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Digital Filter Design Using Root Moments for
Sum-of-All-Pass Structures From Complete

and Partial Specifications
Anthony G. Constantinides, Fellow, IEEE, and Wenmin Li

Abstract—This paper is concerned with the development of dig-
ital filter design procedures for transfer functions in the form of
sum-of-all-pass in which the requirements may be partially speci-
fied. Specifically, the requirements for a digital filter or equalizer in
amplitude ( ), or phase ( ), or possibly group-delay response
( ), may be specified from measurements over a limited a set of

frequencies 1 2 . The problem is to develop techniques for the
design a transfer function ( ) satisfying these specifications and
constrained to be in the form of a sum-of-two-all-pass functions.
The proposed solution is based on the use of root moments. The
companion problem concerned with the estimation of the orders
of the required all-pass filters is also examined and a solution pro-
posed based on the same context of root moments.

Index Terms—All-pass filters, fundamental relationships,
Newton identities, root moments.

I. INTRODUCTION

THE purpose of this paper is to develop a design method
for digital filters and equalizers that have transfer func-

tions expressed as the sum of two all-pass functions, under the
constraint that the requirements are only partially specified over
a frequency interval that does not cover the entire range. The
design of sum-of-all-pass digital filters from specifications that
cover the entire frequency range has received considerable at-
tention over the years. The sum-of-all-pass realization structure
has its conceptual basis in the theory of classical lattice filters,
and its interpretation through the scattering parameters first pro-
posed by Fettweis in 1971 for wave digital filters in [1]. An ear-
lier contribution by Gold and Rader in 1969 can be traced as a
precursor of such sum-of-all-pass structures, where the problem
of expressing elliptic filter transfer functions in this form for
compact transfer function representation was proposed [2]. In
the same year, these structures are proposed by Constantinides
for notch filter design [3].

The sum-of-all-pass configuration is known to have many
desirable attributes such as robustness to quantization errors,
computationally efficiency, compactness with respect to realiza-
tions, and others [4]–[14]. We have counted more than 100 pub-
lications in the area over the past 20 years, making it a fertile and
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seemingly an inexhaustible area of research. The optimal design
of piecewise constant magnitude filters and the efficient compu-
tations associated with sum-of-all-pass structures made an im-
pact in the theory of transmultiplexers [15]–[17]. The problem,
in one form or another, is examined periodically over the years
[18]–[24]. Renewed interest in the subject is shown recently par-
ticularly from the perspective of designing such structures to
satisfy requirements that while they do not have the standard
piecewise constant gain specifications, they are, nevertheless,
defined over the complete frequency range [25]–[28]. It is noted
that in [28], the sum-of-all-pass structures produced are referred
to as having minimum phase. It is shown in the present publica-
tion that such structures cannot have minimum phase but must
be of mixed phase. Indeed, this specific attribute imposes limi-
tations on the range of infinite-impulse response (IIR) transfer
functions realizable by such means. The nonminimum-phase
nature of the required transfer function complicates the problem
considerably particularly for the general case when nonstan-
dard gain/magnitude requirements are encountered. The stan-
dard piecewise constant case has been addressed in recent pub-
lications by several authors as in [26], [29]–[32]. The use of such
structures for notch filters has also been taken up more recently
in [33] and [34] and in an adaptive filter form in [35]–[37].

An important aspect of such design structures is related to
the orders of the all-pass filters to be employed. In [28], in line
with standard practice [23], [25]–[27], the orders are assumed
to be known a priori. However, it is shown in the present paper
that the required all-pass orders need not be assumed a priori
and that they can be determined from the phase responses of the
component all-pass functions, and hence from the specifications
of the initial filter design problem.

II. THE PROBLEM AND APPROACH SPECIFIED

The approach taken in the present paper is based on the use
of root moments. Root moments are symmetric functions of
the roots of a polynomial and include amongst them the higher
order root moments and the Wronski moments [38], [39]. The
first-order root moments, or simply the root moments, are pa-
rameters that are related to the differential cepstrum as indicated
elsewhere [39]–[41].

