets with regularity property. In the IIR case, two new classes of IIR maximally flat filters different from Butterworth filters are introduced. The filter coefficients are given in closed form. The wavelet bases corresponding to the biorthogonal systems are generated. the authors also provide a novel mapping of the proposed 1-D framework into 2-D. The mapping preserves the following: i) perfect reconstruction; ii) stability in the IIR case; iii) linear phase in the FIR case; iv) zeros at aliasing frequency; v) frequency characteristic of the filters

    On the eigenfilter design method and its applications: a tutorial

    Get PDF
    The eigenfilter method for digital filter design involves the computation of filter coefficients as the eigenvector of an appropriate Hermitian matrix. Because of its low complexity as compared to other methods as well as its ability to incorporate various time and frequency-domain constraints easily, the eigenfilter method has been found to be very useful. In this paper, we present a review of the eigenfilter design method for a wide variety of filters, including linear-phase finite impulse response (FIR) filters, nonlinear-phase FIR filters, all-pass infinite impulse response (IIR) filters, arbitrary response IIR filters, and multidimensional filters. Also, we focus on applications of the eigenfilter method in multistage filter design, spectral/spacial beamforming, and in the design of channel-shortening equalizers for communications applications

    Verification of Magnitude and Phase Responses in Fixed-Point Digital Filters

    Full text link
    In the digital signal processing (DSP) area, one of the most important tasks is digital filter design. Currently, this procedure is performed with the aid of computational tools, which generally assume filter coefficients represented with floating-point arithmetic. Nonetheless, during the implementation phase, which is often done in digital signal processors or field programmable gate arrays, the representation of the obtained coefficients can be carried out through integer or fixed-point arithmetic, which often results in unexpected behavior or even unstable filters. The present work addresses this issue and proposes a verification methodology based on the digital-system verifier (DSVerifier), with the goal of checking fixed-point digital filters w.r.t. implementation aspects. In particular, DSVerifier checks whether the number of bits used in coefficient representation will result in a filter with the same features specified during the design phase. Experimental results show that errors regarding frequency response and overflow are likely to be identified with the proposed methodology, which thus improves overall system's reliability

    Digital filter design using root moments for sum-of-all-pass structures from complete and partial specifications

    Get PDF
    Published versio

    Theory and design of uniform DFT, parallel, quadrature mirror filter banks

    Get PDF
    In this paper, the theory of uniform DFT, parallel, quadrature mirror filter (QMF) banks is developed. The QMF equations, i.e., equations that need to be satisfied for exact reconstruction of the input signal, are derived. The concept of decimated filters is introduced, and structures for both analysis and synthesis banks are derived using this concept. The QMF equations, as well as closed-form expressions for the synthesis filters needed for exact reconstruction of the input signalx(n), are also derived using this concept. In general, the reconstructed. signalhat{x}(n)suffers from three errors: aliasing, amplitude distortion, and phase distortion. Conditions for exact reconstruction (i.e., all three distortions are zero, andhat{x}(n)is equal to a delayed version ofx(n))of the input signal are derived in terms of the decimated filters. Aliasing distortion can always be completely canceled. Once aliasing is canceled, it is possible to completely eliminate amplitude distortion (if suitable IIR filters are employed) and completely eliminate phase distortion (if suitable FIR filters are employed). However, complete elimination of all three errors is possible only with some simple, pathalogical stable filter transfer functions. In general, once aliasing is canceled, the other distortions can be minimized rather than completely eliminated. Algorithms for this are presented. The properties of FIR filter banks are then investigated. Several aspects of IIR filter banks are also studied using the same framework
    corecore