
Title Theory and design of causal stable IIR PR cosine-modulated
filter banks

Author(s) Mao, JS; Chan, SC; Ho, KL

Citation

IEEE International Symposium on Circuits and Systems
(ISCAS'99), Orlanda, FL., 30 May-2 June 1999. In IEEE
International Symposium on Circuits and Systems Proceedings,
1999, v. 3, p. III-427 - III-430

Issued Date 1999

URL http://hdl.handle.net/10722/46188

Rights Creative Commons: Attribution 3.0 Hong Kong License



THEORY AND DESIGN OF CAUSAL STABLE IIR PR 
COSINE-MODULATED FILTER BANKS 

J.  S. Mao, S. C. Chan and K.  L. Ho 

Department of Electrical and Electronic Engineering 
The University of Hong Kong, Pokfulam Road, Hong Kong 

{jsmao, scchan, klho} @eee.hku.hk 

ABSTRACT 

This paper proposes a novel method for designing 
two-channel and M-channel causal stable IIR PR filter 
banks using cosine modulation. In particular, we show that 
the PR condition of the two-channel IIR filter banks is very 
similar to the two-channel FIR case. Using this 
formulation, it is relatively simple to satisfy the PR 
condition and to ensure that the filters are causal stable. 
Using a similar approach, we propose a new class of M -  
channel causal stable IIR cosine modulated filter banks. 
Design examples are given to demonstrate the usefulness 
of proposed approach. 

1. INTRODUCTION 

Perfect reconstruction (PR) multirate filter banks have 
important applications in signal analysis, coding and the 
design of wavelet bases. Fig. 1 shows the block diagram of 
a M-channel maximally decimated filter bank. The system 
is called a perfect reconstruction system if the output, 
i ( n ) ,  is identical to the input, x(n) , except for some 
constant scaling and time delay. A number of PR or nearly 
PR filter bank systems have been proposed and studied [I] .  
In the FIR filter banks, all the analysis filters and the 
synthesis filters are FIR filters and the PR condition is 
considerably s,implified. In particular, the system is PR if 
the determinant of the polyphase matrix is equal to some 
delay. In case of IIR filter banks, the determinant of the 
polyphase matrix will in general be a minimum phase 
function. In addition to the more complicated PR 
condition, it is also very difficult to ensure that the IIR 
filters to be causal stable. Early attempts typically have 
noncausal stable filters or causal unstable filters. In [3], a 
new structure of two-channel IIR PR filter bank using all- 
pass function was proposed. Although, filters with very 
good stopband attenuation can be obtained, the frequency 
responses will exhibit a dump of about 4 dB near the 
transition band. Another method which is based on the 
transformation of a FIR prototype filter was proposed in 
[9]. Due to the use of the all-pass function and the 
transformation, both of these methods will have 
considerable restriction on the selection of the analysis and 
synthesis filters. Also, both of these approaches are 
difficult to generalize to the more general M-channel case. 

The design of M-channel PR filter banks is inherently 
more difficult than the two-channel case due to the large 
number of design variables and PR constraints. Due to its 
low computational and implementation complexities and 
good filter quality, the cosine modulated filter bank 

(CMFB) has received considerably attention in recent years 
[2]. In particular, the design of orthogonal and 
birothogonal FIR CMFB has been studied in [4-61. 
Attempt has also been made to employ IIR filters in the 
CMFB [7]. However, satisfactory design has not been 
obtained. 

In this paper, a method for designing two-channel and 
M-channel causal stable IIR PR filter banks is proposed. 
In particular, we shall show that the PR condition of the 
two-channel IIR filter banks is very similar to the two- 
channel FIR case. Using this formulation, it is relatively 
simple to satisfy the PR condition and to ensure that the 
filters be causal stable. Design examples showed that 
causal stable PR IIR filter banks with good stopband 
attenuation can be obtained. Using a similar approach, we 
propose a new class of M-channel causal stable IIR filter 
banks using the cosine modulation. Design examples 
showed that causal stable PR IIR CMFB with good 
stopband attenuation can be obtained. 

