22 research outputs found

    Adaptive Numerical Methods for PDEs

    Get PDF
    This collection contains the extended abstracts of the talks given at the Oberwolfach Conference on “Adaptive Numerical Methods for PDEs”, June 10th - June 16th, 2007. These talks covered various aspects of a posteriori error estimation and mesh as well as model adaptation in solving partial differential equations. The topics ranged from the theoretical convergence analysis of self-adaptive methods, over the derivation of a posteriori error estimates for the finite element Galerkin discretization of various types of problems to the practical implementation and application of adaptive methods

    Proceedings for the ICASE Workshop on Heterogeneous Boundary Conditions

    Get PDF
    Domain Decomposition is a complex problem with many interesting aspects. The choice of decomposition can be made based on many different criteria, and the choice of interface of internal boundary conditions are numerous. The various regions under study may have different dynamical balances, indicating that different physical processes are dominating the flow in these regions. This conference was called in recognition of the need to more clearly define the nature of these complex problems. This proceedings is a collection of the presentations and the discussion groups

    Monotonicity-preserving finite element methods for hyperbolic problems

    Get PDF
    This thesis covers the development of monotonicity preserving finite element methods for hyperbolic problems. In particular, scalar convection-diffusion and Euler equations are used as model problems for the discussion in this dissertation. A novel artificial diffusion stabilization method has been proposed for scalar problems. This technique is proved to yield monotonic solutions, to be \ac{led}, Lipschitz continuous, and linearity preserving. These properties are satisfied in multiple dimensions and for general meshes. However, these results are limited to first order Lagrangian finite elements. A modification of this stabilization operator that is twice differentiable has been also proposed. With this regularized operator, nonlinear convergence is notably improved, while the stability properties remain unaltered (at least, in a weak sense). An extension of this stabilization method to high-order discretizations has also been proposed. In particular, arbitrary order space-time isogeometric analysis is used for this purpose. It has been proved that this scheme yields solutions that satisfy a global space-time discrete maximum principle unconditionally. A partitioned approach has also been proposed. This strategy reduces the computational cost of the scheme, while it preserves all stability properties. A regularization of this stabilization operator has also been developed. As for the first order finite element method, it improves the nonlinear convergence without harming the stability properties. An extension to Euler equations has also been pursued. In this case, instead of monotonicity-preserving, the developed scheme is local bounds preserving. Following the previous works, a regularized differentiable version has also been proposed. In addition, a continuation method using the parameters introduced for the regularization has been used. In this case, not only the nonlinear convergence is improved, but also the robustness of the method. However, the improvement in nonlinear convergence is limited to moderate tolerances and it is not as notable as for the scalar problem. Finally, the stabilized schemes proposed had been adapted to adaptive mesh refinement discretizations. In particular, nonconforming hierarchical octree-based meshes have been used. Using these settings, the efficiency of solving a monotonicity-preserving high-order stiff nonlinear problem has been assessed. Given a specific accuracy, the computational time required for solving the high-order problem is compared to the one required for solving a low-order problem (easy to converge) in a much finer adapted mesh. In addition, an error estimator based on the stabilization terms has been proposed and tested. The performance of all proposed schemes has been assessed using several numerical tests and solving various benchmark problems. The obtained results have been commented and included in the dissertation.La present tesi tracta sobre mètodes d'elements finits que preserven la monotonia per a problemes hiperbòlics. Concretament, els problemes que s'han utilitzat com a model en el desenvolupament d'aquesta tesi són l'equació escalar de convecció-difusió-reacció i les equacions d'Euler. Per a problemes escalars s'ha proposat un nou mètode d'estabilització mitjançant difusió artificial. S'ha provat que amb aquesta tècnica les solucions obtingudes són monòtones, l'esquema "disminueix els extrems locals", i preserva la linearitat. Aquestes propietats s'han pogut demostrar per múltiples dimensions i per malles generals. Per contra, aquests resultats només són vàlids per elements finits Lagrangians de primer ordre. També s'ha proposat una modificació de l'operador d'estabilització per tal de que aquest sigui diferenciable. Aquesta regularització ha permès millorar la convergència no-lineal notablement, mentre que les propietats d'estabilització no s'han vist alterades. L'anterior mètode d'estabilització s'ha adaptat a discretitzacions d'alt ordre. Concretament, s'ha utilitzat anàlisi isogeomètrica en espai i temps per a aquesta tasca. S'ha provat que les solucions obtingudes mitjançant aquest mètode satisfan el principi del màxim discret de forma global. També s'ha proposat un esquema particionat. Aquesta alternativa redueix el cost computacional, mentre preserva totes les propietats d'estabilitat. En aquest cas, també s'ha realitzat una regularització de l'operador d'estabilització per tal de que sigui diferenciable. Tal i com s'ha observat en els mètodes de primer ordre, aquesta regularització permet millorar la convergència no-lineal sense perdre les propietats d'estabilització. Posteriorment, s'ha estudiat l'adaptació dels mètodes anteriors a les equacions d'Euler. En aquest cas, en comptes de preservar la monotonia, l'esquema preserva "cotes locals". Seguint els desenvolupaments anteriors, s'ha proposat una versió diferenciable de l'estabilització. En aquest cas, també s'ha desenvolupat un mètode de continuació utilitzant els paràmetres introduïts per a la regularització. En aquest cas, no només ha millorat la convergència no-lineal sinó que l'esquema també esdevé més robust. Per contra, la millora en la convergència no-lineal només s'observa per a toleràncies moderades i no és tan notable com en el cas dels problemes escalars. Finalment, els esquemes d'estabilització proposat s'han adaptat a malles de refinament adaptatiu. Concretament, s'han utilitzat malles no-conformes basades en octrees. Utilitzant aquesta configuració, l'eficiència de resoldre un problema altament no-lineal ha estat avaluada de la següent forma. Donada una precisió determinada, el temps computacional requerit per resoldre el problema utilitzant un esquema d'alt ordre ha estat comparat amb el temps necessari per resoldre'l utilitzant un esquema de baix ordre en una malla adaptativa molt més refinada. Addicionalment, també s'ha proposat un estimador de l'error basat en l'operador d'estabilització. El comportament de tots els esquemes proposats anteriorment s'ha avaluat mitjançant varis tests numèrics. Els resultats s'han compilat i comentat en la present tesi.Postprint (published version

