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Stochastic Analysis of the LMS Algorithm for System
Identification With Subspace Inputs
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Abstract—This paper studies the behavior of the low-rank least
mean squares (LMS) adaptive algorithm for the general case
in which the input transformation may not capture the exact
input subspace. It is shown that the Independence Theory and
the independent additive noise model are not applicable to this
case. A new theoretical model for the weight mean and fluctuation
behaviors is developed which incorporates the correlation between
successive data vectors (as opposed to the Independence Theory
model). The new theory is applied to a network echo cancellation
scheme which uses partial-Haar input vector transformations.
Comparison of the new model predictions with Monte Carlo
simulations shows good-to-excellent agreement, certainly much
better than predicted by the Independence Theory based model
available in the literature.

Index Terms—Adaptive filters, least mean square methods,
sparse impulse response, system identification.

I. INTRODUCTION

THE least mean squares (LMS) algorithm is the most pop-
ular adaptive algorithm due to its simplicity and robustness

[1], [2]. It has been studied for decades, and yet its exact be-
havior in certain practical situations is still to be determined.

A recent paper [3] presented a novel scheme for identifying
the impulse response of a sparse channel. An important prac-
tical application for this scheme is in network echo cancellation
(NEC). The advent of voice-over internet protocol (VoIP) [4]
has revived interest in the NEC problem. Communications net-
works must incorporate hundreds of echo cancellers for VoIP.
This usage creates almost a mandatory need for NEC solutions
that use very limited processing power. Adaptive NEC systems
must identify a relatively small number of active samples in
a long impulse response [5]. The scheme proposed in [3] ad-
dressed the sparse response identification through a very fast
initial estimation of the peak of the channel’s impulse response.
It consists of two adaptive filters operating sequentially. The
first adaptive filter adapts using a partial Haar transform of the
input and yields an estimate of the location of the peak of the
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sparse impulse response. The second adaptive filter is then cen-
tered about this estimate. Both filters are short in comparison
to the delay uncertainty of the unknown channel. This way, two
short adaptive filters are used instead of one long filter, resulting
in faster overall convergence and reduced computational com-
plexity and storage. The choice of the Haar transformation is
crucial for this application. The Haar transformation combines
a very simple wavelet implementation with an excellent time lo-
calization performance. The latter property is important for an
accurate peak location estimation.

The scheme was analyzed in detail for a structure using the
LMS algorithm in both adaptive filters. However, it can be
implemented using any combination of adaptive algorithms.
The analysis consisted of two major parts: 1) mean and fluc-
tuation behavior of the weights for both LMS algorithms for
independent and identically distributed (i.i.d.) Gaussian input
data; and 2) an approximate analysis of the mean and variance
of a peak delay estimator scheme. The analytic model in 1)
used the so-called independence assumption (IA) [2], [6]. A
fundamental assumption in IA is that the sequence of input
vectors to the algorithm is i.i.d. [6]. This assumption is clearly
incorrect. However, its use in several analyses has led to im-
portant and useful conclusions about the algorithm’s behavior.
Monte Carlo simulations of the weight variance in [3] were
shown to be in good agreement with the theoretical model for
an independent signal model but in significant disagreement
for a tapped delay-line (TDL) filtering structure. Such results
indicate the need for improvement in the statistical analysis for
the important case of TDL filtering, when lagged input vectors
are not independent.

The limitations of the IA have been studied by several
authors. Studies of the LMS properties without employing IA
started about two decades ago with convergence analyses [6,
and references therein], [7]. More recently, analytical models
have been derived for the behavior of the LMS algorithm
without relying on the IA. For instance, [8] derived conditions
for convergence of first and second moments of the adaptive
weights. A recursive algorithmic procedure was also proposed
in [9]–[11] for the determination of the LMS algorithm be-
havior. An iterative solution has also been proposed in [12]
for determining the steady-state algorithm behavior in which
the first and second moments of the weight error vector are
determined as a sum of partial functions [1]. This procedure
has been later extended to the analysis of the transient adaptive
behavior [13]. All these analyses assume that the residual
estimation error is i.i.d.

The above and other related analyses do not take into account
an important property of the scheme proposed in [3]. The par-
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Fig. 1. Standard adaptive filtering.XXX(n) = [x(n); . . . ; x(n�N + 1)] .

