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Abstract

In the usual models of cooperative game theory, the outcdnaecoalition formation process is
either the grand coalition or a coalition structure thatsists of disjoint coalitions. However, in
many domains where coalitions are associated with taskagent may be involved in executing
more than one task, and thus may distribute his resourcesgsaveral coalitions. To tackle such
scenarios, we introduce a model fmyoperative games with overlapping coalitierer overlap-
ping coalition formation (OCF) games\e then explore the issue of stability in this setting. In
particular, we introduce a notion of the core, which geneeal the corresponding notion in the
traditional (non-overlapping) scenario. Then, under squoite general conditions, we characterize
the elements of the core, and show that any element of thencaxenizes the social welfare. We
also introduce a concept of balancedness for overlappiafitiomal games, and use it to charac-
terize coalition structures that can be extended to elesrafrthe core. Finally, we generalize the
notion of convexity to our setting, and show that under som@nal assumptions convex games
have a non-empty core. Moreover, we introduce two altereatbtions of stability in OCF that
allow a wider range of deviations, and explore the relatiqps among the corresponding defini-
tions of the core, as well as the classic (non-overlappingg and the Aubin core. We illustrate the
general properties of the three cores, and also study themm drcomputational perspective, thus
obtaining additional insights into their fundamental strue.

1. Introduction

Coalition formation widely studied in game theory and economics (Myerson, 1991), hastattrac
much attention in Al as means of forming teams of autonomous selfish agenteddabrcooperate
to perform certain tasks (Sandholm & Lesser, 1997; Shehory & Kre@@8; Sandholm, Larson,
Andersson, Shehory, & Tohme, 1999; Manisterski, Sarne, & Kra068; Rahwan, Ramchurn,
Jennings, & Giovannucci, 2009). Traditionally, in the game theory literatuseassumed that the
outcome of the coalition formation process is eithergtand coalition(i.e., the set of all agents), or
acoalition structurethat consists of disjoint coalitions (i.e partition of the set of agents). While
natural for some settings, in many scenarios of interest this assumptionappimable.
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Specifically, it is often natural to associate coalitions with tasks to be perébomthe agents. In
such situations, some agents may be involved in several tasks, and thenefpneed to distribute
their resources among the coalitions in which they participate. Indeed,“sueHaps” may be
necessary to obtain a good outcome, and are natural in a plethora otiimgrapplications. As
a simple e-commerce example, consider online trading agents representuiduiald or virtual
enterprises, and facing the challenge of allocating their owners’ capi@lviariety of projects
(i.e., coalitions) simultaneously. There are many other examples of settings in arhagent (be
it a software entity or a human) splits his resources (such as processivey, dime or money)
among several tasks. These tasks, in turn, may require the participatioorefthan one agent: a
computation may run on several servers, a software project usually@swmore than one engineer,
and a start-up may rely on several investors. Thus, each task comtbspp a coalition of agents,
but agents’ contributions to those coalitions may be fractional, and, marements can participate
in several tasks at once, resultingcimalition structures with overlapping coalition$he formation
of overlapping coalitions is particularly prevalent in systems demanding muitiagemultirobot
coordination, computational grid networks, and sensor networks—esge,the work of Patel et
al. (2005), and Dang, Dash, Rogers, & Jennings (2006). To daue\er, there has been essentially
no theoretical treatment of the topic, with just a few exceptions (which weisksa Section 3).

Against this background, the goal of this paper is to introduce and stauydal that explicitly
takesoverlapping coalition formation (OCHnto account. Our model is applicable in situations
where agents need to allocate different parts of their resources to sienltsn serve different
tasks as members of different coalitions. Besides allowing for overlapmattions, it departs
from the conventional coalition formation framework in two important aspdeist, there is no
inherent superadditivity assumption in our work, and hence the graalitico does not always
emerge. Thus, our subsequent definition of the core incorporatésorosatructures. Second, ex-
actly because we are interested in outcomes other than the grand coalititatifor, we do not
use the standartansferable utility (TU)ramework, where agents can make arbitrary payments to
each other. Instead, following the seminal paper by Aumann and Dr8Zd)dwe allow arbitrary
monetary transfergithin coalitions, but not cross-coalitional transfers. That is, an agentomst
tributing to a coalition should not expect to receive payoff from it. Indesdargued by Aumann
and Dreze, the inability of some of the agents to work together and shawémay be one of the
primary reasons why the grand coalition does not form, and a particudditicn structure arises.
Finally, our model can take task (coalitional action) execution explicitly intoaet; this facilitates
possible extensions to tackle coalition formation under uncertainty.

Apart from defining a model for overlapping coalition formation, the maint@oution of this
work is exploring the stability concept of tlemre in the OCF setting. We suggest three different
notions of the core, depending on the nature of deviations allowed, siscae shall see, the
range of permissible deviations in an overlapping setting can be much richreintthe traditional
non-overlapping one. More specifically, the definition of stability depemds/hether a deviator
who reduced his contribution to some—nbut not all—coalitions, expects tonggtayoff from the
coalitions that he did not abandon completely.

To provide more intuition, consider the example of two construction compahisd 2, who
are currently partners (not necessarily the only partners) workimgestruction projects A (“build-
ing a university campus”) and B (“building a hospital”). Assume that parinkeas more stakes in

1. To simplify notation, we only show how to incorporate coalitional actionsémtiodel in Section 10.
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project B, expecting to extract from it a great value, and has contdlati 75% of its available re-
sources, contributing the remainigg% to A; while partner 2 contributes most of its resources (say
67%) to project A and the remaining fraction (s386) to B. Thus, they currently participate in two
overlapping coalitions, each one performing a different task. Now,rthpa2 feels unhappy about
the current payoff division arrangement, it might consider abandquiojgct A (by cancelling the
project if it is the project leader, or by taking advantage of some contbekit clause) in order to
commit its resources to a more profitable to 2 project (say C). Howeveming do, it might hurt
project A's chances of completion. Does this mean that 2's actions will tripgespite of company
1, which might use available means to kick 2 out of project B? And what if @y lowered
its degree of participation in A instead of withdrawing completely? How much optbéts from
completing A would 2 then be entitled to? The different answers one caldprtw these ques-
tions correspond to different notions of profitable deviations, andetbes, to different notions of
core-stability. In particular, we demonstrate that the core notions we puafd in this paper are
substantially different from each other with respect to the sets of outctiregsharacterize.

Our main technical results involve tlsecore the first core concept that we suggest. Among the
three concepts of the core introduced in this paper, the c-core is thetdosiee standard definition
of the core in general non-transferable utility (NTU) games. In particwarprovide conditions
for the existence of the c-core as follows. Under quite general assumaptiee first provide a
characterization for outcomes, i.e., pairs of the fgawerlapping coalition structure, imputation)
to be in the c-core. Our proof is based on a graph-theoretic argumeioh miay be of independent
interest. As a corollary of this result, we show that any outcome in the croarémizes the social
welfare. Second, we characterize coalition structures that admit paNoffations such that the
resulting outcome is in the c-core. This is done by generalizing the Borai&ieapley theorem
to our setting (note that this theorem does not hold for arbitrary nonténaide utility games).
Furthermore, we extend the notion of convexity in coalitional games to oyeniggoalitions, and
show that under mild assumptions any convex OCF game has a non-emp#y/. c-co

We then discuss the properties of all three versions of the OCF-coraiggest, and relate
them to each other and to the classic core. We also demonstrate how ouranddsbre con-
cepts differ from fuzzy coalitional games (Aubin, 1981); though raieva that model, our work
is fundamentally different. In addition, we initiate the study of computationad@spof stability
in the overlapping setting. Note that the computational analysis of coalitionageaeven in non-
overlapping scenarios, is hindered by the fact that, in general, coalitiean@es do not possess a
compact representation, as one may have to list the value of every passaliteon. Thus, the ex-
isting work on algorithmic aspects of coalitional games focused on gamesespiations that are ei-
ther incomplete—such as, e.g., weighted voting games (Elkind, Goldberdy&gl|& Wooldridge,
2009), induced subgraph games (Deng & Papadimitriou, 1994), or reflear games (Bachrach
& Rosenschein, 2007)—or are only guaranteed to be succinct foifispmibclasses of games, such
as MC-nets (leong & Shoham, 2005) or coalitional skill games (Bach#aRlosenschein, 2008);
another approach is to show complexity bounds for all games reprekebtapolynomial-sized
circuits (Greco, Malizia, Palopoli, & Scarcello, 2009). This issue is everermevere in the OCF
setting, as now we have to specify the value of eyamatial coalition. Therefore, in this paper,
we follow the first of these approaches, and introduce a formalisthreshold task gamebat is
capable of describing a large family of overlapping coalition formation settmgssuccinct man-
ner. Within this formalism, we obtain both negative and positive results reggitte complexity of
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deciding the questions of membership and non-emptiness for our OCFesuarepts. We conclude
by describing some natural extensions of our model and suggestingatisefor future work?

2. Preliminaries

In this section, we provide a brief overview of the basic concepts in catipe game theory re-
garding non-overlapping coalition structures. To beginNet {1,...,n} be a set of players (or
“agents”). A subset C N is called acoalition. A coalition structure(C'S) in non-overlapping
environments is a partition of the set of agents.

Under the assumption dfansferable utility coalition formation can be abstracted into a fairly
simple model. This assumption postulates the existence of a (divisible) commadity'fgoney”)
that can be freely transferred among players. The role ofliaeacteristic functiorof a coalitional
game with transferable utility (TU-gaméy to specify a single number denoting the worth of a
coalition. Formally, a characteristic function: 2 — R defines thevaluev(S) of each coalition
S (von Neumann & Morgenstern, 1944). A transferable utility gathis completely specified by
the set of playerév and the characteristic functian we can therefore writ& = (N, v).

While the characteristic function describes the payoffs available to coalifiotises not pre-
scribe a way of distributing these payoffs. This is captured by the notianiafputation defined as
follows. We say that aallocationis a vector of payoffe = (z1, ..., z,) assigning some payoff to
eachj € N. An allocationz is efficientwith respect to a coalition structuc@S if >, s z; = v(5)
forall S € CS; anditis called amimputationif it is efficient and satisfiemdividual rationality, i.e.,
xzj >v({j}) forj =1,...,n. The set of all imputations of’S is denoted by (CS).

Now, when rational agents seek to maximize their individual payoffssthbility of the un-
derlying coalition structure becomes critical, as agents might be tempted tocsbamdements in
pursuit of further gains for themselves. A structure is stable only if theoowts attained by the
coalitions and the payoff combinations agreed to by the agents satisfy battldirad and group
rationality. Given this requirement, research in coalition formation has deselseveral notions of
stability, among the strongest and the most well-studied ones beingthéGillies, 1953). Taking
coalition structures into account, the core of a TU game is a set of outogittes:), « € 1(CS),
such that no subgroup of agents is motivated to depart from their coalitiaiiS.

Definition 1. Let CS be a coalition structure, and let € R™ be an allocation of payoffs to the
agents. Theoreof a TU gamg N, v) is the set of all pairg C'S, x) such thate € I(CS) and for
anyS C Nitholds that ;¢ z; > v(95).

Hence, no coalition would ever “block” the proposal for a core allocatibis well-known that
the core is a strong notion, and there exist many games where it is emptys@iyé991).

The core definition above is essentially the definition provided by Sandhudm.@sser (1997)
(and is also very similar to the one given by Dieckmann & Schwalbe, 1998)e hssume super-
additivity of the characteristic function (i.ex(U UT) > v(U) 4 v(T') for any disjoint coalitiong/
andT) then in the definition above we may only consider outcomes wbéres simply the grand

2. Parts of this work, namely the model and the statement of some ofesults, have appeared in a preliminary
conference paper (Chalkiadakis, Elkind, Markakis, & Jennings8R0dowever,(a) the introduction of alternative
notions of the core and all related results presented here are entiredl; (flmvsimilarly, our complexity-related
results are entirely novel; an@) the discussion on the properties of the cores and the in-depth compeiitson
fuzzy coalitional games appear here for the first time as well.
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coalition andd . vy z; = v(N). The core definition then becomes the traditional definition that has
been used in the vast majority of the economics literature (Osborne & Rubirk$94).

The environments of interest in our work however are mainly non-sdgénze and we will
not make any such assumption on the characteristic function. Indeeeljsteeplethora of realistic
application scenarios where the emergence of the grand coalition is eitrgararanteed, might be
perceivably harmful, or is plainly impossible (Sandholm & Lesser, 19@rd8olm et al., 1999).
In addition to such motivations, Aumann and Dreze (1974) also provideraugb and insightful
discussion on why coalition structures arise: they put forward a sefriaggyoments on how this
might happen, and explain that coalition structures may emerge naturallyirewemeradditive
environments for a variety of reasons. Briefly, their arguments deshobea subset of agents
might find it more worthwhile to bargain within the framework of a specific stma;tthan within
the framework of the grand coalition; or how the emergence of a coalitiootsteumay reflect
considerations that are by necessity excluded from the formal desaorgittbe game because they
are impossible to measure or communicate. Exogenous arguments for theeceeod coalition
structures naturally include the impossibility of communication among all negotiatdiseby law
prohibition of the grand coalition (Aumann & Dreze, 1974).

3. Related Work

The work that is most relevant to ours is the researcliuaay coalitional gamesntroduced by
Aubin (1981). Branzei, Dimitrov, & Tijs (2005) also provide a detailed esifjon of such games.
A player in a fuzzy game can participate in a coalition at varieusls and the value of a coalition
S depends on the participation levels of the agentS.itGiven this model, Aubin then defines the
core for fuzzy games (also referred to as #udin corg. Though our model also allows for partial
participation in a coalition, there are several crucial differences betviigezy games and OCF
games, and the corresponding notions of stability. We postpone listing thékafter presenting
our model and results, but will do so in Section 8.2. For now, let us just pairthat, in distinction
to our work, the formation of coalition structures (overlapping or not) isauloressed in the fuzzy
games literature.

Apart from fuzzy games, very little work exists on overlapping coalitionmfation settings.
Here we discuss some notable exceptions, as well as some related woekanrehin the context
of non-overlapping coalition structures.