Let a real digital filter or equalizer transfer function be written
as

(1)
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where , 1, 2 are real stable all-pass functions. In the
notch filter design, one of the all-pass functions is normally
taken to be unity, while the other is designed to be a stable
transfer function [3], [33], [34], [37], [42], [43]. We assume that
the required transfer function is to be as given in (1). For
the purposes of the present paper, we identify three basic prob-
lems in the filter design domain as follows:

Problem 1: given an magnitude specification limited over
the frequency range to derive the transfer
function;

Problem 2: given a phase specification limited over the fre-
quency range to derive the transfer func-
tion ;

Problem 3: given a magnitude and phase specification lim-
ited over the frequency ranges , and

, which may be noncontiguous and
nonoverlapping, to derive the transfer function

.
In the above problem definitions, we have two unknown

stable transfer functions, the all-pass filters and ,
and hence we need two independent conditions for their deter-
mination. Problem 1 has been solved many years ago for the
standard piecewise constant low-pass, high-pass, bandpass, and
bandstop filters as a classical equiripple filter design problem
[2], [44]. In these approaches, however, only the magnitude re-
sponse is taken into consideration. It is implicitly assumed that
the phase characteristic is unimportant. Since then, there have
many developments on the fundamental ideas by incorporating
phase or group delay specifications, but these essentially have
not deviated from the original standard definitions in which the
specifications cover the entire frequency range. The present
paper outlines the principles and develops procedures to effect
a solution to Problem 1. The interrelated Problems 2 and 3 are
examined in a separate paper.

III. STRUCTURAL PROPERTIES

The theoretical basis for the development of the methods is
obtained in a straightforward manner as shown below. Some
analytical development is allowed only with respect to those
aspects of the problem that are not well known, or else results are
given compactly. We assume that the required transfer function

is real. Let be stable and of order and
stable and of order . At this juncture, both orders are assumed
to be known, but we shall develop techniques to estimate these
at a later stage of the paper. We can write therefore [45]

(2)

and

(3)

where , 1, 2 are the respective denominators of the
all-pass functions. The required transfer function then takes the
form

(4)

where the numerator and denominator are given by

(5)

and

(6)

It is clear from the above that both numerator and denominator
are of the same order when there are no cancellation
of factors. We note the following properties.

A. The Palindromic Polynomial Numerator

The numerator of the required transfer function is a
palindromic real polynomial.

This is evident by constructing from (5) as

(7)

and hence we obtain the palindrome

(8)

Let us assume at this juncture that there are no zeros on the cir-
cumference of the unit circle. This can be ensured by prepro-
cessing the specifications as indicated in [46]. In addition, in
view of (8), let

(9)

where contains all zeros inside the unit circle and
contains all zeros outside the unit circle. Since is palin-
dromic, it has its zeros in reciprocal pairs, and hence apart from
a constant factor, we can write [47]

(10)

B. The Perfect Square Numerator

The amplitude response of the required transfer function
of (1) has special form as below.

(11)

where and are real functions.
This is clearly evident from (4) and (8), from which we have

(12)

where , , and hence
in the above form in view of (10). Thus, the above sum-of-all-
pass structure imposes an additional constraint on the required
transfer function. Namely, it is required to have a magnitude re-
sponse with a numerator that is a perfect square, while the de-
nominator, apart from it being stable, it is unconstrained. This
point makes a fundamental deviation from standard design tech-
niques and complicates the design problem considerably. In-
deed, if the denominator were likewise a perfect square, then
the overall problem could be reduced to the standard design
methods.
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There is one further and significant complication that is con-
cerned with the phase response of a sum-of-all-pass transfer
function as indicated below.

C. Nonminimum Phase

The sum-of-all-pass transfer function of has non-
minimum-phase response.

This is a consequence of where the numerator of the
transfer function, apart from any zeros on the unit circle, if it
has zeros internal to the unit circle, then it must also have zeros
outside the unit circle. Indeed, from the same considerations it
is seen that it has as many zeros outside the unit circle as there
are zeros inside the unit circle, notwithstanding their being in
reciprocal form. Clearly, in the main, cannot be minimum
phase as stated in [28], but it must have mixed phase.