Fig. 2. Partial-Haar dual adaptive filter for sparse channels. XXX(n) =
[x(n); . . . ; x(n �N + 1)] . ZZZ (n) = [z (n); . . . ; z (n)] .

tial Haar transform yields an input to the adaptive filter which
lies in a vector subspace of the unknown system input vector
space.1 Consider the model depicted in Fig. 1. and
are vectors with the impulse responses of FIR filters. This model
can be used as a standard representation of the adaptive filtering
problem [6]. In this diagram, is the impulse response to be
identified. The lower branch represents the impulse re-
sponse of the adaptive filter. is a disturbance term that is
statistically independent of the input [14]. Exact modeling
implies that the optimum estimation error2 is , and,
thus, statistically independent of [6].

Fig. 2 shows the sparse channel echo cancelation problem
studied in [3]. is the Partial-Haar-transformed input
signal vector. The portion of Fig. 2 within the dashed line is
detailed in Fig. 3. The partial Haar transformation results in an
input vector to the Haar domain adaptive filter, , that is
of lower dimension than the input vector [3]. This leads
to an undermodeled system identification problem [14], [15]
where the residual estimation error is correlated with the input
signal. Hence, the system in Fig. 3 does not satisfy either the
condition for application of the IA or the statistical indepen-
dence of the optimum estimation error and the input signal.

The problem described in Fig. 3 can be interpreted as a low
rank adaptive filtering problem [16]–[22] since the adaptive

1To simplify the notation, the words space and subspace will be used from
now on with the meanings of vector space and vector subspace, respectively.

2e (n) is the estimation error whenWWW (n) equals the weight vector that min-
imizes Efe (n)g.

Fig. 3. Adaptive system analyzed, corresponding to the highlighted portion
(within the dashed line) in Fig. 2.WWW (n) is the coefficient vector of the par-
tial Haar domain adaptive filter.

filter operates on a subspace of the input vector space. Low
rank adaptive filtering deals with estimation problems in which
the desired signal in Fig. 3 is composed of a signal derived
from a subspace of the input vector space and an additive noise
that is statistically independent of the input signal. Thus, the
order of the adaptive filter can be reduced to the minimum
necessary subspace dimension for efficiency. The reduced
order basis is usually found from an analysis of the input
data. If the optimal basis can be determined, the reduced order
adaptive filter leads to the same optimal performance as the full
order adaptive filter but with the least complexity. In general,
a close-to-optimal basis is obtained and part of the residual
estimation error power is correlated with the input signal [17],
[18].

Much of the low rank adaptive filtering literature addresses
the problem of searching the optimal subspace. These analyses
focus on the least squares (LS) formulation. The LS formulation
results in a simple structure based on the properties of orthog-
onal transformations and eigenvalue decompositions. No anal-
ysis is generally available for the transient behavior of the low
rank LMS algorithm. [19] presents a transient analysis of low
rank transform domain adaptive filtering, assuming the knowl-
edge of the exact subspace dimension. In this case, most of
the classical results available for the LMS algorithm are readily
applicable [19].

The motivation for the system studied in this paper is different
from most low rank adaptive filtering studies. Here, the trans-
formation basis is chosen to enable a good estimate of the time
location of the impulse response’s peak with the least possible
complexity. An accurate identification of the unknown response
is not required. The accurate estimate will be performed later by
a second time-domain adaptive filter centered about the peak’s
estimate. Of great concern also is convergence speed. Nearly all
of the time, devoted to the unknown response estimation, is used
by the second time domain adaptive filter. Thus, these are the
reasons for choosing a partial (low order) Haar (time localiza-
tion) transformation – few adaptive weights and moderate accu-
racy for the peak estimate. The problem studied here in a broader
sense corresponds to a low rank finite impulse response (FIR)
LMS adaptive filtering problem with a suboptimal input sub-
space representation. Thus, the analysis results presented here
are valid for any order reducing transformation that is a projec-
tion of the input data onto an orthonormal basis.



1020 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 3, MARCH 2008

A mathematical model is derived for the first and second order
moments of the LMS weight vector. The resulting model is
more accurate than the model in [3] for the tapped delay-line
structure which used an i.i.d. input vector sequence assump-
tion. The new model can also be used to study the transient
behavior of low rank adaptive filters employing order reducing
orthonormal input transformations and the LMS algorithm. The
new analysis differs from previous analyses in two major ways:
1) The residual estimation error is correlated in time and 2) the
residual estimation error is not statistically independent of the
input signal. The new model yields good-to-excellent agreement
with Monte Carlo simulations of the mean and fluctuation be-
haviors of in Fig. 3.

For the structure in Fig. 3 and a tapped delay line filter, this
paper shows that:

a) the optimum estimation error is correlated in time and
correlated with the input regressor of the Haar-domain
adaptive filter; and

b) the adaptive filtering problem corresponds to a linear com-
biner with time-correlated orthogonal input signals.