To begin, Shehory and Kraus (1996) present a setting for overlgupialition formation. In
their model, the agents have goals and capabilities—i.e., abilities to execute eetiaims. To
serve their goals, the agents have to participate in coalitions, to each of tlikichontribute some
of their capabilities, which can thus be thought of as resources. Therautien propose heuristic
algorithms that lead to the creation of overlapping coalition structures. Howeae authors stop
short of addressing the question of the stability of overlapping coalitiomaig®t al. (2006) also
examine heuristic algorithms for overlapping coalition formation to be used rei#lance multi-
sensor networks. However, their work does not deal with payoff afion issues, and does not
view the overlapping coalition formation problem from a game-theoretic petise.

Conconi and Perroni (2001) present a model of international multidiimesispolicy coordi-
nation in anon-cooperativesetting: agreement structures between countries can be overlapping,
namely a country may participate in multiple agreements, by contributing any nuwhpeposed
“elementary strategies” (which can be regarded as being chosendismnetesets of resources).
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They then introduce an equilibrium concept to describe stability in this settiogvekkr, in con-
trast to our work, the setting in the work of Conconi and Perroni is ramperative, and does not
apply to agents with continuous resources.

More recently, Albizuri, Aurrecoechea, & Zarzuelo (2006) presgrte extension of Owen’s
value (1977)—which, in turn, can be thought of as a generalization @llapley value (1953)—to
an overlapping coalition formation setting. Specifically, they present ametio characterization
of their configuration value However, in the work of Albizuri et al. there exists no notion of
resources that an agent needs to distribute across coalitions.

With regard to non-overlapping coalition structures as presented in S&;ti®andholm and
Lesser (1997) examine the problem of allocatoghputational resources coalitions. They do not
restrict themselves to superadditive settings, but discuss the stabilityliorostructures instead.
In particular, they introduce a notion of bounded rational core that ettpliakes into account coali-
tion structures. Apt & Radzik (2006) and Apt & Witzel (2009) also do resttrain themselves to
coalition formation problems where the outcome is the grand coalition only. thstezy introduce
various stability notions for abstract games whose outcomes can be coaftictuges, and discuss
simple transformations (e.g., split and merge rules) by which stable partitidghe et of players
may emerge. However, none of these papers considers any extetosimeslapping coalitions.

4. Our Model

In this section we extend the traditional model of Section 2 to cooperativegyaitieoverlapping
coalitions. In most scenarios of interest, even if overlapping coalitionalkneed, an agent would
not be able to participate in all possible coalitions due to lack of time, cash ft@mgvgy. To model
this, we assume that each agent possesses a certain amount ofagsuchiah he can distribute
among the coalitions he joins. Without loss of generality, we can make a norti@lizad assume
that each agent has one unit of resource: an agent’s contributioro@itian is thus given by the
fraction of his resources that he allocates to it. We can also think of this agémt's “participation
level”, or the fraction of time he devotes to a coalition. Of course, an ageynoma several types
of resources (e.g., timand money), and his contribution to a coalition would then be described
by a vector rather than a scalar. Our model, and all of our results, ekbetils more general
setting in a straightforward manner. Nevertheless, for conciseneggstviet our presentation to
the single-resource setting.

As discussed above, in the non-overlapping model a coalition is a sutmgtmts, and a game
is defined by its characteristic functien: 2 — R, representing the maximum total payoff that
a coalition can get. In our setting partial coalitionis given by a vector = (rq,...,7,), where
r; is the fraction of agenf’s resources contributed to this coalitior; (= 0 means thay is not a
member of the coalition). Theupportof a partial coalition- is denoted byupp(r) and is defined
assupp(r) = {j € N | r; # 0}. We can now define theooperative games with overlapping
coalitions or overlapping coalition formation gamg®©CF-games for short), which we will be
considering in the rest of this work.

Definition 2. An OCF-game> with player setV = {1,...,n} is given by a functiow : [0, 1]* —
R, wherev(0™) = 0.

Functionv maps each partial coalitionto the corresponding payoff. We denote this game by
G = (N,v), or, if N is clear from the context, simply by. Clearly, a “classic” coalitiors C N
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can now be represented as the veetdr where ¢°); = 1 for j € S and0 otherwise. In the
economics literature, these are sometimes callexp coalitions, whereas coalitions of the form
(r1,...,rs) with at least one; in (0, 1) are referred to aBizzycoalitions (Branzei et al., 2005).
We will avoid the latter term in our work so as not to cause confusion withyfgames, and refer
instead to coalitions of this kind gmrtial coalitions, or simply coalitions.

In most scenarios of interest,is monotonei.e., satisfies(r) > v(r’) for anyr, r’ such that
rj > r; forall j = 1,...,n. Note that ifv is monotone, we have(r) > 0 for anyr € [0, 1]", since
we setv(0,...,0) = 0. In our discussion of stability of overlapping coalitions, we will assume that
v iS monotone.

We now need to specify the possible outcomes of an OCF-game. In thevedagping setting,
an outcome is a paifCs, x), where CS is a partition onN andx is an imputation forCS. To
extend this definition to our scenario, we start by introducing the notion @fadition structure
with overlapping coalitions. While we will be mostly interested in coalition structaves V, the
definition below is given for coalition structures over an arbitrary sulbsét N, as this will be
useful for defining the maximum profit a subset of agents can achieeetlie definition of the
functionv* below).

Definition 3. For a set of agentd” C N, a coalition structureon T' is a finite list of vectors
(partial coalitions) CSt = (r!,...,r¥) that satisfies (iy* € [0,1]"; (i) supp(r?) C T for all
i =1,...,k; and (iii) Zle r§ < 1forall j € T. We will refer tok as thesizeof the coalition
structure CSt and write| CSt| = k. Also,CSt denotes the set of all coalition structures Bn

In the definition above, each = (r{,rj,...,r),) corresponds to some partial coalitior, (
being the fraction of the resources that ageobntributes tar?). The constraints state that every
agent fromT distributes at most one unit of his resources among the various coalitiqres the-
pates in (those may include the singleton coalition). This allows coalitions to bkappeng. Note
that the coalition structure is a list rather than a set, i.e., it can contain two oridewrtical partial
coalitions. Observe also that an agent is not required to allocate all oddvsinces, i.e., it can be
the case thaEf:1 r;'- < 1. However, under monotonicity, we can assume that for each dgeat

havezjf:1 rj. =1 (i.e., a coalition structure is a fractional partition of the agents).

We would like to remark that one could conceive of other models that also atiewts to form
overlapping coalitions. As an example, instead of requiring agents to distdlbmost one unit of
resources among partial coalitions, we could have constraints on the nofm(loeisp) coalitions
an agent could take part in. While we believe that our model is flexible éntmugepresent a wide
range of realisitc scenarios, and we focus on it throughout our workection 10, we discuss
several extensions of our model.

The introduction of overlapping coalition structures imposes some new tatluhiallenges.
For instance, while in the non-overlapping setting the number of differealition structures is
finite, in our setting there can be infinitely many different partial coalitionsl, lm@nce infinitely
many coalition structures. This implies that it is impossible to find the social welfi@émizing
coalition structure by enumerating all candidate solutions—in fact, the maximumnmatagven be
attained. In contrast, in a non-OCF setting this approach is possible—thawggneral, infeasible.

We now extend the definition af to coalition structures by setting(CS) = > p.c g v(T).
Furthermore, for anys C N we definev*(S) = supggecs, v(CS). Intuitively, v*(S) is the
least upper bound on the value that the member$ cdn achieve by forming a coalition structure;
for the interested reader, we note that it corresponds to the chartictemection of the game’s
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superadditive covefAumann & Dreze, 1974). Clearly;*(S) may exceed the value of coalition
S itself, i.e., v(e¥), since it may be profitable for the players $hto form several overlapping
coalitions overS. We say thav is boundedf v*(N) < oo; for most games of interest,is likely
to be bounded.

As in our setting the agents will not necessarily form the grand coalition, Wéevinterested
in reasoning about coalition structures fral ;. The coalition structure will impose restrictions
on admissible ways of distributing the gains; a payoff vector corresponals imputation if and
only if it is obtained by distributing the value of each coalition:

Definition 4. Given a coalition structur&’'S € CSy, |CS| = k, animputationfor CS is a k-tuple
x = (x',...,x"), wherex’ ¢ R* fori = 1,...,k, such that

» (Payoff Distribution) for every partial coalition’ € C'S we have) ", = = v(r') andr} =
0 impliesz} = 0;

¢ (Individual Rationality) the total payoff of ageiitis at least as large as what he can achieve
on his own:>°F_, zh > v*({7}).

The set of all imputations fo€'S is denoted byl (CS). Notice that in Definition 4, the profit
from a task assigned to a partial coalition is only distributed among agentséaviol\executing it.
Thus, no transfers of that payoff are allowed to outsiders. Note alsdhthandividual rationality
constraint is defined in terms of rather tharv, as even for a single agent it may be profitable to
split into several partial coalitions (e.qg., if there are many tasks, eachiohwhly requires a small
fraction of his resources).

Now, the set of outcomes that is of interest to us is the skdasfible agreements

Definition 5. A feasible agreement (or asutcome for a set of agentg C N is a tuple(CS, x)
whereCS € CSy, |CS| = k for somek € N, andz = (z',...,z¥) € I(CS). We denote the set
of all feasible agreements fof by F(.J).

The payoffp; of an agent under a feasible agreemei@S, ) is p; (CS, x) = Zle x; We
write p(CS, x) to denote the vectop, (CS, ), ...,p,(CS,x)). Finally, note that it is straight-
forward to extend the definitions above to games on subsets of the agep#stitular, we require
that an imputatiore € I(CS ;) satisfiest’, = 0 for j ¢ J.

Given this model, we are now ready to define the concept of the coredpecative games with

overlapping coalitions.

5. The Core with Overlapping Coalitions

In this section, we investigate several approaches to defining stability inda@ies. Specifically,
here we propose and analyze three alternative definitions of the core.

Before presenting the core definitions, we define a new class of garhie$, we will be using
as our running example, namely the classdlwéshold task gamgd TGs). TTGs form a simple,
but expressive class of coalitional games, and can be used to moddlocatlan in multi-agent
systems. In TTGs agents pool resources in order to accomplish tasit®e mea of agents con-
tributing resources to more than one task and thus participating in sevalitibes simultaneously
is extremely natural in this context. Thus, and due to their simplicity, TTGs pecwidonvenient
vehicle for the study of core-stability in the overlapping setting, and we willddeg them for this
purpose throughout the rest of the paper (though our work is not limitddgelass of games).
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5.1 Threshold Task Games

Threshold task games are defined as follows.

Definition 6. Athreshold task gam@ = (IV; w; t) is given by:
e asetofagentsV ={1,...,n};
e avectorw = (wy,...,w,) € RT of the agentsiveights

e alistt = (¢!,...,t™) of task types where each task typ€ is described by a threshold
T7 > 0 and a utilityu? > 0; we writet/ = (T7, u/).

Intuitively, such games describe scenarios where agents can split inme teavork on tasks.
There is one type of resource (e.g., time or money) that is needed forlal] tasd each agent has
a certain amount of this resource which corresponds to his weigfwe chose the term “weight”
to avoid confusion with the use of the term “resource” in the context of @Q&@fes). There ana
types of tasks, each of which is described by a resource requirdmemtd a utilityx’. If the team
of agents that works ofi has total weight at leagt’, this means that it has sufficient resources to
complete the task, so it obtains the full value of this taskOtherwise, its payoff from this task is
0. We assume that there are infinitely many tasks of each type, so that if ometegents chooses
to work ont/, this does not prevent another team from choosings well. In what follows, we
assume that the ligtis monotonei.e., it satisfied™! < ... < T™ andu! < ... < «™. Indeed, if
there are two task type$, ¢/ such thatl® < 77, butu’ > «/, we can safely assume that no team
of agents will choose to work ofi, and hence’ can be deleted froth. Hence, our monotonicity
assumption can be made without loss of generality.

The description above suggests that we can interpret aG F&( IV, w, t) as a (hon-overlapping)
coalitional game’ﬁ’ = (N, v), where forS C N we set

9(9) = max{0, max{w’ | w(S) > T7}}

(note that we use the standard conventieix ) = —oc0). Such games provide a direct general-
ization of weighted voting games (WVGs) with coalition structures introduceBlkiynd, Chalki-
adakis, & Jennings (2008). Indeed, WVGs with coalition structures easebn as TTGs in which
there is only one task type= ¢! with utility 1.

At the same time, one can also interpret TTGs as games with overlapping caabyiatiowing
each agent to spread his weight across several tasks. The codespOCF-gamé&; = (N, 7) is
given by

n
o(r1, ..., 7n) = max{0, max{u’ | Zriwi > T},
=1
That is, a partial coalition can successfully complete a task of t@ad earn its value’ if the
total weight contributed by all agents to this partial coalition is at [#4st

Example 1. Consider a TTGG = (N;w;t), whereN = {1,2,3}, w = (2,2,2) andt =

t' = (3,1). For the corresponding non-overlapping gariewe haves({1}) = 0, #({1,2}) =
0({1,2,3}) = 1. Note that when overlapping coalitions are not allowed, the maximum social
welfare achievable by any coalition structure ovEris 1, as agents cannot split into two disjoint
groups each of which having weight at least 3.
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In contrast, for the corresponding OCF-gar6e= (N, #) we havei(1,0,0) = 0, #(1,1,0) =
0(1,1,1) = 1, and, moreoverp(1,.5,0) = 1 and©(0,.5,1) = 1. Hence the maximum social
welfare is2 in the overlapping setting since the second agent can split his weight betwee
coalitions so that each of them has enough resources to complete the task.

From Example 1, it should be clear that for any TGGthe maximum social welfare achievable
in its overlapping versiol is at least as large as the maximum social welfare in its non-overlapping
versionG—i.e., allowing agents to split their weights between the tasks can only incriasney.
Moreover, this increase can be arbitrarily large even for a single atyetded, consider one agent
of weightw and one task type with T = 1,u = 1. If overlapping coalitions are not allowed,
the agent’s total utility is 1, while in the overlapping scenario he can ohtaifor the interested
reader, Appendix A discusses algorithmic aspects of social welfare matiarizn TTGs, both in
the overlapping and in the non-overlapping scenario.

