5,747 research outputs found

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Time-Varying Input and State Delay Compensation for Uncertain Nonlinear Systems

    Full text link
    A robust controller is developed for uncertain, second-order nonlinear systems subject to simultaneous unknown, time-varying state delays and known, time-varying input delays in addition to additive, sufficiently smooth disturbances. An integral term composed of previous control values facilitates a delay-free open-loop error system and the development of the feedback control structure. A stability analysis based on Lyapunov-Krasovskii (LK) functionals guarantees uniformly ultimately bounded tracking under the assumption that the delays are bounded and slowly varying

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Robust H-infinity finite-horizon control for a class of stochastic nonlinear time-varying systems subject to sensor and actuator saturations

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This technical note addresses the robust H∞ finite-horizon output feedback control problem for a class of uncertain discrete stochastic nonlinear time-varying systems with both sensor and actuator saturations. In the system under investigation, all the system parameters are allowed to be time-varying, the parameter uncertainties are assumed to be of the polytopic type, and the stochastic nonlinearities are described by statistical means which can cover several classes of well-studied nonlinearities. The purpose of the problem addressed is to design an output feedback controller, over a given finite-horizon, such that the H∞ disturbance attenuation level is guaranteed for the nonlinear stochastic polytopic system in the presence of saturated sensor and actuator outputs. Sufficient conditions are first established for the robust H∞ performance through intensive stochastic analysis, and then a recursive linear matrix inequality (RLMI) approach is employed to design the desired output feedback controller achieving the prescribed H∞ disturbance rejection level. Simulation results demonstrate the effectiveness of the developed controller design scheme.This work was supported under Australian Research Council’s Discovery Projects funding scheme (project DP0880494) and by the German Science Foundation (DFG) within the priority programme 1305: Control Theory of Digitally Networked Dynamical Systems. Recommended by Associate Editor H. Ito

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    Stochastic model predictive control for constrained networked control systems with random time delay

    Get PDF
    In this paper the continuous time stochastic constrained optimal control problem is formulated for the class of networked control systems assuming that time delays follow a discrete-time, finite Markov chain . Polytopic overapproximations of the system's trajectories are employed to produce a polyhedral inner approximation of the non-convex constraint set resulting from imposing the constraints in continuous time. The problem is cast in a Markov jump linear systems (MJLS) framework and a stochastic MPC controller is calculated explicitly, oine, coupling dynamic programming with parametric piecewise quadratic (PWQ) optimization. The calculated control law leads to stochastic stability of the closed loop system, in the mean square sense and respects the state and input constraints in continuous time

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)

    On general systems with network-enhanced complexities

    Get PDF
    In recent years, the study of networked control systems (NCSs) has gradually become an active research area due to the advantages of using networked media in many aspects such as the ease of maintenance and installation, the large flexibility and the low cost. It is well known that the devices in networks are mutually connected via communication cables that are of limited capacity. Therefore, some network-induced phenomena have inevitably emerged in the areas of signal processing and control engineering. These phenomena include, but are not limited to, network-induced communication delays, missing data, signal quantization, saturations, and channel fading. It is of great importance to understand how these phenomena influence the closed-loop stability and performance properties

    SMC design for robust H∞ control of uncertain stochastic delay systems

    Get PDF
    Recently, sliding mode control method has been extended to accommodate stochastic systems. However, the existing results employ an assumption that may be too restrictive for many stochastic systems. This paper aims to remove this assumption and present in terms of LMIs a sliding mode control design method for stochastic systems with state delay. In some cases, the proposed method provides a control scheme for finite-time stabilization of stochastic delay systems
    corecore