7,715 research outputs found

    First measurements of high frequency cross-spectra from a pair of large Michelson interferometers

    Get PDF
    Measurements are reported of the cross-correlation of spectra of differential position signals from the Fermilab Holometer, a pair of co-located 39 m long, high power Michelson interferometers with flat, broadband frequency response in the MHz range. The instrument obtains sensitivity to high frequency correlated signals far exceeding any previous measurement in a broad frequency band extending beyond the 3.8 MHz inverse light crossing time of the apparatus. The dominant but uncorrelated shot noise is averaged down over 2×1082\times 10^8 independent spectral measurements with 381 Hz frequency resolution to obtain 2.1×1020 m/Hz2.1\times 10^{-20} \ \mathrm{m}/\sqrt{\mathrm{Hz}} sensitivity to stationary signals. For signal bandwidths Δf>11\Delta f > 11 kHz, the sensitivity to strain hh or shear power spectral density of classical or exotic origin surpasses a milestone PSDδh<tpPSD_{\delta h} < t_p where tp=5.39×1044/Hzt_p= 5.39\times 10^{-44}/\mathrm{Hz} is the Planck time.Comment: 5 pages, 3 figure

    Stochastic Analysis of the LMS Algorithm for System Identification with Subspace Inputs

    Get PDF
    This paper studies the behavior of the low rank LMS adaptive algorithm for the general case in which the input transformation may not capture the exact input subspace. It is shown that the Independence Theory and the independent additive noise model are not applicable to this case. A new theoretical model for the weight mean and fluctuation behaviors is developed which incorporates the correlation between successive data vectors (as opposed to the Independence Theory model). The new theory is applied to a network echo cancellation scheme which uses partial-Haar input vector transformations. Comparison of the new model predictions with Monte Carlo simulations shows good-to-excellent agreement, certainly much better than predicted by the Independence Theory based model available in the literature

    Estimation and tracking of rapidly time-varying broadband acoustic communication channels

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2006This thesis develops methods for estimating wideband shallow-water acoustic communication channels. The very shallow water wideband channel has three distinct features: large dimension caused by extensive delay spread; limited number of degrees of freedom (DOF) due to resolvable paths and inter-path correlations; and rapid fluctuations induced by scattering from the moving sea surface. Traditional LS estimation techniques often fail to reconcile the rapid fluctuations with the large dimensionality. Subspace based approaches with DOF reduction are confronted with unstable subspace structure subject to significant changes over a short period of time. Based on state-space channel modeling, the first part of this thesis develops algorithms that jointly estimate the channel as well as its dynamics. Algorithms based on the Extended Kalman Filter (EKF) and the Expectation Maximization (EM) approach respectively are developed. Analysis shows conceptual parallels, including an identical second-order innovation form shared by the EKF modification and the suboptimal EM, and the shared issue of parameter identifiability due to channel structure, reflected as parameter unobservability in EKF and insufficient excitation in EM. Modifications of both algorithms, including a two-model based EKF and a subspace EM algorithm which selectively track dominant taps and reduce prediction error, are proposed to overcome the identifiability issue. The second part of the thesis develops algorithms that explicitly find the sparse estimate of the delay-Doppler spread function. The study contributes to a better understanding of the channel physical constraints on algorithm design and potential performance improvement. It may also be generalized to other applications where dimensionality and variability collide.Financial support for this thesis research was provided by the Office of Naval Research and the WHOI Academic Program Office

    On use of averaging in FxLMS algorithm for single-channel feedforward ANC systems

    Get PDF
    科研費報告書収録論文(課題番号:15560314/研究代表者:川又政征/多次元ディジタルフィルタの最適設計とその画像・映像処理への応用

    Optimal control algorithm design for a prototype of active noise control system

    Get PDF
    High-level noise can represent a serious risk for the health, industrial operations often represent continuous exposure to noise, thus an important trouble to handle. An alternative of solution can be the use of passive mechanisms of noise reductions, nonetheless its application cannot diminish low-frequency noise. Active Noise Control (ANC) is the solution used for low-frequency noise, ANC systems work according to the superposition principle generating a secondary anti-noise signal to reduce both. Nevertheless, the generation of an anti-noise signal with same oppose characteristics of the original noise signal presupposes the utilization of special techniques such as adaptive algorithms. These algorithms involve computational costs. The present research present the optimization of a specific ANC algorithm in the step-size criteria. Delayed Filtered-x LMS (FxLMS) algorithm using an optimal step-size is evaluated in a prototype of ANC system.Tesi

    Active Noise Cancellation: The Unwanted Signal and the Hybrid Solution

    Get PDF

    Imaging the first light: experimental challenges and future perspectives in the observation of the Cosmic Microwave Background Anisotropy

    Full text link
    Measurements of the cosmic microwave background (CMB) allow high precision observation of the Last Scattering Surface at redshift zz\sim1100. After the success of the NASA satellite COBE, that in 1992 provided the first detection of the CMB anisotropy, results from many ground-based and balloon-borne experiments have showed a remarkable consistency between different results and provided quantitative estimates of fundamental cosmological properties. During 2003 the team of the NASA WMAP satellite has released the first improved full-sky maps of the CMB since COBE, leading to a deeper insight into the origin and evolution of the Universe. The ESA satellite Planck, scheduled for launch in 2007, is designed to provide the ultimate measurement of the CMB temperature anisotropy over the full sky, with an accuracy that will be limited only by astrophysical foregrounds, and robust detection of polarisation anisotropy. In this paper we review the experimental challenges in high precision CMB experiments and discuss the future perspectives opened by second and third generation space missions like WMAP and Planck.Comment: To be published in "Recent Research Developments in Astronomy & Astrophysics Astrophysiscs" - Vol I
    corecore