5.2 Three Definitions of the Core

As explained in Section 2 above, core-stability implies that no group of agbotdd be able to
profitably deviate from a configuration in the core. Hence, any definitidtheocore has to depend
on the notion of permissible deviations used. Now, in the non-overlappttigga deviator aban-
dons the coalition he originally participated in, and joins a new coalition. Thase ik no reason
why he should obtain any payoff from the coalition that he left. In the opeitay setting, the situ-
ation is less clear-cut. Indeed, when deviating, an agent may abanaencealitions completely,
withdraw some—but not all—of his contribution to other coalitions, and keegdmsribution to
the remaining coalitions unchanged. The question then is whether this ageit expect to obtain
any payoff from the partial coalitions with non-deviators that he is still couating to.

Our first notion of the core assumes that the answer to this question is Tais, once an
agent is identified as a deviator—i.e., he alters his contribution to any giiti@o—he no longer
expects to benefit from his cooperation with non-deviators. By monotonthitymeans that the
deviators have nothing to gain from contributing resources to coalitions witkdeviators. There-
fore, under the first definition of the core which we present here, asarae that the deviators only
form coalitions among themselves, or, in other words, each deviation cggebeas an overlapping
coalition structure over the set of deviators. We remark that this definitioleaseen as the most
straightforward generalization of the standard notion of the core: indestdas in the standard
setting, each deviator completely withdraws from coalitions with non-deviaaoid only benefits
from coalitions with other deviators. We formalize this approach as follows.

Definition 7. Given an OCF-gam&7 = (N,v) and a set of agentd C N, let (CS,x) and
(CS’,y) be two outcomes @ such that for any partial coalitios’ € CS’ eithersupp(s’) C J
or supp(s’) € N\ J. Then we say thaiC'S’, y) is aprofitable deviatiorof .J from (CS, z) if for
all j € J we havep,;(CS’,y) > p;(CS,x). We say that an outcom&s, ) is in thecoreof G if
no subset of agent$ has a profitable deviation from it. That is, for any set of agehtS N, any
coalition structureC'S ; on J, and any imputatioy € 1(CS ), we havep;(CS j,y) < p;(CS, x)
for some ageni € J.

In this definition, the deviatiorC’S’ is restricted to be a coalition structure in which there are
no partial coalitions involving both the deviators and the non-deviators—aeh partial coalition
contains either deviators onlyupp(s’) C J) or non-deviators onlys@ipp(s) € N \ J). Thus,
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any payoff that the players ifi can receive unde€'S” would have to come from partial coalitions
overJ only.

Example 2. Consider the OCF-gamé@ that corresponds to a threshold task gafie= (N; w;t),
whereN = {1,2}, w = (4,6), andt = (t!,#?) with t! = (5,15), t> = (4, 10) (one can think of
the players as the two companies A and B discussed in Section 1; the taskstiespond to the
two construction projects). Suppose that the players form two partial caaditib and 2 of total
weight5 each so that playet contributes a unit of weight te! and3 units of weight ta-2, while
player 2 contributes4 units of weight tar!, and 2 units of weight tar?, that is, CS = (r!,r2),
wherer! = (1,2),7? = (3, 1). Both of these partial coalitions have weighiso each of them can
successfully completé, resulting in a payoff ot5 for each of them. Now, suppose that the players
divide the gains using an imputatian= ((7,8), (9,6)). Then, the total payoff obtained by player
2 is 14, so he can successfully deviate by withdrawing from both of these coal#@ined$prming a
single partial coalition of weigh$. This coalition can completé and receive a payoff df5s > 14.

On the other hand, suppose that the players keep the same coalition sgrumiti distribute the
gains asy = ((7,8),(8,7)). Then player can no longer gain by withdrawing from both of these
coalitions. He is tempted to withdraw his resources freimas he can use theseunits of weight

to completet? and earnu? = 10 > 8. However, if he does that, he can no longer get his share of
payoffs fromr2. Hence, in case of this deviation his total payoff will tie< 15. Also, it is easy

to see that playe? cannot gain by deviating from? only, and playen is better off inCS than he
would be on his own. Hencé('S, y) is in the OCF-core of5.

In some sense, Definition 7 takes a rather pessimisticooservativeview on what the mem-
bers of the deviating group can expect to get from the non-deviatatsed) in Example 2 as soon
as player 2 withdraws from the partial coalitieh € CS he expects to be thrown out of, even
thoughr? is not affected by this deviation. Therefore, in what follows, we will réfethe notion of
profitable deviation introduced in Definition 7 ag-gorofitable deviationand to the corresponding
notion of the core as theonservative coreor thec-core

This definition is applicable when a deviation by an agent is interpreted by atfemits as an
indicator that this agent is not trustworthy, and therefore one should imtaeldstop all collab-
oration with him. While this kind of reaction is not unusual, there may be coaliticaisatte not
affected by the deviation and may not want to punish the deviators. In theés ttee deviators need
to decide which of the existing coalitions to abandon and for which existiniiooa to keep their
contribution intact. The members of these partial coalitions will react acaglydisharing the pay-
off as before if they have not been affected by the deviation and pogidhe deviators otherwise.
Therefore, we refer to the corresponding notion of the coreefised Before giving the formal
definition, we first introduce a notion of agreement between two coalitiontanes.

Definition 8. Given a set of agent$ C N, we say that two coalition structuresS and C'S” over
N agree outside of with respect to a functiorf if f is a a bijection between the lists of partial
coalitions{r* € CS | supp(r’) ¢ J} and{s* € CS’ | supp(s’) ¢ J} such thatf(r’) = s*
impIieSr;'- = s§ for all j ¢ J. Further, we say that’S and CS’ agree outside of if they agree
outside of/ with respect to some functigh

Intuitively, this definition says that if two coalition structures agree outsidé, efien the con-
tributions of all playersotin J to all partial coalitions must be the same under both outcomes.
If J is the set of deviators, this condition captures the fact that the deviatiorelyyldlers inJ
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does not change the behavior of the non-deviators; the fungtisrused to establish a correspon-
dence between the partial coalitions involving the non-deviators beforafter the deviation. For
illustration, consider the following example.

Example 3. Consider a game with three playefé = {1,2,3} and a coalition structureC'S =
(', q%), whereq' = (1,1%,%), g’ = (0,4, 3). LetCS" = (s',s% s%), wheres! = (0,0, 1),
s = (0,3, 3), s = (1,3,0). Intuitively, CS’ can be obtained fron€'S when playersl and 2
deviate by abandoning their joint project with play&iand forming a coalition of their own. Set
J = {1,2}. Itis not hard to see tha€'S and C'S" agree outside off with respect to the function
f given byf(q') = s!, f(q?) = s®. On the other handCS and CS’ also agree outside of
with respect to the functiofi’ given byf’(q') = s2, f’(g?) = s'; this function assumes that when
players1 and?2 decided to deviate, playarwithdrew his contribution te;' and player2 withdrew
his contribution tog?.

Definition 9. Given an OCF-gamé&' = (N, v) and a set of agents C N, let(CS, z) and(CS’, y)
be two outcomes such thatS and CS’ agree outside off with respect to a functiorf. Suppose

that for any partial coalitions® € CS’ with supp(s‘) ¢ J and for all j € J we havey) = !

if 71 = f1(s") andyf = 0 otherwise. Then we say thaf’s’, y) is anr-profitable deviatiorof
J from (CS,z) w.rt. fif forall j € J we havep;(CS’,y) > p;(CS,z). Further, we say that
(CS’,y) is anr-profitable deviatiorf .J from (CS, z) if there exists a functiorf such thatC'S and
CS' agree outside of with respect tof and(CS’, y) is anr-profitable deviatiorof .J from (CS, )
w.rt. f. We say that an outcom{&'S, ) is in therefined coreor ther-core of G if no subset of
agentsJ posesses an r-profitable deviation from it.

In Definition 9, the bijectionf matches the partial coalitions ifiS and C'S’ that involve non-
deviators; the number of such coalitions is the same in both coalition structMt@®over, the
contribution of the non-deviators to the partial coalitions matched Isythe same irC'S and C'S".
Now, if also the deviators do not change their contribution to some partiditionar, they can
claim their share of its payoff, as determineddayOn the other hand, if the deviators change their
contribution tor, they are not entitled to any of its payoff. Observe that we allow the desiator
to pick the “most favourable” bijectiorf betweenCS and CS’: for instance, in the context of
Example 3 we would piclf rather thary’, thereby allowing the deviators to claim their payoff from
the coalition(0, %, %). In other words, we assume that the deviators will withdraw their contribsition
to disturb the non-deviators as little as possible.

Example 4. Consider the gamé and the outcoméCsS, y) as described in Example 2. While it has
been argued that play@ cannot c-profitably deviate froiC'S, y), he can r-profitably deviate from
it by withdrawing his weight from' and dedicating it ta?. As he does not change his contribution
to r2, he can still claim the payoff he gets fram, so his total payoff i§0 + 7 = 17 > 15.

On the other hand, suppose that playérand 2 both split their weights equally between two
partial coalitions, forming the structur€’s’ = (q', g*), whereq' = ¢ = (3, 3). Clearly, both
q' and ¢g> have weight, so each of them can eai5 by completing:!. Now, suppose that the
players distribute the gains using an imputatish = ((3,12),(12,3)). Now, both players earn
15, so none of them can benefit from withdrawing from both partial coalitidrtte same time,
and therefore the outcom(@'S’, =’) is in the c-core. Moreover, if any of the players deviates from
one coalition only, he does not have enough weight to complete any okstt® tand therefore the
outcome(CS’, ') is also in the r-core.
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We now provide another example, which suggests that the set of profitediltions allowed
by Definition 9 may still be too small.

Example 5. Consider again the gam@ and a coalition structureC’S” = (s', s?), where playen
contributes all of his weight te*, while player2 contributes3 units of weight tas' and3 units of
weight tos?, i.e., s’ = (1,3), s> = (0,1). Observe that we have(s?) = 0, as the total weight

of s? is 3 only. Now, consider an imputation= ((3,12), (0,0)). Note that playee could reduce

his contribution tos! by 2 units of weight without affecting the value of this coalition, and use this
weight to boost the value a&f. However, this is not allowed by our definition of an r-profitable
deviation, since as soon as playzalters his contribution tas!, he loses the payoff af that he
gets froms'. This does not mean, however, that the outc¢G1/’, =) is in the r-core ofG": players

1 and2 can collectively deviate t(1, %), (0, %)). If they share the payoff g$4, 11), (0, 15)), this

will constitute an r-profitable deviation for both of them.

Example 5 demonstrates that Definition 9, while being considerably more lax eggect to
the deviators than Definition 7, can still be too strict: the deviators are puhahsoon as they
reduce their contribution to a coalition, irrespective of whether it affe@wé#hue of this coalition.
In fact, according to Definition 9, the deviators would still be punished #vigrey increasetheir
contribution to a partial coalition with non-deviators (though this type of dewviato of course,
unlikely). One way to fix this is to allow the deviators to claim their share of daylwbm a
coalition s* = f(r?) as long asv(s’) = v(r?). However, the non-deviators can be even more
generous to deviators. Indeed, it can be the case that after the devidorce their contribution
to a particular partial coalition, this coalition is still able to perform some taskjtaiba smaller
value. If the value of this task is still larger than the total amount of payddfirwally received by
the non-deviators from this partial coalition, the deviators could be allowethibm the “leftover”
payoff. In other words, this notion of deviation assumes that the noiaites have no objection to
switching tasks, and only care about the payoff they receive. While thyswali be the case, it is
quite optimistic of the deviators to expect this kind of reaction when they contéanplzether to
deviate. Therefore, we refer to this notion of deviatiorogwofitable and call the corresponding
solution concept theptimistic core or theo-core

Definition 10. Given an OCF-gamé&; = (NV,v) and a set of agentd C N, let (CS,x) and
(CS’,y) be two outcomes such thatS and CS’ agree outside off with respect to a functiorf.
Suppose also that for any partial coalitiosf € C'S’ with supp(s®) ¢ J we have} . ; vt =
max{v(s’) — Y, s %4, 0}, wherer’ = f~1(s"). We say thatCS’, y) is an o-profitable devia-
tion of J from (CS, x) w.r.t. f if for all j € J we havep;(CS’,y) > p;(CS,z). Further, we say
that (C'S’, y) is ano-profitable deviatiowof .J from (CS, x) if there exists a functiorf such thatC's
and CS’ agree outside off with respect tof and (CS’, y) is ano-profitable deviatiorof .J from
(CS,x)w.rt. f. We say that an outcom{&’S, x) is in theoptimistic core or theo-core of G if no
subset of agentd has an o-profitable deviation from it.

Example 6. Consider again the gamé' discussed in Examples 2, 4, and 5, and the outcome
(€S, a'), whereCS' = (¢',4%), ¢* = ¢* = (3, 3), ' = ((3,12), (12, 3)), which was described

in Example 4. Note that if playexr reduces his contribution tg' to 2, this coalition would still

be able to earrl0 by focusing on task’. As playerl only gets3 units of payoff fromy! anyway,
under our definition of an o-profitable deviation, playzis entitled to the remaining payoff from

this modified partial coalition, i.e10 — 3 = 7. He can then combine the unit of weight saved in
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this manner with the weight he contributesg®, and embark ort?> making a profit ofl0. Thus,
by abandoning;? altogether and reducing his contribution ¢g, player2 can earn7 + 10 > 15.
Thus, the outcomeCS’, &') is not in the o-core of.

In contrast, consider an outcome that combin&S$ with a more symmetric payoff division
scheme, such as, e.g..= ((7,8), (8,7)). Now, if player2 reduces his contribution tg* by 1, the
resulting partial coalition can earn0 by focusing ort?. Of those payoffs, playdrmust receive,
leaving3 for player2. While player2 can still use his remaining weight to complete this will
only give him a total profit of0 + 3 = 13 < 15, i.e., this deviation is not o-profitable. Similarly, we
can show that withdrawing some of the resources fgdrand abandoning' is even less profitable
for player2. Finally, it is easy to see that playérdoes not have an o-profitable deviation either.
Hence, the outcom@’s’, ) is in the o-core of &).

6. Core Characterization

In the previous section, we introduced three definitions of the core fmtagping coalition forma-
tion games. Among the three definitions of the core ttere though in some sense conservative,
is the closest to the traditional definition of the core in general NTU gamdsof@s & Rubinstein,
1994). Indeed, unlike the other two definitions, it does not assume amgiétitsn between the devi-
ators and the non-deviators. This motivates us to study this overlappiaga&oant in more detalil,
which we proceed to do in this section and the next. To promote readability,de tha sections
we will be referring to the-coresimply as “the core”.