    Algebraic multigrid for stabilized finite element discretizations of the Navier Stokes equation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2002.Includes bibliographical references (p. 141-152).A multilevel method for the solution of systems of equations generated by stabilized Finite Element discretizations of the Euler and Navier Stokes equations on generalized unstructured grids is described. The method is based on an elemental agglomeration multigrid which produces a hierarchical sequence of coarse subspaces. Linear combinations of the basis functions from a given space form the next subspace and the use of the Galerkin Coarse Grid Approximation (GCA) within an Algebraic Multigrid (AMG) context properly defines the hierarchical sequence. The multigrid coarse spaces constructed by the elemental agglomeration algorithm are based on a semi-coarsening scheme designed to reduce grid anisotropy. The multigrid transfer operators are induced by the graph of the coarse space mesh and proper consideration is given to the boundary conditions for an accurate representation of the coarse space operators. A generalized line implicit relaxation scheme is also described where the lines are constructed to follow the direction of strongest coupling. The solution algorithm is motivated by the decomposition of the system characteristics into acoustic and convective modes. Analysis of the application of elemental agglomeration AMG (AMGe) to stabilized numerical schemes shows that a characteristic length based rescaling of the numerical stabilization is necessary for a consistent multigrid representation.by Tolulope Olawale Okusanya.Ph.D

    Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018

    Get PDF
    This open access book features a selection of high-quality papers from the presentations at the International Conference on Spectral and High-Order Methods 2018, offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions

    Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws

    Get PDF
    The development of reliable numerical methods for the simulation of real life problems requires both a fundamental knowledge in the field of numerical analysis and a proper experience in practical applications as well as their mathematical modeling. Thus, the purpose of the workshop was to bring together experts not only from the field of applied mathematics but also from civil and mechanical engineering working in the area of modern high order methods for the solution of partial differential equations or even approximation theory necessary to improve the accuracy as well as robustness of numerical algorithms
    corecore