We shall employ root moments in our design approach as
they enable us, among other benefits, to unravel the constraint
imposed on the form of the numerator of to be a perfect
square. Root moments have already been used effectively in a
range of digital filter design problems [48], [49]. In our present
case, we set

(13)

(14)

and hence

(15)

where the roots . The order is taken to be even for
simplicity of analysis.

The root moments of and are then given by

(16)

and

(17)

respectively [50]. Therefore, it is clear that

(18)

Let the denominator be of the form

(19)

where . Therefore, the form of the overall transfer func-
tion of (1) is

(20)

which can be further written in the form

(21)

where includes the original gain and all constant factors
arising from the rewriting of .

IV. FUNDAMENTAL RELATIONSHIPS

We can express the magnitude and phase functions of a
transfer function in a form that makes them amenable to sepa-
rate treatment as follows [11], [40], [41], [46], [50]. On taking
the logarithm of (21) and expanding the terms into an infinite
series, we obtain the following:

(22)

where

(23)

(24)

It is observed that and tend to zero for large . The
implication of this is that the polynomials associated with these
root moments have their roots located inside the unit circle and
hence stability is assured.

The parameters and can also be seen as the cepstrum
coefficients in the manner of [28], [51], and [52]. An alterna-
tive interpretation based on the properties of polynomials falls
within the area of the theory of equations in which these are
known as the root moments of an equation. This is the interpre-
tation adopted in the present paper [41], [53]. Now for ,
we let so that

(25)
Thus

(26)

(27)

The above (26) and (27) are referred to, in this context, as the
fundamental relationships. For real transfer functions, (26) is an
even Fourier series while (27), after an adjustment to take care
of the linear term, is an odd Fourier series.
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A. The Newton Identities

The coefficients of a given polynomial and its root moments
are connected via a recursion relationships, known as the
Newton Identities, as below [40], [50], [52], [54]–[56].

(28)

(29)

with . These equations are known in signal processing
circles in the context of cepstra [41], [51], [52]. However, they
are considerably older than that. They are also known in the
mathematical theory of equations as the Newton Identities. They
essentially date back to the 17th century Scottish mathematician
Gregory who first developed such relationships for up to fifth-
degree polynomials. The generalization of these relationships
for any degree is due to the genius of Newton [56]. There is an
implication of sufficiency in the Newton Identities in that given
the set , one can determine the set , and conversely,
given , one can determine .

B. Fourier and Fundamental Relationships

The root moments can be obtained by inverse Fourier analysis
of the fundamental relationships.

Thus, from (26) and (27), we obtain

(30)

(31)

The above relationships in practice will have to be computed
from the specifications given, perhaps, as a list of numbers. Ef-
fectively the magnitude and phase responses are sampled and
hence the integrals need to be evaluated as sums. If the sampling
is regular, then we can use the fast Fourier transform (FFT) as an
efficient means for their computation [39], [53]. With irregular
sampling, other numerical, and not necessarily as efficient, tech-
niques need to be used. It is important to note that by taking a fi-
nite number of terms in the fundamental relationships in view of
their Fourier form, we are essentially performing a least-squares
approximation. More refined forms of approximation involving
different norms may be implemented, but this is an area open
for further development.

C. Fundamental Relationships for the All-Pass Filter

The above fundamental relationships take a specific form for
an all-pass filter as follows [53].

Since the magnitude is unity, we have

(32)

while for the phase response, we obtain

(33)

where is the order of the all-pass with a numerator .
It is clear that once the root moments of an all-pass filter

have been determined its transfer function is directly obtainable
from the Newton Identities. Thus, the design procedure is al-
most completed when the root moments have been estimated.
With the few additional points below, we are in a position to de-
scribe the various steps of the solution.

D. The Monotonic Phase of the All-Pass Filter

The phase response of a stable all-pass filter is a monotoni-
cally decreasing function of frequency.

This is a pivotal property of stable all-pass filters. The prop-
erty is shown in [57] by employing the separation property of
reactance functions [58]–[60].

E. The Sum-of-All-Pass Filter

The magnitude response of in (1) is given by

(34)

and the corresponding phase response is given as

(35)

where two all-pass filters are

(36)

(37)

This is a well-known set of equations, easily derivable as
demonstrated in [4], [5], [45], and [61]–[63]. They are used at
different stages of the paper en route to the estimation of the
all-pass phase functions.