The layout of the paper is as follows: Section 2 will be 
devoted to the theory and design of the proposed two 
channel IIR PR filter banks. Their generalization to the 
CMFB case will be discussed in Section 3, where a number 
of design examples will be given. Finally, we shall 
summarize our results in Section 4, the conclusion. 

2. TWO-CHANNEL CAUSAL STABLE 
IIR PR FILTERBANKS 

2.1 PR Condition of IIR Filter bank 

For IIR filter banks, the analysis and synthesis filters will 
be rational functions. Suppose that the analysis filters are 
given by, 

where N,(z) and D,(z), i =  0,1, are polynomials in z. 
To determine its PR conditions, we need to express H,(z) 
and H I  (z) in their polyphase representations. Observing 
that 

0, (z)D,  (-z) = b, ( z 2 )  , ( 2 )  

we can multiply the numerator and denominator of H ,  ( z )  
by D, (-z) to obtain, 
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Expressing fi, ( z )  in its polyphase components: 

fi, (z) = fi,,(z') + z-IN,, (2') , 

we have 

H,  (z) = H , o ( ~ 2 )  + z - I H , ~  (z2)  

Therefore, the polyphase matrix is given by, 

To achieve PR, the determinant of E(z)  should equal to a 
minimum phase function. In PR FIR filter banks, the 
minimum phase function will reduce to simple signal 
delay. In this paper, we shall limit ourselves to the latter 
case to simplify the overall design. In this case, we have 

Equivalently, we have, 

This is similar to the FIR case except that the right hand 
side is now a polynomial. To ensure that the filters are 
causal stable, the poles of H,  (z) should remain inside the 

unit cycle. In other words, the zeros of E,(,) should be 
inside the unit cycle. For simplicity of notation, we 
assume that all the zeros of d,(z) occur in complex 
conjugate pairs so that 

ND, 

Q(Z) = - p,,k . z-l)(l - & . z - l )  (9) 

Modifications to include a fixed number of real zeros are 
easily made. The design problem can be formulated as a 
constrained non-linear optimization problem which can be 
solved by the NCONF/DCONF subroutine in the IMSL 
library. 

k = I  

2.2 Design Procedure 

Since the filter bank is biorthogonal, we have to minimize 
the stopband attenuation and the passband ripples of the 
analysis and synthesis filters. Therefore, the following 
object function is used : 

Here, U ,  and U ,  are, respectively, the pass-band and 

stopband cutoff frequencies. Larger U ,  usually leads to 
larger stop-band attenuation but the overlap between 
adjacent filters will also be increased. The variables to be 
optimized are the coefficients of the polynomials fi,, (z) , 

i, j = 0,1, and the real and imaginary parts of P , , ~  , i = 0,l; 

k = 1 ,... , ND, ( r- P , . ~  and i- . Let X be the vector 

containing these variables, the constrained optimization 
can be stated as follows, 

mjnd,, (10) 

subjected to: I P , , ~  I < 1 , i = 0,l , k = 1 ,... , NDt , 

and the PR conditions in (8). 

2.3 Initial Guess and Design Example 

The convergence and computational time required for 
optimization are usually significantly affected by the 
selection of initial guess. In designing lower order two- 
channel IIR PR filter banks, a FIR PR filter bank with 
similar characteristics can first be designed and used as the 
numerators of the initial guess, N,(z) , i = 0,l in (1). The 

initial guess for P , , ~  's are chosen to be zero. The order of 

N,(z) , i = 0,l must be larger than that of D,(z )  , i = 0, l .  
Figure 2 shows a design example of a causal stable 2- 
channel IIR filter banks satisfying the PR conditions. The 
order of the numerator polynomial of the lowpass filter is 9 
while that of the denominator polynomial is 4. The 
highpass filter has the same order as the lowpass filter. 
Both of them have about 40 dB of stop-band attenuation. 
More design examples can be found in [8]. 

3. M-CHANNEL CASUAL STABLE 
IIR PR CMFB 

3.1 PR Condition of IIR CMFB 

In CMFB, the analysis filters, f k ( n )  , and the synthesis 
filters, g k ( n )  , are obtained by modulating a prototype 
filter, h(n) . 

f k  ( n )  = h ( n ) c k , n  7 g k  (n )  = h(n)Fk. , 

(11) 

M is the number of channels. The modulation we shall be 
using is the Extended Lapped Transform (ELT) [ 111: 

k = OJ, ... M - 1. 