We start by providing a characterization of the set of outcomes in the @s®entially, an
outcome is in the core if and only if under this outcome the total payments to elasbt i agents
match or exceed the maximum value that can be achieved by this subset. dotirglies on
some technical restrictions on the functiothat defines the game. In particular, we requite be
continuous, monotone and bounded (observe that if a game is monotobewarted, then* (S) <
oo for any S C N), as well as to satisfy another natural restriction defined later. Thesengsions
allow us to avoid some pathological situations that may arise in our model at #sadigy such as
the supremum* (V) being unachievable (e.g.,ifis strictly concave in one of its arguments, it can
be the case that no finite coalition structure can achi&yay)).

Specifically, we say that a gant&/, v) is U-finite if for any (CS, ) such that C'S| > U and
x € 1(CS), there exists @C5’, y) such that CS'| < U,y € I(CS’), andp,(CS, z) < p;(CS’, y)
forallj =1,...,n(i.e., for any outcome¢CS, ) with more tharnJ coalitions there exists another
outcome(CS’,y) with at mostU coalitions that is weakly prefered oS, x) by all agents).
When this condition holds, we can assume that all coalition structures thatrmasgame consist
of at mostU partial coalitions. This is a natural restriction in many practical scenarsoi$ naight
be difficult for agents to maintain a very complicated collaboration pattern.olttshwhen, for
example, there is a bound on the number of partial coalitions each agebtdamolved in. In
generallU-finiteness imposes some upper bound on the total number of partial coalititmthe
same support that can occur. A natural example is provided by a clgssmafs where for any two
partial coalitionsr, 7' such thatupp(r) = supp(r’) andr; +r; < 1foranyj = 1,...,n, we
havev(r + r’) > v(r) + v(r’). Note that in such games we can assume that no coalition structure
contains two partial coalitions with the same supras it is at least as profitable for the players
in S to merge these partial coalitions. (However, notice that this does not impbramgitivity,
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nor does it mean that the grand coalition necessarily emerges, as the mrileoee refers only to
coalitions with identical support.) Hence, any such gan®ifinite.

Remark 1. Note that in all of our resultd/ can be a function of. (as long asU(n) < o).
Alternatively, instead of imposing the conditionloffiniteness onv(-), we could restrict the set of
allowed outcomes (or potential deviations) to coalition structures with at Bigsrtial coalitions.
All of our results hold under this model as well.

We now state and prove the first of our main results.

Theorem 1. Given a gam€ N, v), wherev is monotone, continuous, bounded, driinite for
somel € N, an outcomé CS, x) is in thec-coreof (IV, v) if and only if for allS C N

> pi(CS,x) > v*(S). (1)

JjeSs

Proof. For the “if” direction, suppose thaiC's, z) satisfies) ;¢ p;(CS,z) > v*(S5) forall S C
N. Assume for the sake of contradiction thi@tS, «) is not in the core, i.e., there exists a seta
coalition structureC'Ss € CSg and an imputationy € 1(CSg) such thap;(CSg,y) > p;(CS, x)
for all j € S. Then we haver(CSs) = > .cspi(CSs,y) > > capi(CS,x) > v*(S5), a
contradiction with the way*(.S) was defined.

For the “only if” direction, consider an outconi€’S, ) that does not satisfy (1); we will show
that(CS, x) is notin the core. To begin, spt= p(CS, z), and assumg_; s p; < v*(S5) for some
S C N. To show that CS, x) is not in the core, we will construct a sét, a coalition structure
CSg € CSs and an imputationy € I(CSg ) such thap;(CSg,y) > p; forall j € S’. Fixa
setS that satisfies ;¢ p; < v*(S). Chooses small enough so that ;o p; < v*(S) — ¢, and
let CST = {CSs € CSs | v(CSg) > v*(S) — e}. By definition ofv*(S), there is an infinite
sequence of coalition structuréss") that satisfiesim; .., v(CS®) = v*(9), so the set S5 is
non-empty. Given a coalition structure@Ss € CSg, an imputationy € I(CSg) and a respective
payoff vectorg = p(CSg,y), define theotal lossTL(CSs, q) of (CSs, q) aszj:pqu (pj — qj)-
SetTLyin = inf{TL(CSs,q) | CSs € CSG,y € I(CSs),q = p(CSgs,y)}. First, we prove that
there exists a coalition structu@S € CS% and an imputationy € I(CSg) that achieve the total
loss of T'Lyin.

Lemma 1. Under the theorem’s conditions, there exist€'8ig € CS§, an imputationy € I(CSg)
and a payoff vectogq = p(CSs,y) s.t. TL(CSs,q) = TLmin.

Proof. By definition of T'L.,;,,, there exists an infinite sequence of coalition structuﬁ‘ﬁg), t =
1,...,00, and respective imputationg?), t = 1, ..., co, such that

lim TL( S p(CSD, y 1)) = TLyy

and ng) € CSgforallt = 1,...,00. As the game id/-finite, a coalition structure can be
seen as a list of at most vectors in[0, 1]*. By adding all-zero partial coalitions if necessary, we
can assume that each coalition structure is a list of exéttectors in[0, 1]", which are ordered
lexicographically. Az is monotone and bounded, there exist8 a 0 such that the value of each

partial coalition in any of theﬁSg) is betweerd) and B. Consequently, each® corresponds to a
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vector in[0, B]"Y. Hence, the sequeno@é]S?, y"), t =1,..., 00 can be viewed as a subset of
[0, B]X (for sufficiently large but finite value oK) and hence has a limit point, which we denote by
(CS*,y*). Itis easy to see that the limit of a sequence of coalition structures is a coatitimture,
i.e., for anyr’ € CS* we haver € [0,1]", and for anyj = 1,...,n it holds thatzgj:lr;ﬂ < 1.
Moreover, by continuity ob, the value of each partial coalition ifiS* is the limit of the values

of the respective partial coalitions tasf;), =1,...,00. From this, it is easy to see thgt is in

I(CS™). Also, as allcsg) are inCSg, so isCS*. Finally, asp(-,-) and TL(-, -) are continuous
functions of their arguments, we conclude tHat(CS™*, p(CS™, y*)) = TLmin- O

Continuing with the proof of our Theorem, le€'S s, y) be an outcome that satisfie6CSs) >
v*(S) — e, TL(CSs,p(CSs,y)) = TLunin, Whose existence is guaranteed by Lemma 1. Set
g = p(CSg,y). Let us now construct a directed graptwhose vertices are the agents and there
is an edge frony to i if there exists a coalition irC'S g containing bothj and: such that undey,
agent;j gets a non-zero payoff from that coalition, i.e., for sonfec CSg we haverf,rf > 0
and yf > 0. Observe that if there is an eddg i) in I, we can changeg” by increasing the
payoff toi by a small enougld and decreasing the payoff toby the same value of without
violating the constraints, i.e., we have= (z!,...,2%) € I(CSg), wherez! = y! for I # k and
28 =yt yf—6,...,yF +6,...,yk). Now, color all vertices of as follows: a vertey is red
if the agentj is underpaid undey, i.e.,¢; < p;, white if j is indifferent, i.e.g; = p;, and green if
he is overpaid, i.eq; > p;. As) ;cgp; < v*(S) —eand}_ . qq; = v(CSs) > v*(S) — ¢, the
graph contains at least one green vertex. As argued above, if theemaih from a green vertex
to a red vertex, we can transfer a small amount of payoff frgrto ¢ and hence decrease the total
loss, which is a contradiction with our choice @S, y). Hence, given an arbitrary green vertex
Jj, the set of all vertices reachable frgnin the graph, which we denote bB¥(;), can only contain
green or white vertices.

We would now like to argue that the agentsi;) can successfully deviate froqCS, ).
Indeed, letC'S” be the coalition structure that consists of the coalitions that the ageR(g jrform
among themselves i’Sg. Clearly, the value ofCS’ is equal to the total value of the coalitions
formed by these agents ifiSs. Note also that undgrCSs, y), the agents ir2(;j) do not get any
payoffs from coalitions that involve agents not/&{;). Indeed, suppose that anc R(j) gets a
non-zero payoff from a coalition that involves an agerg R(j). Then inI" there is an edge from
i to k, a contradiction with howR(j) was constructed. In other words, @6 s, the payoffs that the
agents inR(j) get come only from the coalitions that they form among themselves, and et the
agents are all green or white, i.e., each of them is doing no worse thamehets doing undet’'s,
and some of them (in particular, ageftare doing strictly better. To finish the proof, let the agents
in R(7) distribute the payoffs in the same way ag #S s, y), except that playef transfers a small
fraction of his payoffs to each of the white playersiij) (this is possible by construction). The
last step ensures that each agem®in) is strictly better off than irf C'S, ). This demonstrates that
(CS,x) is notin the core, as required. O

Remark 2. Note that we did not have to make use of the additional restrictions we ithpose
to prove the “if” direction of the theorem (these are used in the proof ahira 1). Hence, this
implication holds for an arbitraryG.

It is easily verifiable that Theorem 1 holds in the non-overlapping case cgilition structures
as well. The result is trivial to prove in that setting, as each agent’s fsagofme from just one
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coalition; in contrast, we had to use more involved combinatorial argumentsfsférring payoffs
among agents. We also get the following interesting result as a corollary:

Corollary 1. By settingS = N in the statement of Theorem 1, we conclude that any outcome in the
c-coremaximizes the social welfare.

We now turn our attention to characterizing the set of coalition structlifethat admit payoff
allocationsz such that the corresponding tupl€’s, =) belongs to the core. That is, while in
Theorem 1 we saw a necessary and sufficient condition for a {@fflex) to belong to the core,
suppose that we are now only given a structGie= (r!,...,r*) and we want to check whether
there existsomepayoff allocationz such that(C'S, x) belongs to the core. Our characterization
can be seen as a generalization of the notidmadtdncednesm the context of overlapping coalition
formation. In the classic setting, the analogous question is “when doesahd goalition admit
a payoff allocation in the core”, answered by Bondareva (1963) duaghl8y (1967). Before we
proceed to our result, we define balancedness with respect to a codlitiotuee.

Definition 11. Fix a coalition structureCS = (r!,...,r¥), k € N, and letK = {1,...,k}. A
collection of number§As}scn, {1 }ick is calledbalanced w.r.t. the given coalition structur®
if and only ifAs > 0 forall S, and} g ;cg As +p; = 1foralli € K, j € supp(r’).

Definition 12. A game is calledalanced w.r.t. a coalition structutes = (!, ..., #*) if and only
if for every collection{\s}scn, {1 }icx that is balanced w.r.tCS it holds that) | ¢ Asv*(S) +

S piv(r) < vH(N).

The proof of the following theorem is based on LP-duality, and relies orcliagacterization
result of Theorem 1; furthermore, the proof illustrates that the condifibalancedness introduced
above arises rather naturally.

Theorem 2. Let (V,v) be an OCF-game, whereis monotone, continuous, bounded, dndinite
for somel/ € N and consider a coalition structur€S = (r!, ..., "), for somek € N. There exists
an imputationz s.t. (CS, ) belongs to the-core if and only ithe game is balanced w.r€:S.

Proof. Suppose there exists a payoff allocatersuch that(CS, x) belongs to the core, and let
K ={1,...,k}. Then the following linear program (denoted as LP) has an optimal solution:

min ZiGK,jEN Lij
> Tij = v(r") Vie K

The first constraint expresses the condition of Theorem 1, and tlhadéise fact that the payoff
of each partial coalition needs to be distributed exactly. Note that we havamablesz;; if

j ¢ supp(r’)—recall Definition 4. These are precisely the conditions that need to béeshfisr
(CS, x) to be in the core and clearly the optimal value of the LP*igV) (using the first constraint
and Corollary 1). By the LP-duality theorem, this means that the dual proglso has an optimal
solution of valuev* (V). The dual is given by:

max Y g Asv*(S) + K| piv(r?) |
s.t. ZS:jES )\S + Hi = 1 Vi € K’j € Supp(rl)
Ag >0 VS CN
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Hence for any feasible solution of the dual, the value of the objectivetibmés at mostw*(N),
which implies that for any balanced collecti§is }sc v, {1 }ick, it holds thatd " ¢ Asv*(S) +
Sy pa(rt) < vH(N),

For the other direction, suppose that for any balanced collection, the dlwdds. This means
that for any feasible solution, the value of the dual is at md§tV). Therefore the dual is both
bounded and feasible (settipg = 1 and the rest td is feasible), which implies that it has an
optimal solution. But then the primal program also has an optimal solutiand this means by
Theorem 1 thatCS, «) belongs to the core. O

Remark 3. In the traditional superadditive setting, the condition of balancedness iswbat

simpler and more intuitive. In our setting, the characterization leads to a slighdiye complicated
expression, essentially due to the fact that the linear program that descdbre allocations for
each coalition structure requires a larger set of constraints.

7. Convex OCF-Games Have a Non-Empty Core

In this section, we first generalize the notion of convexity to OCF-gameshamdproceed to show
that it provides a sufficient condition for non-emptiness of the c-core.

Recall that for classical TU-games convexity means thatfat N andS ¢ 7'C N \ R it
holds thatv(S U R) — v(S) < v(T'U R) — v(T'). Thus, convexity in the classic TU-games setting
means that it is more useful for a coalitidhto join a larger coalition than a smaller one. We now
apply this intuition to our setting (recall th&t(.S) denotes the set of all feasible agreementsSfor

Definition 13. An OCF-gameZ = (N, v) is convex if foreaclkR C N andS ¢ T"C N\ R

the following condition holds: for anyCS®, x%) € F(S), any (CST,z") e F(T), and any
(CSSVE x5UR) ¢ F(S U R) that satisfiep; (CS VR, 29VE) > p, (0SS, 2%) Vj € S, there exists
an outcomd CSTVE £TVE) ¢ F(T UR) s.t.

D) ( CSTUR, mTUR)
) ( CSTUR, xTUR)

pj(CST ") VjeT, and
p;(CSSUR, ZS9R) i ¢ R.

AVARAY

This definition is similar in flavour to that provided by Suijs and Borm (199%e a general-
ization of convexity is defined in the context of stochastic cooperative gaie intuition behind
this definition is as follows: Consider two fixed agreements, oné amd one ori” respectively.
Any time that there is a feasible agreement$uo R that the members &f do not object to com-
pared to their own agreement (i.e., all membersSadre weakly better off than in their previous
agreement), then there is a feasible agreemefit onR such that (i) the members @f do not ob-
ject to this agreement, compared to the previous agreemehtaonl (i) the members aR weakly
prefer this agreement to the agreemeniSan R.