There is evident temptation to view (34) and (35) as fur-
nishing the necessary conditions for the all-pass phase response
estimation by making, as in [28], the identification

(38)

(39)

However, these conditions, as they stand, are inadequate, as their
differentials cannot be both jointly negative, monotonically de-
creasing for all frequencies, as required in Section IV-D. More-
over, the inverse cosine term above, in a strict sense, needs to be
in an unwrapped form. Therefore, some adjustments are needed
to ensure that these constraints are met. In [28], these appear to
be implemented with additive constant and linear terms to the
phase equations appropriately. The process needs to identify the
positions at which the phase changes take place and add multi-
ples of as necessary. Despite such steps when the gain is equal
to 1, the slope of the phase functions is infinite, and this situa-
tion cannot be taken into account by such means.

F. The Companion Filter

A filter , companion to the required , may be de-
fined such that has a magnitude response identical to
but has minimum phase.

This is a very useful concept in the ensuing design process, as
it forms the initial point for further design considerations. From
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its definition, the companion filter has a transfer function of the
form

(40)

The fundamental relationships for the companion filter are

(41)

(42)

The transfer functions and have the same ampli-
tude form while their phase forms are substantially different.
The important observation to note is that the minimum-phase
transfer function is now constructible from the given mag-
nitude specifications alone, as described below.

A general observation can be made here. It is clear from the
above that the sum-of-all-pass structure imposes a range of con-
ditions that limit the design procedures. Specifically, it is ob-
served that if there are joint gain and phase requirements, then
the phase specifications must be monotonically decreasing func-
tions of frequency. This follows from (35) and from the results
in Section IV-D.

V. THE DESIGN PROCEDURE

In order to obtain the root moments and in Sec-
tion IV, we need two independent equations. Thus, we need to
use both the amplitude and phase forms of the fundamental re-
lationships, or some other independent information. However,
in the definition of Problem 1, only the magnitude response
is given, and this may be so, over a limited range of frequen-
cies. Use of the magnitude form alone would imply a min-
imum-phase transfer function as given in [39], which is clearly
not the case in this problem. However, the companion min-
imum-phase filter is constructible as given in the following sub-
section.

A. Construction of Companion Transfer Function

From (41) assuming , we obtain

(43)

where is the given magnitude specification.
From (30) with , we can determine a large

degree polynomial with coefficients . Its root mo-
ments will tend to zero exponentially as they are the sum of
the root moments of a minimum-phase function, as can be seen
from (23) and (24). Hence, in practice, the degree of the poly-
nomial need not to be very large. From Section IV-B, the
evaluation of the root moments may be put into effect by using
an FFT, in which case the polynomial degree implicitly will be
allowed to be the same as the length of the FFT. This length

can be as large as required, thereby obviating the need to have
a priori the degree of the polynomial.

We note that the polynomial , is a Taylor
series expansion to in (40). This is evident from the root
moments as given in (41), and they clearly correspond to a
ratio of two polynomials [50]. We can now write the companion
transfer function as

(44)

or effectively

(45)

where is the FFT length chosen to be sufficiently large. Now,
we set

(46)

(47)

and from (45), we have equivalently

(48)

By equating terms in (48), we can obtain both and
. Indeed since the left-hand side is of degree , all co-

efficients on the right-hand side of degree higher than must
be identically zero. This condition yields . Moreover, by
equating the remaining coefficients of lower powers we obtain,
in conjunction with , the numerator . The overall
order is assumed to be known at this juncture, but a lower
bound on its value can be estimated from the specifications as
indicated in Section VI.

B. Construction of the Required Transfer Function

At this juncture, we have constructed the rational transfer
function of the companion minimum-phase filter . It is now
a straightforward matter to construct the required transfer func-
tion in finite-impulse response (FIR) form [39]. However,
the requirement is to have a rational form, and this requires fur-
ther consideration. We note that the denominators of and

are identical, and hence the denominator of the required
is directly obtainable from the preceding considerations.