A new formulation is introduced for the statistical analysis of
the LMS weight vector behavior operating on a subspace of the
input signal space. This problem cannot be studied using the
i.i.d. input vector sequence assumption. The new formulation
takes into account the correlation between the estimation error
and the input vector.

This paper is organized as follows. Section II describes the
problem studied and discusses important properties of both the
transformed input vector and the estimation error. These prop-
erties justify the need for a new analysis approach. Section III
formulates the analysis problem, presents the statistical assump-
tions used and introduces a mathematical model for the adap-
tive weight updating. Section IV computes the weight mean and
fluctuation behavior using this solution and avoids the use of
the independence assumption. Section V presents Monte Carlo
simulation results which support the theoretical approximations
made in the analysis.

II. PROBLEM DESCRIPTION

This paper studies the behavior of the system in Fig. 3. The
input vector is .
The order reducing transform is represented by a ma-
trix ,3 and is the number of adaptive weights
in the transformed domain adaptive filter. The dimension
is chosen according to design considerations discussed in
[3]. The adaptive weights are elements of the 1 vector

. The input to the transformed
domain adaptive filter is the transformed 1 input
vector . The trans-
formed domain adaptive filter attempts to estimate the desired
signal which is assumed related to by

(1)

3In keeping with the notation used in [3], the subscript M relates to the di-
mension of the full Haar transform matrix of whichHHH is part. The subscript
p stands for partial.

where is the Wiener
solution for the linear estimation of from the observations
in , and is zero-mean, i.i.d. and statistically inde-
pendent of . The estimation error is the error for
the problem of estimating from observations of the trans-
formed vector .

Given the above conditions, two important properties of adap-
tive filtering in the transformed domain must be clearly under-
stood. These properties will be derived here for the particular
case of the partial-Haar transformation used in [3]. The conclu-
sions are valid, however, for any order reducing transformation
that projects the input vector onto an orthonormal basis.

A. The Nature of

A full Haar transform with (3 scales in the wavelet
transform) is implemented by a matrix given by [3]

(2)

If the second scale is used for the partial Haar transformation,
the 2 8 partial matrix becomes:

(3)

In general, for a given value on and considering the
choice of scale ( ) for the partial transfor-
mation, the number of adaptive coefficients is . The
number of nonzero elements in each row of will be .
For instance, if ( ), using the second scale
( ) leads to coefficients, and each row of
will have only four nonzero elements.

Since , each sequence ,
, corresponding to the time evolution of the th com-

ponent of will be a linearly filtered version of the input
sequence . Thus, the are random sequences cor-
related in time. Moreover, the rows of are orthogonal to
each other (in the vector sense). Then, input sequences
and , , are statistically orthogonal for an i.i.d.
input process . These sequences are the inputs to adap-
tive weights and , respectively. Thus, for

, where is the -dimensional identity matrix, it is
easy to verify that . Also,

[3].

B. Properties of the Estimation Error

The order reducing transformation leads to trans-
formed input vectors that lie in a -dimensional
subspace spanned by the columns of . is a
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linear transformation on the input signal. Thus, the op-
timum weight vector in the transformed domain4 is given by

, which reduces to
for white inputs.

An important consequence of undermodeling (an order re-
ducing transformation that does not capture the exact input sub-
space) is the nature of the optimum estimation error. From Fig. 3
and using the expression , the estimation
error is given by

(4)

Using (1) in (4) and evaluating the optimum estimation error
, which corresponds to for , yields

(5)

From (5), the lagged autocorrelation of can be easily
evaluated as

(6)

where is the power of and for
and equal to zero otherwise.

Since even for white ,5 the
condition for to be uncorrelated is

(7)

which cannot be satisfied unless is in the row space of .
This special case would correspond to the optimal transforma-
tion, leading to a complete cancellation of the part of which
is correlated with . Thus, in general, must be consid-
ered correlated in time, while the use of the IA in (6) would lead
to the erroneous conclusion that is uncorrelated in time.

Straightforward calculation also shows that

(8)

For to be uncorrelated with , it is required that

(9)

which is true if (7) holds or if , since
.6 Excluding the case of exact

subspace modeling [(7) satisfied], this result shows that the
residual estimation error is correlated with . Thus, the

4The weight vector that minimizes Efe (n)g for the given transformation
matrix HHH .

5For x(n) white, E XXX(n)XXX (m) 6= 0 for n � (N � 1) � m � n +

(N � 1).
6Note that for m = n (8) becomes Efe (n)ZZZ (n)g = 0, which must be

satisfied by the orthogonality principle.

use of the IA would lead to erroneous results. Statistical
tests of the residual estimation error autocorrelation and the
residual estimation error and the input signal cross-correlation
are frequently used in linear system identification for model
validation [14], [15].