We note that a different notion of convexity has been defined for fggapes by Branzei,
Dimitrov, & Tijs (2003). That definition deals with the marginal contribution ofaatial coalition
when joining another existing partial coalition, where the result of the join eapartial coalition.
We, on the other hand, quantify the marginal contribution of adding a qetgérsR, to a set of
playersT’, w.r.t. the best overlapping coalition structure that the/getT can form. Secondly, the
definition of Branzei et al., as well as the classic definition of convexity, lsimpforce a property
on the functiorv(-), concerning the marginal contributietR UT") —v(7T"). In our case, our games
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are not fully transferable and hence we cannot simply talk about theatiffe in values. Instead,
our definition has to enforce the existence of a coalition structur® orl” such that individually
every player is at least as well-off as in the coalition structure &erS, whereS C T.

We now show that convexity is a sufficient condition for the non-emptinégheocore, in
analogy to the classic result on convex TU-games (Shapley, 1971).

Theorem 3. If an OCF-game& = (N, v) is convex and is continuous, bounded, monotone and
U-finite for somdJ € N, then thec-coreof this game is not empty.

Proof. Let G = (N,v) be a convex OCF-game. For asyC N, let G* be the restriction of
G on S. To prove the theorem, we explicitly construct an outcor&, ), x € I(CS), and
show that it belongs to the core 6f Fix an arbitrary ordering of the playeis2,...,n — 1,n.
The construction takes place in rounds. Firstpet= v*({1}), p» = v*({2}); by assumptions
of the theorem and using arguments similar to those in the proof of Lemma 1 ettisteoalition
structures i€ Sy, CSyoy that achieve these payoffs. Les! be the structure that achieves this for
playerl in G{1}, and letz! be the corresponding imputation. We know that there exists at least one
coalition structureC'S? e CS11,2y and a corresponding imputatiart such thap, (CS?, 22) > py,
p2(CS2, x2) > py (e.g., take the union of payoff-maximizing structuresGn'} and G2}, and
combine the corresponding imputations). If there exist more than one sasiblie agreement, we
pick the one most preferred by playzrMore formally, we choose a feasible agreem@ii$?, )
that maximizes the payoff,(CS?, 22) (which will be at leasp,) over all feasible agreements on
{1, 2} subject top; (CS?, x%) > p;(CS*, 2!) (by our assumptions on(-), this maximum exists).

Now, letj3 be the maximum payoff that agehtan get inG{3}. Again, there exists at least one
coalition structureC'S? in CSy1,2,3y and a corresponding imputatiar? such that agents, 2 are
(weakly) better off than if CS?, 2?), and3 is also weakly better off than being on its own. If there
exist more than one such feasible agreement, we pick one that maxiigzesyoff, i.e., we pick
an agreemer(tCS?3, %) so thatps( CS®, ) is maximized over all agreements ¢n, 2, 3} subject
to the constraintg; (CS3, x3) > p1(CS?, x2), p2(CS3, 23) > pa( CS?, x?).

Continuing in the same manner, at every roémge pick an outcoméCS*, ) that maximizes
pr(CS* 2*) subject to constraints;(CS*, ¥) > p,(CS* 1 xF1) fori € {1,....k — 1}; the
assumptions on(-) ensure that all these maxima exist. In the end, we obtain a feasible agreement
(CS™, x2™) on N in which all the agents are weakly better off than on their own, as well aklyea
better off compared to the agreements of the previous rounds.

We now show thatC'S™, ™) belongs to the core @F. For this it suffices to prove the following
stronger claim.

Claim 1. For k = 1,...,n, the feasible agreemeriCS* z*) belongs to the core of the game
G{l""’k}.

Proof. We prove this by induction. Fdt = 1, it is obvious that CS*, 2') belongs to the core of
G

Now, suppose that for some, 2 < m < n, we have(CS*,z*) e core(G{1*}) for all
k < m. We will prove that( CS™, ™) is in the core ofG 1™},

Suppose, for the sake of contradiction, that this is not the case. Thenisha subsef C
{1,...,m} and(CS*,x*) € F(S) such that

pi(CS*, ") > pi(CS™, ™) Vi € S. )
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We consider three different cases for the members: of
Case 1:m ¢ S. In this case we know by construction that for ale {1,...,m — 1} we have
pi(CS™, &™) > p;(CS™ 1 &m~1), which implies thap;(CS*, x*) > p;(CS™ ! ™ 1) for all
i € S. Hence, the tupléCS*, x*) is a deviation that makes the members$aftrictly better off than
in the agreemer(tCS™ !, £™~1). But this is a contradiction since by inductio@S™ !, z™~!) €
core(G{l-m=1}),
Case 2:S = {1,...,m}. Now we will get a contradiction with how we constructedsS™, ).
Indeed, we choseC'S™, ™) to maximizep,,(CS™, ™) subject to the constrainig(CS™, =)
> pi(CS™ ™) foralli = 1,...,m — 1. However, by (2), the outcomeCS*, =*) also
satisfies these constraints and provides a higher payoffttean(CS™, ™) does, a contradiction.
Case 3:5 = S’ U {m}, whereS’ is a strict subset of1,...,m — 1}. In this case we will utilize
convexity. LetC'S’ be the coalition structure that consists of the singleton coalitions for all agénts
S’, and letz’ be the corresponding imputation. By constructiofis*, =*) is a feasible agreement
on S’ U {m} such thatp;(CS*,z*) > p;(CS",z') foralli € S'. LetT = {1,...,m — 1}.
Since(CS™ 1 ™1 ¢ F(T), by applying Def. 13 forS’ C T and withR = {m}, we get
that there exists a feasible agreemefit, ) onT U {m} = {1,...,m} such thatp;(CS,x) >
pi(CS™ L g™~ fori =1,....,m — 1, andp,,(CS, ) > p,,(CS*,=*). But then by (2) above
we get thap,,, (CS, ) > p,, (CS™, ™), a contradiction with how we chog€'sS™, ™). O

Applying Claim 1 withk = n, we get that the core aF is non-empty. Ol

In the traditional setting, if a game is represented using oracle accessSfprthere is a trivial
algorithm for computing an element of the core in convex games. Indeed;amset the payoff
vector to be the vector of the marginal contributions of the agents for aimeaaybpermutation of
the set of agents. In our setting, our proof does yield a procedumftructing an element of the
core, though not a polynomial-time one. Our procedure requires solviggies of optimization
qguestions, which for arbitrary convex games are NP-hard. In theefutue would like to find
classes of convex games where our proof yields a polynomial-time algorithpariicular, looking
at our proof, this would be true for games in which we can solve in polynomialtti@éollowing
problem: Given a set of agenfs C N, a feasible agreement dfy an outcome CS, x), and an
agentk ¢ S, find a feasible agreeme(€S’, y) on S U {k} that maximizey(CS’, y) subject to
the constraintp;(CS’, y) > p;(CS, x).

8. Properties of the Three Cores

Following the detailed study of the-core stability concept in the previous two sections, in this
section we further explore the properties of our three notions of the @@#:- In particular, we
investigate the relationships among these notions, and study the effectsvahglloverlapping
coalition formation on the stability of the underlying game. We also compare o&rrodziel and
notions of the core to the fuzzy games setting and the notion of the fuzzyAobin, 1981).

We start by exploring the connection between stability and social welfarémizaation in
TTGs. As demonstrated earlier in the paper, in OCF-games these two tesg@e closely re-
lated. Indeed, Theorem 1 and Corollary 1 show that any outcome in tbheecs an OCF-game
maximizes the social welfare as long as the characteristic function of the gaisfees a number of
technical conditions; by Theorem 5 below the same holds for the r-car¢hano-core. However,
as one of these conditions is continuity, this result does not directly apply@&s.TWhile the proof
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of Theorem 1 can be adapted to work for the TTG setting, there also exiétsca proof for the
following theorem.

Theorem 4. For any TTGG = (N;w;t) and any outcoméCS,x) € c-core(G), we have
v(CS) > v(CS’) for any coalition structureC'S” € CS .

Proof. Fix an outcomg CS,x) € c-core(G), and letp be the payoff vector that corresponds to
(CS,x). Suppose that there exists a coalition struct® € CSy such thatw(CS’) > v(CS).
Let CS" = (rl,...,rk). Forj = 1,...,k, letz/ be the total weight of the partial coalitior, i.e.,
setzd = rjwy + - + rhwy,.

Now, consider a coalition structu€s” = (q',..., q*) given byq’ = 27 /w(N) foralli € N,
all j =1,...,k; note that we havgjé‘?:l q{ < 1. The total weight of a partial coalitioy can be

computed a$",_y ¢lw; = 2. Thereforeg’ € C'S” can accomplish the same taskrdse CS’,
and hence)(CS") = v(CS’") > v(CS). Now, observe that since i@’S” all players contribute to
all partial coalitions, there are no restrictions on how the valu€#f can be distributed among

the players. In particular, we can set w and construct an imputatian € 1(CS")

by settingy! = 1}15(077;})(% + ). Indeed, we hav§”, . v/ = v(r?), S5_, y/ = p; + 5. Now,

it is clear that the entire set of agertscan deviate fron{ C'S, z) to (CS”, y); as they all deviate
simultaneously, this is a c-profitable deviation, a contradiction WK, «) being in the c-core of
G. O

The discussion in Section 5.2 suggests a natural relationship betweendhentitions of a
successful deviation, and, consequently, between the three chreghdt follows, we refer to the
outcomes in the c-core, r-core and o-core-asable r-stableando-stable respectively.)

Theorem 5. For any OCF-gamé-, we haver-core(G) C r-core(G) C c-core(G). Moreover, these
containments can be strict, i.e., there exists an OCF-gahseich thato-core(G) C r-core(G) C
c-core(G).

Proof. Observe that any c-profitable deviation can be viewed as an r-profitabigtion in which all
players abandon all coalitions they contributed to. Similarly, any r-profiddlétion corresponds
to an o-profitable deviation where whenever a deviator changes hishudinin to coalition, he
withdraws all of his resources from it; note that, as illustrated by Exampleesjdhiators’ payoff
in this o-profitable deviation can be strictly higher than in the original r-ptuftaleviation. It
follows that any outcome that is r-stable is also c-stable, and any outcomis thatable is also
r-stable, thus proving the first part of the theorem.

To prove the second part of the theorem, consider the gardescribed in Examples 2, 4, 5
and 6. We have demonstrated that the outc¢§, x) is in c-core(G) \ r-core(G) and that the
outcome(CS’, x') is in r-core(G) \ o-core(G). O

Theorem 5 shows that our three notions of stability can be substantiallyediiff@ith respect to
individual outcomesHowever, it does not exclude the possibility that they are equivaleehwben
as notions of stability of thentire gamei.e., that for any OCF-gam@ we havec-core(G) # () iff
r-core(G) # () iff o-core(G) # 0. We will now show that this is not the case. The games used in
the proofs of the following two propositions are not threshold task gamewettr, they, too, can
be described in terms of agents’ weights and tasks.
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Proposition 1. There exists an OCF-gante such thaic-core(G) # () while r-core(G) = 0.

Proof. Consider an OCF-gam@ = (NN, v) with seven agentd’ = {1,...,7} whose weights are
given byw = (1,1,1,1,3,3,3), and two task types' andt? with values100 and2, respectively.
The first task can be completed in any of the following four ways:

e 1 unit of player 1's weight an@ units of player 5’s weight;
¢ 1 unit of player 2's weight and units of player 6's weight;
e 1 unit of player 3's weight and units of player 7's weight;
e 1 unit of player 4's weight an@ units of weight from either of the players 5, 6, or 7.

Thatis,v(r) = 100 if w;r; > 1 andw;r; > 2, where

(Z7j> € {(17 5)7 (27 6)7 (37 7)7 (47 5)’ (47 6)7 (47 7)}

The second task requires2 units of weight in total from players 5, 6 and 7.
Consider a coalition structur@S = (r!,r2, 73 r4), given by

2

1
=(1,0,0,0, =
r (7’773a

2
=(0,0,1,0,0,0,5), r*=(0,0,0,0,

2
0,0), 7%=(0,1,0,0,0, '3 ,0),
11

0
33)

That is, partial coalitiong!, 2 andr? successfully complete, while r* successfully com-
pletest?. Consider also an imputatian € Z(CS) given by

x' = (0,0,0,0,100,0,0), z*=(0,0,0,0,0,100,0),
=(0,0,0,0,0,0,100), «*=(0,0,0,0,1,1,0).

Let p be the payoff vector that correspondsato we havep; = pys = p3s = pg = 0, p5s =
pe = 101, p; = 100. Itis not hard to see thatCS, ) € c-core(G). Indeed, suppose for the sake
of contradiction that there is a set of playefghat can c-profitably deviate frofC'S, ). Since
(CS,x) maximizes the social welfare, the deviation cannot be simultaneously profftabé!
players inN, so|.J| < 7. Moreover,J cannot contain 2 or more players from the Set {5,6, 7}:
indeed, if one of these players deviates, he loses 100 units of payatfhwan only be replaced
if he forms a coalition with 4. However, since 4 cannot form two distinct coalétiof value 100
each, this is not possible. Thereforecannot contain any of the players in the Seteach of these
players already gets the maximum payoff frehnand, since the other two players framare not
in J, the set of deviators does not have enough resourceé .fdfinally, there is no c-profitable
deviation for players inV \ S, as no task can be completed by agent®’iiy S only.

We will now show that the r-core aff is empty. Suppose otherwise, and (€tS’, y) be an
outcome in the r-core of7. Let p be the payoff vector that correspondsyo It is not hard to
show that any outcome in the r-core@fmaximizes the social welfare; the proof is similar to that
of Theorem 4. Hence, we can assume without loss of generalitﬂﬁat: (q q q>, q*) with
v(q') = v(q*) = v(g*®) = 100 andv(g*) = 2, and, moreoverg} > 2, ¢Z > 2, ¢ > 2. It follows
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that either (@)} = ¢2 = ¢3 = 1 or (b) ¢} = 1 for somej € {1,2,3} andg! = 1fori € {1,2,3},

i # j. We say that a playeris usefulfor a coalitionr if v(r’) < v(r), wherer’ is given byr; = 0,

r; = rj forall j # 4. Observe that in an r-stable outcome no player can get any payoffdrom
partial coalition for which he is not useful: otherwise the other members btdaition, who can
complete the corresponding task on their own, can r-profitably deviatevilMeow show that we
havep; = ... = py = 0 both in case (a) and in case (b). Observe that by the argument abgee pla
1 can get payoff frong! only, player 2 can get payoff from? only, player 3 can get payoff from
q> only, and player 4 can get payoff from exactly one of the coalitiphsy?, andg?.

