33 research outputs found

    Mesa-type patterns in the one-dimensional Brusselator and their stability

    Full text link
    The Brusselator is a generic reaction-diffusion model for a tri-molecular chemical reaction. We consider the case when the input and output reactions are slow. In this limit, we show the existence of KK-periodic, spatially bi-stable structures, \emph{mesas}, and study their stability. Using singular perturbation techniques, we find a threshold for the stability of KK mesas. This threshold occurs in the regime where the exponentially small tails of the localized structures start to interact. By comparing our results with Turing analysis, we show that in the generic case, a Turing instability is followed by a slow coarsening process whereby logarithmically many mesas are annihilated before the system reaches a steady equilibrium state. We also study a ``breather''-type instability of a mesa, which occurs due to a Hopf bifurcation. Full numerical simulations are shown to confirm the analytical results.Comment: to appear, Physica

    Stationary Multiple Spots for Reaction-Diffusion Systems

    Get PDF
    In this paper, we review analytical methods for a rigorous study of the existence and stability of stationary, multiple spots for reaction-diffusion systems. We will consider two classes of reaction-diffusion systems: activator-inhibitor systems (such as the Gierer-Meinhardt system) and activator-substrate systems (such as the Gray-Scott system or the Schnakenberg model). The main ideas are presented in the context of the Schnakenberg model, and these results are new to the literature. We will consider the systems in a two-dimensional, bounded and smooth domain for small diffusion constant of the activator. Existence of multi-spots is proved using tools from nonlinear functional analysis such as Liapunov-Schmidt reduction and fixed-point theorems. The amplitudes and positions of spots follow from this analysis. Stability is shown in two parts, for eigenvalues of order one and eigenvalues converging to zero, respectively. Eigenvalues of order one are studied by deriving their leading-order asymptotic behavior and reducing the eigenvalue problem to a nonlocal eigenvalue problem (NLEP). A study of the NLEP reveals a condition for the maximal number of stable spots. Eigenvalues converging to zero are investigated using a projection similar to Liapunov-Schmidt reduction and conditions on the positions for stable spots are derived. The Green's function of the Laplacian plays a central role in the analysis. The results are interpreted in the biological, chemical and ecological contexts. They are confirmed by numerical simulations

    General theory of instabilities for patterns with sharp interfaces in reaction-diffusion systems

    Full text link
    An asymptotic method for finding instabilities of arbitrary dd-dimensional large-amplitude patterns in a wide class of reaction-diffusion systems is presented. The complete stability analysis of 2- and 3-dimensional localized patterns is carried out. It is shown that in the considered class of systems the criteria for different types of instabilities are universal. The specific nonlinearities enter the criteria only via three numerical constants of order one. The performed analysis explains the self-organization scenarios observed in the recent experiments and numerical simulations of some concrete reaction-diffusion systems.Comment: 21 pages (RevTeX), 8 figures (Postscript). To appear in Phys. Rev. E (April 1st, 1996

    Parametric pattern selection in a reaction-diffusion model

    Get PDF
    We compare spot patterns generated by Turing mechanisms with those generated by replication cascades, in a model one-dimensional reaction-diffusion system. We determine the stability region of spot solutions in parameter space as a function of a natural control parameter (feed-rate) where degenerate patterns with different numbers of spots coexist for a fixed feed-rate. While it is possible to generate identical patterns via both mechanisms, we show that replication cascades lead to a wider choice of pattern profiles that can be selected through a tuning of the feed-rate, exploiting hysteresis and directionality effects of the different pattern pathways
    corecore