The numerator of requires more effort and can be obtained
from the numerator of as follows. We determine the root
moments of . Because of the squared form of

, as it can be seen from (44), these will be equal to twice
the root moments of of the minimum-phase part of ,
i.e.,

(49)

Hence, we can determine the root moments of the factor ,
and from the Newton Identities, we can construct . The
maximum phase part of is simply the mirror image
version of , which can be constructed by reversing the
order of the coefficients of .
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So far, we have managed to construct the transfer function
in a form given as in (20). This form now needs to be ex-

pressed as the sum of two all-pass functions as given by (1). In
general, not all rational forms can be expressed as
the sum of two all-pass functions as can be seen from (44). Nev-
ertheless, the specific development in this paper so far has been
so geared as to ensure that this form is attainable. To achieve
this, we note from (6) that

(50)

and from (5), we have

(51)

where . On the unit circle , we can write
this equation as

(52)

In this equation, the unknown quantity is the phase response
of the all-pass transfer function , the order having

been estimated prior to this development as indicated in VI.
Hence, we determine the phase response of one of the all-pass
functions needed in the realization.

The subproblem now is to determine the all-pass transfer
function from its phase response. To do this, in our root mo-
ments context, we note that the fundamental relationships for
an all-pass transfer function can be obtained in a manner similar
to the one followed for (26) and (27), so that

(53)

(54)

where is the order of the all-pass, and , are the
root moments of the denominator. Therefore, an all-pass func-
tion can be constructed from its phase response through its cor-
responding root moments and by using the Newton Identities.
The order can be determined as indicated in VI. Thus, from
(54), we obtain and hence .

The all-pass function can be determined in a similar
fashion. However, we note that the product of the denominators
of and is already known, as given in (47), and since

has been determined, is obtained immediately. It is
not advisable, however, to obtain by long division as this
process is susceptible to accumulated errors. A better approach
is to use the root moments algebra to obtain the root moments
of from those of and then determine , and
hence through the Newton Identities, we determine [50].

C. Design From Partial Response Specifications

We now consider the case when the magnitude response is
partially specified over a range of frequencies . This
range may be the union of subranges over which measurements
may have been carried out. The specifications of the overall

problem allow two alternative routes to be taken, in that either
it is required to make strict use of the measurements alone, or
freedom is allowed to insert some fictitious response in the un-
specified regions. In both cases, the conditions pertaining to the
magnitude behavior at the fixed points and must
be observed. Specifically, for real transfer functions, we require
that any consistent magnitude function should be such that
at and either or or both
of these conditions are jointly satisfied [64]. In the unspecified
regions, we have the freedom to insert any response consistent
with a priori requirements on it being a magnitude function. The
first stage of the design objective is to estimate the appropriate
root moments and then proceed along the same lines as above.

1) No Insertions Allowed: In this case, only the measured
data and the fixed-point conditions are allowed to be used. We
interpret, therefore, the fundamental relationship of (26) as an
interpolating formula that can be evaluated at the fixed and mea-
sured points. The unknown parameters are the root moments.
Since the companion filter is minimum phase, its root moments
decay exponentially and hence a finite number of terms in
the summation need be taken. The interpolation formula (26)
evaluated at the overall frequency specifications yields a set of
linear equations in the unknown first root moments. Matrix
inversion yields these and, hence, the FIR form of the transfer
function as in (13). From this point, we proceed along the same
path as above. Such an approach is likely to produce substantial
deviations due to the poor sampling process involved particu-
larly in relation to the unspecified regions.

2) Insertions Allowed: The introduction of the missing parts
of the response is essentially a degree of freedom that can be
used to advantage in the design. It can be done in a variety
of ways. Indeed, an optimization framework can be adopted in
which we seek to determine the optimum insertions so as to min-
imize the order of the transfer function. This approach is taken
in Example 1 in which a simple constraint on the gain outside
the regions of measurements should be below a certain value.
This is a case of importance in many applications that are gain
limited. The more general case of optimal functional insertion is
beyond the scope of the present paper and is the subject of fur-
ther study. It is clear from Fig. 1 that even a simple nonoptimal
insertion in the unspecified regions improves matters consider-
ably. The insertion need only conform to the magnitude require-
ments, but a more reasoned approach would also ensure that it
be continuous in frequency.