In case (a), we clearly hayg = 0, as playert is not useful for any coalition ir’S’. Now, if,
e.g.,y1 > 0, theny? < 100, and players 4 and 5 can r-profitably deviate by forming a coalition that
performst!. Henceyl = y2 = y3 = 0, and therefore; = p» = p3 = 0. In case (b), assume
without loss of generality that; = 1. Thenp; = 0, as player 1 is not useful for any coalition
in CS’, soyl = 0, since otherwise players 1 and 5 can r-profitably deviate, and, coesty
ps = 0. This implies that als@3 = y3 = 0: if, e.g.,y3 > 0, theny? < 100, and players 4 and
6 can r-profitably deviate by forming a coalition that perforths Hence, in both cases we have
pr=---=ps=0.

Now, asv(q*) = 2, we haveys + y4 + y7 = 2, so at least one of the payoffd, y; andy3 is
strictly positive. Assume without loss of generality thgt= 6 > 0. Then players 6, 7 and their
partners ing> andg? (i.e., players’, " such tha? = 1, ¢3, = 1) can r-profitably deviate from
(CS’,y) by forming a coalition structur€’S” = (s!, s2, s3), wheres! is given by

2
5}/ =1, 8(13:5, sézOfOl’E;&i’,G,

s? is given by

2
322// :1, ngg, S%ZOfOI‘K%i”,?,
ands® = (0,0,0,0,0,%,1). We will now construct an imputation for CS” by settingz} =
22, =0, 2 =22 =100 9,28 =yt + 8, 22 =yt + 4 andz! = 0forall (4,5) #
(7',1),(6,1),(:",2),(7,2),(6,3),(7,3). Itis not hard to see that € Z(CS”), and, moreover,
the deviation(CS”, z) is r-profitable for 6, 74/ and:”. Hence,(CS’,y) is not in the r-core of
G. O

Proposition 2. There exists an OCF-gange such thatr-core(G) # () while o-core(G) = ().

Proof. Consider an OCF-gam@ = (N, v) with 3 agentsV = {1, 2, 3} whose weights are given
byw = (8,8,8), and 2 task types' andt?. The first task needs 6 units of weight from each player,
and has value 300, i.e(r1, 79, 73) = 300 if w;r; > 6 fori = 1,2, 3. The second task needs 4 units
of weight in total from any of the players and has value 2.

Let CS = (r!,r?), wherer® = (1,2.9), 72 = (%,34,2). Clearly,v(r!) = 300, v(r?) = 2.
Consider also an imputatian € Z(CS) given byx! = (100,100, 100), * = (0.5,0.5,1). Itis
not hard to see thatCs, «) € r-core(G). Indeed, ax’'S maximizes the social welfare, there is no
deviation that will be simultaneously profitable for all agents. Furthermoesyifagent withdraws
his contribution fromr!, he will lose the associated payoff of 100 and no deviation can compensate
for this loss. Moreover, it is clear that withdrawing contribution frefncannot be profitable either,
as there is no way to earn more than- v(r?2) with this amount of weight.
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We will now show that has an empty o-core. Suppose for the sake of contradiction that there
exists an outcoméCsS’, y) € o-core(G). Itis not hard to show that any outcome in the o-core of
G maximizes the social welfare; the proof is similar to that of Theorem 4. Hemeean assume
that CS" = (¢*, ¢%), wherev(q') = 300, v(¢®) = 2, and, moreoverg! > S fori = 1,2,3. We
havey? + y2 + y2 = 2, so we can assume without loss of generality gfat- § > 0. This means
that players 2 and 3 can o-profitably deviate fro615’, y) as follows: players 2 and 3 withdraw
gaws — 6 andgiws — 6 units of weight fromg?, respectively (as argued above, we hayie, > 6,
qzws > 6), as well as their entire contribution ¢#, and use these resources to comptétef they
divide the resulting payoff by allocating + g to player 2 and/? + g to player 3, this constitutes
an o-profitable deviation for them. Thug;'S’, y) is not in the o-core of5. O

Thus, so far in this section we investigated the relationships among our nofitires overlap-
ping core; it is also insightful to compare them to the non-overlapping antlifag one. We now
proceed to do so.

8.1 Comparison with the Non-Overlapping Core

Given an OCF-gamé&' = (N,v), we can define a non-overlapping ga@é® = (N,v") by
settingv™(C) = v(r®), where the partial coalition® is given byr¢ = 1if i € C andr{ = 0
otherwise for allC C N. Observe that for a threshold task gaﬁhapplymg this transformatlon to

its overlapping versiol gives us exactly its non-overlapping versiénWe can now compare the
core of the gamé& ™ and the overlapping cores of the original gaéieln particular, it is natural

to ask whether the core ¢f"° can be empty when the o-core Gf(and hence by Theorem 5 also
the r-core and the c-core @f) is not, and vice versa, i.e., whether the c-core (the largest of the
overlapping cores) aff can be empty when the core@f*° is not. Interestingly, it turns out that the
answer to both of these questions is positive. We demonstrate this via exdrapdeson threshold
task games; as argued above, for any such game haveG™ = G.

Proposition 3. There exists a TT@ with core(G) = 0, buto-core(G) # 0.

Proof. Consider a threshold task ganie = (N;w;t), whereN = {1,2,3}, w = (2,2,2),
t =t' = (3,1). In G, any coalition structur&’S contains at most one coalitiafi with v(C') = 1.
Letp = (p1,p2, p3) be an imputation fo’S. Asv(CS) = 1, there exists somec N with p; > 0.
Then the coalitiorC” = N \ {i} can successfully deviate frofC'S, p), as we havev(C’) =
p(C") =1 — p; < 1. Hence, any outcome @f is not stable.

In G, the players can form two successful partial coalitions. Now, cona’mieutcomé CS,x),
whereCS = (r!,r?) with ! = (1, ;,0) = (0,3,1), andz! = (2,1,0),22 = (0,3, 2). We
claim that(CS, ) is in the o-core of5. Indeed, suppose for the sake of contradiction that there is
a group of playerd that has an o-profitable deviation frof@’S, ). We havelJ| € {1,2,3}. Itis
easy to see tha/| # 1: no player has enough weight to compléten his own. Also|.J| # 2: any
pair of players earn% in (CS, x), and on their own they can make at most %. Finally, |J| # 3,
as(CS, z) maximizes the social welfare. The contradiction completes the proof. O]

Intuitively, Proposition 3 holds becaugé has more feasible outcomes thén and some of
these additional outcomes turn out to be stable. On the flip §idaljows for a wider range of
deviations, so an outcome that is stable with respe¢t tnay be unstable with respect¢a Our
next proposition illustrates this.
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Proposition 4. There exists a TT@ with c-core(G) = 0, but core(G) # 0.

Proof. Consider a threshold task ganmie = (N;w;t), whereN = {1,2,3}, w = (9,1,1),
t = (t1,#?) with t! = (8,100), 2 = (2,1).

In G, player 1 can work on tas, while players 2 and 3 can cooperate on t&slsharing the
profits equally. Clearly, the resulting outcome is stable.

On the other hand@ has no c-stable outcomes. Indeed, suppose that there is an outcome
(CS, ) in the c-core ofG, and letp be the corresponding payoff vector. By Theorem(CH
consists of two partial coalitionsr!, which completes!, andr?, which completeg?. Hence,
v(CS) = 101. If p; > 100, thenps + p3 < 1, and hence players 2 and 3 can deviate by forming a
coalitionr = (0,1,1) that can completé? and has value 1. f; < 100, player 1 can deviate by
forming a coalitionr = (1,0,0) that can complete' and has value 100. Hence, we haye= 100,
p2 + p3 = 1, and therefore we can assume without loss of generalitypthat % Now, players
1 and 2 can deviate by forming a coalition structarg’ = (%, 0,0), (%, 1,0) and distributing the
payoffs ag(100, 0,0), (3, 2,0)). We conclude thatCS, z) is not c-stable, a contradiction. [

8.2 Comparison with Fuzzy Games

As mentioned earlier in this paper, Aubin (1981) introduces the notiorfuézy gamgin which a
player can participate in a coalition at various levels, and the value of a codititepends on the
participation levels of its members. Thus, at a first glance, the definitionuzzy fgame is identical
to the definition of an OCF-game, as both are given by characteristic fusafiefined orfo, 1]™.
However, there are several crucial differences between fuzzo&F-games.

First, fuzzy games and OCF-games differ in their definition of an outconaeebh while in
OCF-games an outcome is an (overlapping) coalition structure together witlobdesyoff vectors,
in fuzzy games the only allowable outcome is the formation of the grand coalitiwsthéfrmore, an
outcome of an OCF-core needs to be stable against any deviation of dsat(possibly overlap-
ping) coalition structure. In the Aubin core, outcomes need only be stablest@ deviation to a
partial (“fuzzy”) coalition, but not necessarily against deviations toalition structure. Indeed, the
formation of coalition structures (overlapping or not) is not addressecifuttzy games literature.

One could try to represent games with overlapping coalition structures therfgzzy games
formalism. Indeed, given an OCF-game, we can construct a fuzzy gameencharacteristic
function simulates the behaviour of the characteristic function of the ori@i@dt-game on coali-
tion structures. Specifically, given any OCF-gatde= (N, v), we define a related fuzzy game
G’ = (N,') as follows. For any € [0, 1]", we define

CSr={(q"....¢") |k>1,¢ >0fori=1,...,n,j=1,....k > ¢ =},

and set'(r) = supggecs, v(CS). Thatis, for each partial coalition, v identifies the best
coalition structureCS that can be obtained by splittinginto subcoalitions, and returns its value
v(CS). The resulting fuzzy gamé” is very similar to the original OCF-ganm&. For example, for
TTGs, this transformation would enable the members of the grand coalition toon@dveral tasks
simultaneously. More generally, given a TTG any outcome ofG)’ (i.e., a payoff vector for the
grand coalition) corresponds to a social-welfare maximizing outoafife =) of G and vice versa.
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In fact, this relationship holds between any OCF-gaiand the corresponding fuzzy garié as
long as the sefv(CS) | CS € CS(y,.. 1)} is compact (and thus contains its least upper bound).

However, this approach fails to capture several delicate aspectsrtdjmpig coalition forma-
tion. The main reason for this is that in the fuzzy game formulation, the actuall &esks executed
by a partial coalition is implicit in the definition of the characteristic function. Bajean outcome
of the fuzzy game is simply a payoff vector, and while we are guaranteethtra is a set of tasks
that provides the corresponding total payoff, this set of tasks cdrentvead off” the description of
the outcome. This leads to a number of difficulties.

First, the fuzzy games formalism would not allow us to reason about pasaétion structures
with suboptimal social welfare. While by Theorem 4 such coalition strucanesnlikely to be the
final outcomes of a game, a dynamic coalition formation protocol may prodebegsartial coalition
structures as intermediate steps. Thus, using the language of fuzzy oaalitipairs our ability to
study the processes that lead to the formation of partial coalition structysesich processes are
of great interest from the practical perspective, this is an importardisgage of the fuzzy model.

Further, under the OCF representation, there is a one-to-one comckspe between partial
coalitions and tasks. This makes the OCF approach intuitively appealinguageésts that it pro-
vides the right level of granularity for reasoning about partial coalitamftion. Indeed, consider
our problem from a computational perspective in the context of TTGsleWhder the OCF repre-
sentation finding a socially optimal coalition structure can be difficult (seeeAgix A), computing
the value of a given partial coalition is straightforward: we simply pick the most valuable task
that can be completed using the resources posessedibygontrast, in the fuzzy game framework,
the two issues are intertwined, so even computing a partial coalition’s worthasdgproblem.

Even more importantly, the definition of the fuzzy core given by Aubin (}@8tot appropriate
for many natural scenarios, and, in particular, TTGs. Specifically,ubeyfcore of a fuzzy game
G = (N, v) is defined as the set of all outcom@s, p) such thapp(N) = v(1,...,1) and for any
partial coalitionr it holds that) """ , p;~; > v(r). Essentially, this means that when a group of
players deviates from the grand coalition via a partial coalitippach deviating playerreceives
both her payoff from-, and her original payoff from the grand coalition, scaled down by &faaf
(1 —r;). Thus, the fuzzy core is even more “optimistic” from the deviators’ patgethan the o-
core. Indeed, the deviators do not worry what the grand coalition willide to do once they leave.
They simply assume that if they withdraw, say, 40% of their resources vilileget 60% of what
they used to get. However, in many games—and, in particular, TTGs—if stayerp abandon the
grand coalition, the latter may not have sufficient resources to completasiay Clearly, in this
case the deviators could not possibly get any payoff from what reroéthe grand coalition. Thus,
the fuzzy core may be empty, even if in practice the game is stable. The exanthpéeproof of
Proposition 5 illustrates this.

Proposition 5. There exists a TTG such thato-core(G) # 0, but the fuzzy core of the corre-
sponding fuzzy game)’ is empty.

Proof. Consider a TTGZ given by N = {1, 2}, w = (10, 10), andt = ((20, 20), (7,9)), and the
induced OCF-gamé'. The corresponding fuzzy gani€’)’ = (N, ') is given by
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20 ifri4+ry=2

18 ifld4<ri+ry<?2
9 f0.7T<ri+ro<14
0 ifri+ry<0.7

It is not hard to see that the outcor€S, =) of G, whereCS = r = (1,1) andz = (10, 10) is
o-stable. Moreover, intuitively, it is clear that no rational agent or ditima of agents would want
to deviate from this outcome. On the other hand, under the definition of tkg éare the outcome
(10, 10) of (G)" is not stable: indeed, fay = (.7,.7) we havep;q; + p2g2 = 14 < 18 = v/(q).

