76,823 research outputs found

    Computational Complexity in Additive Hedonic Games

    Get PDF
    We investigate the computational complexity of several decision problems in hedonic coalition formation games and demonstrate that attaining stability in such games remains NP-hard even when they are additive. Precisely, we prove that when either core stability or strict core stability is under consideration, the existence problem of a stable coalition structure is NP-hard in the strong sense. Furthermore, the corresponding decision problems with respect to the existence of a Nash stable coalition structure and of an individually stable coalition structure turn out to be NP-complete in the strong sense

    Formation of coalition structures as a non-cooperative game

    Full text link
    Traditionally social sciences are interested in structuring people in multiple groups based on their individual preferences. This pa- per suggests an approach to this problem in the framework of a non- cooperative game theory. Definition of a suggested finite game includes a family of nested simultaneous non-cooperative finite games with intra- and inter-coalition externalities. In this family, games differ by the size of maximum coalition, partitions and by coalition structure formation rules. A result of every game consists of partition of players into coalitions and a payoff? profiles for every player. Every game in the family has an equilibrium in mixed strategies with possibly more than one coalition. The results of the game differ from those conventionally discussed in cooperative game theory, e.g. the Shapley value, strong Nash, coalition-proof equilibrium, core, kernel, nucleolus. We discuss the following applications of the new game: cooperation as an allocation in one coalition, Bayesian games, stochastic games and construction of a non-cooperative criterion of coalition structure stability for studying focal points.Comment: arXiv admin note: text overlap with arXiv:1612.02344, arXiv:1612.0374

    Cooperative Games with Overlapping Coalitions

    Get PDF
    In the usual models of cooperative game theory, the outcome of a coalition formation process is either the grand coalition or a coalition structure that consists of disjoint coalitions. However, in many domains where coalitions are associated with tasks, an agent may be involved in executing more than one task, and thus may distribute his resources among several coalitions. To tackle such scenarios, we introduce a model for cooperative games with overlapping coalitions--or overlapping coalition formation (OCF) games. We then explore the issue of stability in this setting. In particular, we introduce a notion of the core, which generalizes the corresponding notion in the traditional (non-overlapping) scenario. Then, under some quite general conditions, we characterize the elements of the core, and show that any element of the core maximizes the social welfare. We also introduce a concept of balancedness for overlapping coalitional games, and use it to characterize coalition structures that can be extended to elements of the core. Finally, we generalize the notion of convexity to our setting, and show that under some natural assumptions convex games have a non-empty core. Moreover, we introduce two alternative notions of stability in OCF that allow a wider range of deviations, and explore the relationships among the corresponding definitions of the core, as well as the classic (non-overlapping) core and the Aubin core. We illustrate the general properties of the three cores, and also study them from a computational perspective, thus obtaining additional insights into their fundamental structure

    Boolean Hedonic Games

    Full text link
    We study hedonic games with dichotomous preferences. Hedonic games are cooperative games in which players desire to form coalitions, but only care about the makeup of the coalitions of which they are members; they are indifferent about the makeup of other coalitions. The assumption of dichotomous preferences means that, additionally, each player's preference relation partitions the set of coalitions of which that player is a member into just two equivalence classes: satisfactory and unsatisfactory. A player is indifferent between satisfactory coalitions, and is indifferent between unsatisfactory coalitions, but strictly prefers any satisfactory coalition over any unsatisfactory coalition. We develop a succinct representation for such games, in which each player's preference relation is represented by a propositional formula. We show how solution concepts for hedonic games with dichotomous preferences are characterised by propositional formulas.Comment: This paper was orally presented at the Eleventh Conference on Logic and the Foundations of Game and Decision Theory (LOFT 2014) in Bergen, Norway, July 27-30, 201

    Solution Concepts for Cooperative Games with Circular Communication Structure

    Get PDF
    We study transferable utility games with limited cooperation between the agents. The focus is on communication structures where the set of agents forms a circle, so that the possibilities of cooperation are represented by the connected sets of nodes of an undirected circular graph. Agents are able to cooperate in a coalition only if they can form a network in the graph. A single-valued solution which averages marginal contributions of each player is considered. We restrict the set of permutations, which induce marginal contributions to be averaged, to the ones in which every agent is connected to the agent that precedes this agent in the permutation. Staring at a given agent, there are two permutations which satisfy this restriction, one going clockwise and one going anticlockwise along the circle. For each such permutation a marginal vector is determined that gives every player his marginal contribution when joining the preceding agents. It turns out that the average of these marginal vectors coincides with the average tree solution. We also show that the same solution is obtained if we allow an agent to join if this agent is connected to some of the agents who is preceding him in the permutation, not necessarily being the last one. In this case the number of permutations and marginal vectors is much larger, because after the initial agent each time two agents can join instead of one, but the average of the corresponding marginal vectors is the same. We further give weak forms of convexity that are necessary and sufficient conditions for the core stability of all those marginal vectors and the solution. An axiomatization of the solution on the class of circular graph games is also given.Cooperative game;graph structure;average tree solution;Myerson value;core stability;convexity

    Forming Probably Stable Communities with Limited Interactions

    Full text link
    A community needs to be partitioned into disjoint groups; each community member has an underlying preference over the groups that they would want to be a member of. We are interested in finding a stable community structure: one where no subset of members SS wants to deviate from the current structure. We model this setting as a hedonic game, where players are connected by an underlying interaction network, and can only consider joining groups that are connected subgraphs of the underlying graph. We analyze the relation between network structure, and one's capability to infer statistically stable (also known as PAC stable) player partitions from data. We show that when the interaction network is a forest, one can efficiently infer PAC stable coalition structures. Furthermore, when the underlying interaction graph is not a forest, efficient PAC stabilizability is no longer achievable. Thus, our results completely characterize when one can leverage the underlying graph structure in order to compute PAC stable outcomes for hedonic games. Finally, given an unknown underlying interaction network, we show that it is NP-hard to decide whether there exists a forest consistent with data samples from the network.Comment: 11 pages, full version of accepted AAAI-19 pape

    A Survey of Models of Network Formation: Stability and Efficiency

    Get PDF
    I survey the recent literature on the formation of networks. I provide definitions of network games, a number of examples of models from the literature, and discuss some of what is known about the (in)compatibility of overall societal welfare with individual incentives to form and sever links

    Coalitional Games in MISO Interference Channels: Epsilon-Core and Coalition Structure Stable Set

    Full text link
    The multiple-input single-output interference channel is considered. Each transmitter is assumed to know the channels between itself and all receivers perfectly and the receivers are assumed to treat interference as additive noise. In this setting, noncooperative transmission does not take into account the interference generated at other receivers which generally leads to inefficient performance of the links. To improve this situation, we study cooperation between the links using coalitional games. The players (links) in a coalition either perform zero forcing transmission or Wiener filter precoding to each other. The ϵ\epsilon-core is a solution concept for coalitional games which takes into account the overhead required in coalition deviation. We provide necessary and sufficient conditions for the strong and weak ϵ\epsilon-core of our coalitional game not to be empty with zero forcing transmission. Since, the ϵ\epsilon-core only considers the possibility of joint cooperation of all links, we study coalitional games in partition form in which several distinct coalitions can form. We propose a polynomial time distributed coalition formation algorithm based on coalition merging and prove that its solution lies in the coalition structure stable set of our coalition formation game. Simulation results reveal the cooperation gains for different coalition formation complexities and deviation overhead models.Comment: to appear in IEEE Transactions on Signal Processing, 14 pages, 14 figures, 3 table
    corecore