- 
ck," is the time reverse of ck," .  

Let H,(z) be the type I polyphase decomposition of the 

prototype filter, h(n) , 
? M - 1  

H ( z )  = ~ Z - ~ H , ( Z ' ~ ) .  (13) 
q=o 
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It can be shown that the frequency responses of the 
analysis filters can be written as [ 2 ] :  

p n  

Also, the PR condition for the general biorthogonal CMFB 
is given by [4-61 

For simpliciity, we assume that M is even. Similar 
conditions can be derived when M is an odd number. 
Usually nk 's are chosen to be identical for all k and it 
determines tlhe delay of the filter bank. Since the analysis 
filters are frequency shifted versions of the prototype filter, 
the optimizalion objective function is simplified to: 

where w ,  is the stop-band cutoff frequency whose value 

should be between - and -. For IIR filter banks, 

H k ( z )  will be rational functions. Using the same 
technique that we have developed for the two-channel case, 
we choose Hk (z) to be 

7r n 
2 M  M 

The prototype filter is then given by, 

To ensure that the analysis and synthesis filters are causal 
stable, all the roots of D ( z )  shall remain inside the unit 
circle. The PR condition is then given by 

Nk ( Z ) N ~ M - ~ - I  ( Z )  f N,+k (Z)N,+-k-i ( Z )  

= j ? ~ z - " * D ' ( z )  , k =0,1, ..., ( M  / 2 )  - 1 .  (17) 

Without loss of generality, we assume that D ( z )  has the 
following form, 

ND, 

D ( z )  = K , n ( l  - P , , ~  , z / ) ( l -  . Z - I )  . (18) 
k = l  

3.2 Design Procedure 

Let X be the vector containing the coefficients of N ,  (z) 
and the real and imaginary parts of P , , ~  's. The design 

problem can be formulated as the following constrained 
non-linear optimization problem: 

min SP 

subjected to the PR condition in (17), 

and P , , ~  < l , i = O , l ,  k = l ,  ..., NO,. I I  

3.3 Initial Guess and Design Examples 
To design the IIR CMFB, a M-Channel FIR PR CMFB 
with similar characteristic is first designed and used as 
initial guess. The initial guess for the values P ~ , ~ ' s  are 

chosen to be zero. Fig. 3(a) shows the frequency response 
of the IIR prototype filter for a 4-channel PR CMFB 
designed using the proposed method. The order of the 
numerator polynomial of the prototype filter is 39 while 
that of the denominator is 16. It can be seen that the 
prototype filter has a high stopband attenuation of about 
70 dB. The passband and stopband responses are flat and 
the roll-off is sharp. Fig. 3(b) shows the frequency 
response of its analysis filters. Fig. 4 shows another 
example where an 8-channel IIR PR CMFB was designed. 
Fig. 4(a) and 4(b) show the frequency responses of its IIR 
prototype filter and analysis filters, respectively. The order 
of the numerator polynomial of the prototype filter is 79 
while that of the denominator is 32. The stopband 
attenuation of the prototype filter is about 60 dB. 

4. CONCLUSION 
A new method for designing two-channel and M -  

channel causal stable IIR PR filter banks using cosine 
modulation is presented. It was found that the PR 
condition of the two-channel IIR filter banks is very similar 
to the two-channel FIR case. Using this formulation, it is 
relatively simple to satisfy the PR condition and to ensure 
that the filters be causal stable. Using a similar approach, a 
new class of M-channel causal stable IIR cosine modulated 
filter banks is proposed. Design examples show that 
causal stable IIR filter banks with high stopband 
attenuation can be obtained. 

Fig. 1 M-channel maximally decimated filter banks 
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Normalized Frequency 

Fig. 2 Frequency response of 2-Channel 
IIR PR filter banks 
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Normalized Frequency 

Fig. 3(a) 
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Fig.  3 Frequency responses of 4-channel cosine- 
modulated filterbanks: (a) prototype; (b)analysis filters 
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Fig.  4 Frequency responses of 8-channel cosine- 
modulated filterbanks: (a) prototype; (b) analysis filters 
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