We will now prove thaino outcome of(G)’ is in the fuzzy core. Observe that sing¢l, 1) =
20, any outcome of G)’ is of the form(z1, z2), wherez; + z; = 20. Clearly, any outcome with
z1 < 90rz < 9is unstable, as the partial coalitigi, 0) (respectively,(0,1)) can profitably
deviate from it. Thus we can assume that> 9, zo > 9, or, equivalentlyz, < 11, z; < 11. Thus,
for the partial coalitiony considered above, we havey; + z2q2 < 11 x 1.4 = 15.4 < 18 = v(q),
which means thafz;, z2) is not in the fuzzy core. O

Remark 4. To remedy some of the difficulties illustrated above, we can devise a ndstabdity
that is defined within the framework of fuzzy games, yet is essentially Eqit@the c-core. Let
us say that an outcome of G’ is f-stableif for any r € [0,1]" we havev'(r) < > icsupp(r) Pi
and define thd-core of G’ to be the set of all f-stable outcomes®f Note that this definition is
different from the standard definition of the fuzzy core. For TTGs, oneshaw that an outcome
p of G’ is in thef-core of G’ if and only if the corresponding outcom€'S, ) of G is in the c-
core of G. The proof makes use of the fact that in TTGs one can distribute the @iafjtof a
deviating partial coalitiorr among the members efipp(r) arbitrarily. (In more detail, one can
construct a partial coalition structur€’S involving agents isupp(r) that performs tasks of total
valuev'(r) so that each agent isupp(r) participates in each partial coalition i”’'S.) Moreover,
this equivalence is true for general OCF games whose characteristic fascatisfy some natural
regularity conditions; the proof is similar to the proof of Theorem 1. Unfoatety, while the f-core
provides an analogue of the c-core in the fuzzy game setup, it is notrmeato devise an analogue
of the r-core or the o-core for this setting. Indeed, to define these ptsiage would have to reason
about partial coalitions that are hurt by a deviation. However, the digsion of an outcome of
a fuzzy game does not indicate which partial coalitions a given player bgltmgso we cannot
determine which tasks will be affected by a deviation.

We conclude that there are natural settings where OCF-games provideeareatistic and
nuanced model than fuzzy games; threshold task games appear to helorgample.

9. Computational Aspects of Stability in Threshold Task Gams

In this section, we investigate the computational complexity of core-relatedigne in TTGs. Our
goal here is twofold. First, TTGs provide a natural model of agent cotktion, and therefore it
is important to understand how to allocate resources in such games in a staplerm&econd,
our analysis highlights important differences between the three definitiotie @wore for games
with overlapping coalitions. In particular, the results presented in this sqmtomide a complexity-
theoretic separation between the c-core, on one hand, and the rrzbtbeao-core, on the other
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hand. We believe that results of this type are useful for building a bettiratanding of stability
in the context of general OCF games.

Unless explicitly stated otherwise, we make the usual assumption that all gararoéthe
game—i.e., all weights, thresholds and task utilities—are integers given irybirtais assumption
can be made without loss of generality, and is necessary for a formaledtggheoretic analysis.

9.1 Games with Non-Overlapping Coalitions

We start by analyzing the complexity of TTGs in the non-overlapping setting.mAntioned in
Section 5.1, such games can be seen as a generalization of weighted vantiag gith coalition
structures. Elkind, Chalkiadakis & Jennings (2008) show that sesthility-related questions in
such games are computationally hard when weights are integers given iy. bifence, we can
formulate the following proposition, whose proof follows immediately from theseilts.

Proposition 6. Given a TTGG = (IV; w;t), it is coNPhard to decide whether the corresponding
game(G has an empty core. Also, given an outcoft#, p) of G, it is coNRcomplete to decide
whether(CS, p) is in the core of. These results hold even if there is only one task type, and the
utility of this task isl.

On the other hand, Elkind et al. (2008) provide a polynomial-time algorithratiecking if an
outcome of a weighted voting game is in the core if weights are given in una@at algorithm is
based on dynamic programming: given a weighted voting g@ndescribed by a set of playens,

a list of weightsw and a threshold’, for each weight, . . ., w(N) it identifies the minimum payoff
P, to a coalition that has weight, and then checks iP,, < 1 for somew > T.

It is not hard to see that a similar approach works for threshold task gasnesll. The only
complication is that for each weight, in addition to computing the minimum payoff to a coalition
of this weight under the given imputation, we have to compute the maximum utility bietla a
coalition of this weight, i.e.max{uj | w > Tj}, and compare the two quantities. However, these
additional steps are very easy (in particular, they can be performeekeffy even if task utilities
are large). This gives us the following result.

Proposition 7. There exists an algorithm that, given a TTG= (N;w; t) and an outcoméCsS, p)
of G, checks whethgfCS, p) is in the core ofZ and runs in timepoly (w(N), |p|), where|p]| is the
number of bits in the binary representationmf

For weighted voting games with unary weights, Elkind et al. (2008) also $haty by con-
structing a linear program that uses the algorithm of Proposition 7 as aleovae can check in
polynomial time whether a given coalition structu?® can be stabilized, i.e., whether there exists
a payoff vectop € Z(CS) such tha{ CS, p) is in the core. This algorithm can be easily adapted to
work for TTGs with unary weights. Hence, the question of whether angbealition structure can
be stabilized is poly-time solvable for these games, too.

9.2 Games with Overlapping Coalitions

We will now show that, similarly to the non-overlapping case, if all weights stotds and utilities
in a TTG are integers given in binary, then it is computationally hard to chezlgifen outcome
of the corresponding OCF game is stable. Moreover, this hardnedshekls for all three defi-
nitions of stabilty, i.e., the c-core, the r-core, and the o-core. While treesdts are perhaps not
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surprising given the similar result for the non-overlapping setting (i.e pd&ition 6 above), the
reason behind the computational hardness is quite different. Indeeédiieion used in the proof

of Proposition 6 is based omRTITION, a classic NP-hard problem which asks whether, given a
set of weights, we can split it into two sets of the same weight. Essentially, dloé proceeds by
constructing an outcome that is stable if and only if a certain subset of aggmist be split into
two groups that have the same weight. This proof technique is unlikely to wdhie overlapping
scenario, as one can always form two partial coalitions of the same wWmjigliiowing all agents to
split their weight equally between two coalitions. Hence, the proof of theviitigp theorem uses a
somewhat different approach.

Theorem 6. Givena TTGG = (INV; w; t) and an outcoméC'S, ) of the corresponding OCF game

G, it is coNPcomplete to decide whethé€'S, x) is in the c-core of.

Proof. Our reduction is based onNBOUNDED KNAPSACK, a well-known NP-hard problem. An
instance of WWBOUNDED KNAPSACK (Martello & Toth, 1990) is given by a set dfitems, where
each itemi has a sizes; and a valuey;, the knapsack siz& and the target valug. It is a “yes”-
instance if we can fill the knapsack using an unlimited number of copies bfigsn so that the
total size of the resulting set of items is at méstwhile their total value is at lead, i.e., if there
is a vector of non-negative integefs, . .., ay) such thath:1 o;8; < B andez1 oz > Z.
Otherwise, it is a “no”-instance.

Consider an instance = ((s1,...,¢);(21,--.,2¢); B; Z) of UNBOUNDED KNAPSACK. We
can assume without loss of generality that< B, z; < Z forall j = 1,...,/. Moreover, we can
assume thaf is monotone, i.es; < s; impliesz; < z;. Indeed, if we have a pair of items such that
s; < s, butz; > z;, we can simply delete thgh item, as it is not used by any optimal solution.

We will now construct an instance of our problem as follows. Set {1} and letw; = B.
Sett = (t!,2,...,t"t1), whereTV = s;,uw/ = z;forj =1,...,andT*"! = B, 't = Z — 1.
Due to our restrictions o, the game= = (IV; w; t) is a threshold task game.

Consider an outcomeCs, p) where CS consists of a single partial coalitianwith r; = 1
andp € Z(CS). As B > s; forall j = 1,...,¢, this coalition executes the task! and receives
utility of Z — 1. Hence, playet can c-profitably deviate frorciC'S, p) if and only if he can find a
collection of tasks whose total resource requirement is at most his wigightl whose total utility
is at leastZ, i.e., if and only if we started with a “yes”-instance oNBOUNDED KNAPSACK. [J

In the proof of Theorem 6 the outconi€’S, =) consists of a single partial coalition. Thus, any
r-profitable deviation fron{ C'S, x) is c-profitable. This implies the following corollary.

Corollary 2. Given a TTGG and an outcomgCS, x) of the corresponding OCF gan, it is
coNPcomplete to decide {fCS, x) is in the r-core ofG.

For the o-core, the situation is somewhat more complicated. However, a arefalexamination
of the proof of Theorem 6 allows us to obtain the following corollary.

Corollary 3. Given a TTGG = (N;w;t) and an outcomgCS, ) of the corresponding OCF
gameG, it is coNRcomplete to decide {fC'S, ) is in the o-core of5.

Proof. In the proof of Theorem 6, we construct an OCF game with 1 player aodt@ome(r, x).
Consider any o-profitable deviatiqd's, y) from (7, ). This deviation itself is not necessarily a
c-profitable deviation fronjr, z): under(CS,y), agent 1 may withdraw some, but not all of his
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resources fronfr, ) and therefore continue to derive some benefit from it. However, forgles
agent, allocating some of the resources to the original partial coatitisrequivalent to forming

a new partial coalition using that amount of resources, i.e., gi¢efi, y), one can construct a
deviation from(r, x) that will be c-profitable for agent 1. On the other hand, any c-profitable
deviation from(r, ) is also o-profitable. Hencér, x) is o-stable if and only if it is c-stable, i.e.,

if and only if we started with a “no”-instance ofNBOUNDED KNAPSACK. O

In the rest of the section, we will focus on the case where all parametehe game (i.e.,
all players’ weights, all thresholds and all task utilities) are integers tleagizen in unary, or,
equivalently, are at most polynomial in the number of players. Given a game N; w; t), where
/= (T7,w)forj =1,...,m, let|G| = w(N) + X5 (T7 + ).

It turns out that in this setting checking whether an outcome is in the c-ca@es easy.
Intuitively, the reason for this is that once a group of players decidesviaig, the agents in this
group can easily decide how to proceed: they need to pool their weighfgdrthe most profitable
set of tasks that can be completed using this amount of resources.

Theorem 7. There exists an algorithm that, given a TTG= (IV; w;t) and an outcoméCS, x)
of the corresponding OCF gant&, checks whethefCS, z) is in the c-core of7 and runs in time
poly (|G|, |x|), where|x| is the size of the binary representation of the imputation

Proof. Our algorithm is based on dynamic programming. First, forany 1,...,w(N), letU,
be the maximum profit that a coalition of weightcan make, i.e.,

m m
U, = max Zajuj \ ZajTj <w,(al,...,a™) € N"
j=1 j=1

For eachw = 1,...,w(N), the quantitylU,, can be computed using the dynamic programming
algorithm for UNBOUNDED KNAPSACK. The running time of this procedure is polynomial @|.

Now, letp be the payoff vector that corresponds to the imputadiofror alli = 1,...,n and
alw =1,...,w(N), setP,,, = min{p(S) | S C {1,...,i},w(S) = w}. The quantities’; ,,
can be easily computed using dynamic programming. Indeed, weaye= p; if w = w; and
P ,, = 400 otherwise (we use the convention thain ) = +occ). Furthermore, we can compute
P10 giventhe valuesp, ) =1, by SettingP; 1 = min{P; ., pi + P; w—w, }- The running
time of this procedure ipoly (|G|, |p|)-

Suppose that we have computegl,, for w = 1,...,w(NN). Observe that the valug, ,, is the
least amount received by a coalition of weightinderp. Now, for eachw = 1,...,w(N), we can
compare the quantitie8, ,, andU,,. If there is a value ofv for which the latter exceeds the former,
there is a coalition inV that could increase its collective earnings by deviating f(@r§, ), i.e.,
(CS,x) is not in the c-core of7. Itis not hard to see that the converse is also trué’,if, > Uy,

forallw = 1,...,w(N), then no coalition has a c-profitable deviation frofiS, =), and hence
(CS, x) is in the c-core of7.
Clearly, this algorithm runs in timpoly (|G|, |x|). O

In contrast, the corresponding problems for the r-core and the cacersomputationally hard.
Intuitively, the reason for this is that the decisions the players make arengeridinary: instead
of simply deciding whether or not to deviate, they have to decide which of toailitions with
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non-deviators to abandon. In the case of the o-core, there is alsoghibipity of reducing one’s
contribution to a partial coalition rather than abandoning it altogether.

Theorem 8. Givena TTGG = (INV; w; t) and an outcoméC'S, ) of the corresponding OCF game

G, itis stronglycoNRP-complete to decide whethé€'S, x) is in the r-core ofG.

Proof. Itis not hard to see that this problem is in coNP: to show that an out¢@ffiex) is not in
the r-core ofG, we can guess a set of deviatdrand a deviatiori CS’, y), and check thatCS’, )
is r-profitable forJ by computing the payoffs of all players ihunderz andy.

To show coNP-hardness, we reduce fromdNMUM EDGE BICLIQUE (Peeters, 2003). An
instance on MxIMUM EDGE BICLIQUE is given by a bipartite grapts = (L, R, E') with a set
of verticesL U R and a set of edgeE C L x R, and a parametek’. It is a “yes"-instance ifB
contains a biclique of size at least i.e., if there are sets’ C L, R’ C Rsuchthatl/|*|R'| > K,
and for all\ € L and allp € R we have(), p) € E. Otherwise, it is a “no™-instance.

Suppose that we are given an instariég K) of MAXIMUM EDGE BICLIQUE with B =

(L,R,E), L ={\1,..., AN}, R={p1,...,pr/}- Then we create an instance of our problem as
follows. Assume without loss of generality tHéf < |R|, We seth = |R|+1,k = |L|, M = k?n?,
V = k?nM, and create: players with weightsy; = --- = w,_1 = k, w, = k(kn —n + 1) and

2 task typest! = (kn;V) andt? = (K;(n — 1)k + 1). Also, we create a coalition structure
CS = (r',...,r") given byr! = 1/kforalli =1,...,nandallj = 1,..., k. Observe that the
total weight of each’ € CS is kn, so each such partial coalition performis Finally, to construct
the imputatione = (z!,...,z%), forallj = 1,...,kand alli = 1,...,n — 1, we setr] = 1 if
(i,7) € E anda? = M otherwise. Also, we set), = V — S." "' 2/ forall j = 1,.. ., k.