There remains the question regarding the way that the orders
of the transfer function and of the required all-pass filters are
selected. These points are examined below.

VI. ORDER SELECTION

In this section, we deal with the following problems:

1) given a minimum-phase FIR filter transfer function to es-
timate a lower bound on the order of a minimum-phase
IIR transfer function that has both its numerator and de-
nominator of the same order;

2) given the phase response of a stable all-pass filter to de-
termine its order.
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Fig. 1. Optical equalizer example. Dotted line: Desired magnitude response.
Response in [0; 0:2�] and [0:4�; �] is fictitious. Dashed–dotted line: Achieved
sum of two all-pass magnitude response. Solid line: Equalized magnitude
response.

The first problem is approached as follows.

A. A Bound on Order

We note that the root moments of the given FIR
transfer function and of the IIR transfer function will be related
as . Thus, we can write

(55)

However, since the IIR filter is minimum phase and has the same
order for numerator and denominator, the above inequality be-
comes

(56)

where and are the largest magnitudes of the roots
of the numerator and denominator respectively. On taking these
equal to unity, we have

(57)

The above gives a means of placing a lower bound on the order
of the companion filter. In normal filter responses with signifi-
cant undulations in the magnitude, it is found that the bound is
rather conservative and a more representative value for the gen-
eral IIR case is about twice the value given in inequality (57).
For the specific case under consideration, this bound also tends
to be rather conservative. However, a local search can be put
into effect, if desired, to improve the quality of approximation
and is an area for further exploration.

B. Order of All-Pass From Phase Response

The second problem, concerned with the order estimation
of an all-pass given its phase response, is more easily and
accurately tractable. Clearly, the procedures based on magni-
tude response are inapplicable [45], [47], [52], [65], [66]. The
unwrapped phase response in the fundamental relationships of

(54), evaluated at , yields immediately the all-pass order
as

(58)

This is also a consequence of the argument principle in complex
variable theory, and it essentially corresponds to the winding
number of the FIR transfer function [67], [68].

The phase response of an all-pass transfer function also fur-
nishes appropriate bounds [68] as indicated below.

C. Bound on Order From Root of Maximum Modulus

The root with the largest modulus can furnish a bound on
the order as follows [68]. We assume that we are examining a
minimum-phase polynomial transfer function for which have its
root moments. These moments may have been derived from ei-
ther the gain or the phase specifications and can be used in the
manner indicated in [40]. In this context, a restricted form of
second-order root moments is employed to determine the sum
and product of the roots that have the largest modulus. An itera-
tive procedure leads to the modulus of the complex root with the
largest modulus. Let this modulus be , and for the problem
under examination, let us examine the phase fundamental rela-
tionship for minimum-phase systems. We can write, therefore,
the following:

(59)

If we set , where is the estimate of the FIR
order, then we have

(60)

where is the maximum value of the minimum-phase func-
tion. It is interesting also to note that a bound on this maximum
value can be placed from (59), under the assumption that the
root moments are given, as

(61)

This expression may be easily evaluated over a finite number
of terms since the root moments decay exponentially with the
summation index.

There is an alternative, and more general route, to estimating
the order, which relies on the estimation of the order of a poly-
nomial from its root moments [68]. The root moments of the
denominator of an all-pass filter are directly derived from (54),
and the problem can now be posed as indicated below.

D. Order From Root Moments

The problem can be specified as follows: Given the root
moments of a minimum-phase polynomial in estimate the
order of the polynomial. The various ramifications and solu-
tions to it are dealt with in a forthcoming paper [68]. The pivotal
observation is made that if the order is , then the Newton
Identities alone can yield the root moment , obtainable
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from all the previous root moments and
the estimated polynomial coefficients .
The polynomial coefficients up to index are also evaluated
recursively from the Newton Identities. Thus, a complete
enumeration procedure can be set up starting with and
then checking the estimated next root moment against the value
obtained from the specifications. If there is correspondence
between these two values, then the order has been determined.
In practice, it is found that we need to test the correspondence
for more than one value between the estimated and evaluated
root moments [68].