Suppose we started with a “yes™instance oA¥MMuM EDGE BICLIQUE, and let(L', R') be
the corresponding subgraph Bf Then the subset of playets= {i | p; € R’} can r-profitably
deviate from(CS, =) by abandoning the partial coalitions in the Set {r’ | A\; € L'}, and using
the freed-up resources to embarkn Indeed, undez the players inJ collectively earn at most
(n — 1)k from partial coalitions inS, and devote at leagt’ units of weight to these coalitions.

Conversely, consider any r-profitable deviatiaiS’, ), and letJ be the corresponding set of
deviators. Suppose that coalitions inCS’ work ont!, andk, coalitions work ont?. First, suppose
n € J. Observe thatCS’, y) is profitable for player. if and only if k&, = &, k2 = 0: indeed, under
(CS,x) playern earns at least(V — (n — 1)M ), whereas under any outcome that completes less
thatk copies oft! he earns at mogk — 1)V + k%"((n —1Dk+1) <k(V—(n—1)M). However,
any deviation that results in executikgcopies oft! must involve all resources of all players, i.e.,
J ={1,...,n}, and any such deviation cannot be simultaneously profitable for all merobirs
deviating set. Hence, we have¢ J, and thereforev(J) < k(n — 1). Consequentlyk; = 0
and the deviators’ total profit is at mo@ﬁ(ﬁ((n — 1)k +1) < M. This means thatCs’, y) is an
r-profitable deviation only if no player € J abandons a coalition’ € CS such thatr{ = M.
On the other hand, to successfully execute even one cogly thfe members of must collectively
withdraw at leasts” units of weight. LetR' = {p; | i € J}, and letL’ correspond to the set of
partial coalitions inC'S affected by the deviation; theil, R’) is a biclique of size at leagt. [

It is not hard to check that in the proof of Theorem 8 no player can wathidrart of his re-

sources from a partial coalition i6'S and still claim any profit from that coalition. This implies
that checking whether a given outcome is in the o-core is computationallytoard
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Corollary 4. Given a TTGG and an outcomgCS, x) of the corresponding OCF gan, it is
stronglycoNR-complete to decide whethé€'S, z) is in the o-core of7.

On the other hand, combining the techniques of Theorem 7 and Theoreadgltte a pseu-
dopolynomial algorithm for checking whether the c-core of a TTG is nopig.

Theorem 9. Given a TTGG = (N;w;t), one can check in timpoly(|G|) whether the corre-
sponding OCF gamé' has a non-empty c-core.

Proof. We will show that if the c-core of a gam@ is non-empty, then for any social welfare-
maximizing set of tasks we can construct a coalition strucftfehat executes this set of tasks and
an imputationz € Z(CS) such that(CS, z) is in the c-core of; moreover, inCS each agent
contributes to each coalition. Hence, our algorithm first selects a sodifaresenaximizing set of
tasks, then constructs a coalition structure that can perform this setksf ta®d finally solves a
linear program to check if this coalition structure can be stabilized. The dézbile.

Assume for simplicity that contains a task typeé with " = 1; if this is not the case we
can add a task typ# = (1,0) to ¢. This allows us to assume that in any coalition structure all
agents’ resources are committed to some tasks. Fix a social welfare-maximiaitigget of tasks
{ait!, ... an,t™}. Suppose-core(G) # 0, and let(CS’,y) be an outcome in the c-core 6f.

By Theorem 4, we hav§ 7", aju’ = v(CS’). Consider a coalition structur€S that contains
aj + --- + oy, coalitions: the firsty; coalitions have weight'! each, the nexti; coalitions have
weight 72 each, etc., and each agerdistributes his resources evenly between all coalitions, i.e.,

he contributemi%;,) units of weight to each of the firgt; coalitions, etc. As inCS all agents
contribute to all partial coalitions, anel CS) = v(CS’), we havey € Z(CS). Moreover, it is

clear that the outcomeC'S, y) is in c-core(G): any c-profitable deviation fromiCS, y) is also a
c-profitable deviation frontC'S’, y).

By Proposition 9 when all weights are given in unary, we can find a seglire-maximizing

coalition structureC’S = (v, ..., r¥) in polynomial time. Consider the following linear program:
pi > 0fori=1,...,n
Zpi = v(C9)
iEN
Zpi > Uy forall J C N,

e

whereU,, is defined as in the proof of Theorem 7. While this linear program hasnexjpially
many constraints, it can be solved in linear time by the ellipsoid method (Schiifg@8), since it
has a polynomial-time separation oracle. Indeed, we can decide whetivenagndidate solution
is feasible using the algorithm described in the proof of Theorem 7.

Clearly, if this linear program has a feasible solutianthen the imputatior: given by:n{f =

pis((LC';)) forall: € N andallj = 1,...,|CS| satisfiest € Z(CS), and, moreover(CS,x) €

c-core(GG). Conversely, if it does not have a feasible solution, tii&cannot be stabilized, and
hence by the argument above the c-coré/a$ empty. O
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10. Conclusions, Extensions, and Future Work

In this paper we introduced a model of cooperative games that allowsddapping coalitions and
takes into account the need for resource allocation. In doing so, werajezed the usual models
where either the grand coalition is the only desirable outcome or the outcomesqaiired to be
partitions of the set of agents. Given our model, we defined and studiespth d notion of the
core (thec-core which is a generalization of the core in the traditional models of cooperadiveeg
theory. Under some quite general conditions, we provided a charatienZor an outcome—that
is, a(coalition structure, imputationpair—to belong to the core. We also showed that any outcome
in the core maximizes the social welfare. Further, we introduced a noticalaftedness for OCF-
games, and showed that a coalition structGfeadmits an imputatioe: so that(CS, ) is in the
core if and only if the game is balanced. Moreover, we extended the ndticongexity to our
setting and showed that convex games have a non-empty core.

In addition, we considered two other notions of core-stability in OCF-gawigish differ from
each other (as well as from the first one) in what the deviators expebtaimn from their collabora-
tion with non-deviators. Together, our three notions of the core spaneraidje of beliefs that the
deviators may hold regarding payoffs from coalitions with non-deviatord,can be substantially
different from each other with respect to the sets of outcomes that thegatbrize, and with respect
to their computational complexity. We also compared the OCF-games with themvestapping
analogues, and showed that from the social welfare maximization pévgye0CF-games may
provide higher total utility, and are easier to work with than their classic copautis. We have
also argued that OCF-games provide a more appropriate modelling frakndveor fuzzy games
for many scenarios; in particular, this is certainly the case for threshdddytamses. To summarize,
our paper is one of the very first attempts to provide a theoretical treatrheverdapping coalition
formation, and to study stability in this setting in a thorough manner.

10.1 Extensions

In many environments, when a coalition is formed, it may have a choice of adtioaxecute.
While in a deterministic setting such as the one considered in this paper, the coalitisimply
choose the action that results in the highest possible payoff, in a probialeiisiironment this
choice is more difficult: a coalition may want to strike a balance between thetexppayoff and
the variance. To address this issue, we can incorpoatitional actionsn our model as follows.

A coalition is allowed to select an action from a (usually finite) action sp&cd/ithout loss of
generality, we assume that each coalition can undertake any actioh the value of a coalition is
then determined by the resource contribution levels of its menayetthe action selected. There-
fore, the characteristic function in our setting is then definet-on) pairs, where: = (rq,...,7,)
is a vector of resources, ands A is an action. All of our definitions and results generalize readily
to the situation where each coalition has a choice of actions (simply put, osgntegion so far
corresponds to a situation where each coalition had exactly one actiorbéeaalat).

Another extension we have examined has to do with modelling the availablerecesou~or
ease of presentation it was assumed throughout the paper that théseakione type of (contin-
uous) resource. Nevertheless, all of our results still hold if we assunt@ladypes of resources
(e.g., agents have to distribute both tiawed money among their coalitions). Moreover, we have

3. The situation where this is not the case can be modeled by setting the ¥/#leaespectivécoalition, action)pair
to 0.
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also studied a “discrete” OCF setting, with agent contribution levels takingesatua finite set
(i.e., an agent may be able to contribute 20%, but not 21% of his resareegiven coalition).
Such a setting is obviously of interest in many applications involving countablaurces (as the
discretization of effectively any kind of resources is common in practMéth discrete resources,
the number of possible coalition structures is now finite (as a coalition in ourgéttancollection
of resources—see Section 4). All of our definitions and theorems dawygh in this setting with
minor differences in the arguments used in the proofs.

10.2 Future Work

There exist many exciting open questions for future work. First of alipgortant research di-
rection is to develop a better understanding of scenarios where oviedapgalitions can natu-
rally arise, and to identify the appropriate stability concepts for these SosnaVe believe that
techniques developed in this paper will prove useful for this purposere®er, one of our first
priorities is to investigate further the alternative notions of stability (i.e., there-aod the r-core)
proposed above, and obtain relevant characterization results, ag wittdthe c-core. Extending
other solution concepts for coalitional games—such as, e.g., the Shapleyva OCF settings is
an important research direction as well.

We also plan to study further the computational complexity of core-relatestiqus in this
setting. First, while we have initiated the study of complexity-theoretic aspestsiofity in OCF
games, in this paper we have focused on the complexity of checking wretfieen outcome is
stable. Another natural problem in this domain is studying the complexity okatgeevhether a
game has a stable solution—i.e., whether its c-core (r-core, o-core)-smpty. Theorem 9 makes
the first steps in this direction, suggesting that this problem may be easieravdtiapping setting
than in the classic setting: indeed, Elkind et al. (2008) conjecture that ¥6G§Wwith coalition
structures checking the non-emptiness of the core is hard for unarptseig

Now, the hardness results for computing an allocation in the core or clggi€kive core is non-
empty in the traditional setting—as those in the work of Chvatal (1978), Tar8g1(1 Deng and
Papadimitriou (1994), Sandholm et al. (1999), Conitzer and Sandhd@lf6)j2-and our hardness
results in this paper suggest that one can only hope to identify specisgslakgames where we can
have efficient algorithms for computing core allocations. As noted eartieleanent of the core in
convex games can be computed in the traditional setting simply by taking the gétitermarginal
contributions of the agents for an arbitrary permutation of the set of agémsur setting, even
though our proof yields a procedure for constructing an element of-tloee; it requires solving a
series of optimization questions, which for arbitrary convex games aredxd-Naturally, it would
be desirable to find classes of convex games where our proof yieldgreopgal time algorithm.

We are also interested in finding processes that lead to the core in nesaglyeconvex games;
thoughrandomized algorithmsuch as the ones of Dieckmann and Schwalbe (1998) and Chalki-
adakis and Boutilier (2004) trivially extend to the overlapping setting, theylavibe of little prac-
tical value here due to the huge space of potential overlapping cortfapsa Therefore, we are
interested in finding ways to exploit known game structure to prune thehsspace for potential
stable configurations. Another subject of future research is extendimngodel to allow for infinite
coalition structures. Furthermore, it would be interesting to establish linkseleetautcomes in the
core and outcomes of bargaining equilibria in overlapping coalitional bangagames.
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Finally, the incorporation of actions in our model allows for the investigaticactibn stochas-
ticity and, more generally, uncertainty in an OCF setting. For instance, a coalita@tion can
be associated with a distribution over possible payoff outcomes resultingifscexecution. This
poses challenges to study such models from both a theoretical and agirsteticdpoint, since the
introduction of uncertainty leads to several intricacies not readily reddlyehe use of “determin-
istic” concepts and models, as the work of Suijs and Borm (1999), SuijspB&/agenaere, and Tijs
(1999), Blankenburg, Klusch, and Shehory (2003), ChalkiadaldsBoutilier (2004) and Chalki-
adakis, Markakis, and Boutilier (2007) demonstrates. On a related notehiag our model de-
scription so as to capture type uncertainty (Chalkiadakis & Boutilier, 200vgIKiadakis et al.,
2007) would allow for the ready translation of uncertainty regarding thestygapabilities) of play-
ers to coalitional value uncertainty, while still capturing the potential stocligstit coalitional
action outcomes at the same time.
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Appendix A. Algorithmic Aspects of Social Welfare Maximization in TTGs

In this appendix, we study the complexity of finding a social welfare-maximiaiigome in TTGs,
both in the overlapping and in the non-overlapping scenario. Unless iyptentioned otherwise,
we make the standard assumption that all parameters in the description of .&T@ll agents’
weights, all thresholds and all task utilities), are integers given in binary.

Itis not hard to see that finding a non-overlapping coalition structurentatmizes the social
welfare is an NP-hard problem.

Proposition 8. Given a TTGG = (N; w; t) and a parameteik,, it is NP-complete to decide &
has an outcoméCsS, p) with v(CS) > K. This holds even if there is just one task type, t.es,t!,
and all weights, thresholds and utilities are given in unary.

Proof. Itis easy to see that the problem is in NP. To show NP-hardness, wa gageiction from 3-
PARTITION (Garey & Johnson, 1990) to our problem. An instance ofa&PTION is given by a list
of non-negative integerd = (ay,...,as;) and an integer parameté that satisfie§:f’i1 = (B
andB/4 < a; < B/2forall: = 1,...,30¢. Itis a “yes™instance if the elements of can
be partitioned int setsSy,..., S, such thata(S;) = --- = a(S;) = B and a “no™-instance
otherwise.

Given an instance of 3ARTITION, consider a TTGG with N = {1,...,3¢}, w; = a; for
i =1,...,3¢ and a single task type= (T, u) with T = B andu = 1. Clearly, deciding whether
the maximum social welfare achievabledfis at least is equivalent to checking whether the given
instance of 3-RRTITION is a “yes"-instance. Moreover, since 3+#PrITION is known to remain
NP-hard when the input is given in unary, the same is true for our problem. O
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In contrast, finding a social welfare-maximizing coalition structure in the O&fegthat cor-
responds to a TTG is a somewhat easier problem. Indeed, we can simplygadader all agents’
weights, and then find an optimal set of tasks to execute given this amotegaifrce. The latter
problem is equivalent to NBOUNDED KNAPSACK, which is known to be NP-hard when the inputs
are given in binary, but is polynomial-time solvable if all elements of the inprigasen in unary or
if there are at most items; for details, see (Martello & Toth, 1990), Section 3.6. Consequently, a
similar conclusion holds for our problem.

Proposition 9. Given a TTGG = (N;w;t) and a parametet, it is NP-complete to decide if
G has an outcoméCs, x) with v(CS) > K. However, this problem becomes polynomial-time
solvable if all weights, thresholds and utilities are given in unary or if theseamose task types.
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