VII. EXAMPLES

There are many problems in signal processing where approxi-
mation of magnitude response is of paramount importance, typ-
ically in the equalization of a communication channel, which
is to approximate to the inverse of the channel magnitude re-
sponse. We consider three design examples. The first one arises
in optical signal processing. The specific case we have taken is
from optical signal processing for the design of Mach–Zehnder
equalizers [71]–[73].

Two further design examples are given below. The first ex-
ample is to approximate a complete magnitude response given
as a set of points. The points are sampled from a thirtieth-order
FIR bandpass filter frequency response. A portion of the mag-
nitude response is also taken for the partial case which serves as
the second example.

A. Example 1

This is an example that has arisen from a real problem in op-
tical system equalization. Measurements on the performance of
an optical system produce a variation in the gain and phase over
a broad range of wavelengths. The design requirement is to pro-
duce an equalizer of the Mach–Zehnder form to correct the per-
formance. The Mach–Zehnder structure is the optical equivalent
of the sum-of-all-pass structure we consider in this paper. The
measurements are normalized and shown in Fig. 1. The mea-
surements, and hence the design specifications, are limited over
a portion of the frequency axis. We introduce in the solution arti-
ficial behavior in the unspecified regions. However, this is done
in such a way as to ensure that the system would not require fur-
ther optical amplification, this being a design requirement. The
two all-pass structures are found to be of order 24 and the equal-
ized responses are also shown in Fig. 1.

B. Example 2

In this example, the magnitude response to be approx-
imated is bandpass with its passband located in the range

– and its stopbands are and .
The passband attenuation is less than 0.3 dB and the stopband
attenuation better than 60 dB. The result of the design using
the proposed method is shown in Fig. 2. Both all-pass filters
are found to be of order 18. It is noted that since the frequency
response of a bandpass filter at and must have
high attenuation, it is the difference of two all-pass filters that
must be considered rather than their sum. Another point to be
observed is that as a preamble to the sum-of-all-pass procedure,

Fig. 2. Complete magnitude approximation. Solid line: Desired magnitude
requirements. Dashed–dotted line: Achieved sum of two all-pass magnitude
response. Both all-pass filters are of order 18.

Fig. 3. Partial magnitude approximation using matrix inversion. Solid line:
Desired partial magnitude response in the frequency range [0:2�; 0:7�].
Dashed–dotted line: Achieved sum of two all-pass magnitude response. Both
all-pass filters are of order 20. Dotted line: Complete magnitude response from
matrix inversion.

one can design another structure, say an FIR of large order,
which is then reduced to the required form by the proposed
method. This is an area worth further investigation.

C. Example 3

The magnitude response to be approximated in this example
is a central fragment of the desired magnitude in Fig. 2 located
in the frequency range . Two alternate approaches
given above are employed. The first approach is to use the matrix
inversion to obtain . The result is shown in Fig. 3. The
second approach is to add some fictitious magnitude response
in the “don’t care regions.” The results are shown in Fig. 4.

VIII. CONCLUSION

A framework is presented to the design of digital filters that
have transfer functions expressed as the sum of two all-pass
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Fig. 4. Partial magnitude approximation by adding fictitious magnitude. Solid
line: Desired partial magnitude response in the frequency range [0:2�; 0:7�].
Dashed–dotted line: Achieved sum of two all-pass magnitude response. Both
all-pass filters are of order 20. Dotted line: Complete magnitude recovered by
adding fictitious magnitude.

functions. The problem has been examined over the years from
various perspectives and the one adopted in this paper is based
upon the concept of root moments. By suitable use of such pa-
rameters, we have been able to determine the phase responses of
the all-pass filters and their required orders and to put into effect
designs from partial gain specifications. In the process of devel-
oping the techniques, we have derived some significant prop-
erties of the sum-of-all-pass structures and have indicated cor-
rections or improvements to earlier publications that appeared
in the open literature. Some examples are given to illustrate the
design procedure. The software developed for this purpose has
been written in Matlab and will be made downloadable from the
website http://www.commsp.ee.ic.ac.uk/people/agc.html.
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