Equations (5) and (7) show that the optimum estimation error
(for a given transformation ) consists of the addi-

tive white noise , statistically independent of , plus a
second nonzero term (except when is the exact subspace
modeling transformation). This second term is correlated in time
[see (6)] and cannot be cancelled by the subspace adaptive filter.
The second term is also correlated with [see (8)]). The
second term is the main reason why the IA-based model derived
in [3] leads to poor results for a tapped delay line filter structure.
Equations (5) and (7) also show that the analysis technique must
consider the statistical correlation between the estimation error
and . Such analysis is not available in the literature and
requires a new approach.

III. FORMULATION OF THE ANALYSIS PROBLEM

This section presents the statistical analysis of the LMS adap-
tive algorithm under the conditions described in the previous
section. This analysis corresponds to the following adaptive fil-
tering setup.

1) The adaptive structure is characterized as a linear combiner
with statistically orthogonal inputs , ;

2) The input sequences are correlated in time;
3) The sequence of 1 input vectors

is obtained from a sequence of 1
random vectors

with by the linear transformation

(10)

where is a matrix as defined in Section II-A.

A. Model Assumptions

The following analysis assumes that:
: The input signal is stationary, i.i.d., zero-mean

and Gaussian. Thus, the input vector has autocorre-
lation matrix , where
is the identity matrix.

and for all and are zero-mean
jointly stationary Gaussian sequences.

: An appropriate delay has been introduced in the signal
path to compensate for the extra delay introduced in the
adaptive path by the transformation.

It has been shown that the minimum delay required
for a wavelet decomposition with levels is

, where and
are, respectively, the lengths of the longest and the shortest
analysis filters associated to the wavelet decomposition [23].
Implementations using linear transformations which are not
wavelet decompositions will have specific delays which should
be evaluated. This is a necessary step for proper system im-
plementation. Assume the correct delay has been introduced.
Thus, the analysis can be performed independent of .
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Input vectors and are considered statistically de-
pendent for . Thus, the IA cannot be used. More-
over, the existing analysis techniques which avoid IA cannot be
used because the residual estimation error is not i.i.d..

The stationary Gaussian signal model is not necessarily rep-
resentative of speech, since speech is highly nonstationary and
non-Gaussian. However, the theoretical approach and results
obtained with Gaussian signal models are suggestive of the fun-
damental analysis and design issues [2], [24]–[29]. The i.i.d. as-
sumption for also departs from the speech signal model.
However, the problem studied corresponds to a linear combiner
with input sequences correlated in time. Thus, the following
analysis already considers a form of input signal correlation.
The i.i.d. nature of the input signal limits the correlation
between different input sequences to the linear combiner. This
assumption keeps the mathematical analysis problem tractable,
while preserving the time correlation property of the input se-
quences . Furthermore, sparse systems are not restricted
to speech applications [30] and the results derived in this paper
may prove useful for other applications.

The analysis here assumes that (see Fig. 1) has a finite
impulse response. The analysis is performed in the time domain.
Thus, the analytical approach here applies to systems with any
frequency response whose impulse response can be modeled by
an FIR filter.

B. A Mathematical Model

The LMS weight recursion for the transformed domain adap-
tive filter Fig. 3 is given by [3, eq. (14)]

(11)

Subtracting the optimum weight vector
from both sides of (11) and defining
yields a recursion for ,

(12)

Equation (12) is analogous to [28, eq. (9.46)] but is for the real
rather than complex LMS algorithm. The last term in brackets
is the Wiener error (i.e., the error obtained using the optimum
Wiener filter), defined as . The
expected value of the last term in (12) is
from the orthogonality principle.

To determine the stochastic algorithm behavior, the
well-known approach [28] uses (12) to derive recur-
sions for the mean and the covariance matrix

. The problem with this approach is that the
recursion for occurs only when the assump-
tion for is used. Otherwise, the

recursion involves for as well. If
one attempts to derive a recursion for , then
expectations involving and appear unless one
invokes the independence assumption again.

Our approach to this analysis requires an approximation to
(12) that has a closed form solution so as to avoid the problems
described above with the recursive solution. To this end, the term

can be written as a mean plus a fluctuating part

(13)
Inserting (13) in (12) yields

(14)
Equation (14) can be viewed as a deterministic recursion

for driven by two random inputs: and
. During the beginning of the transient phase of

adaptation (small ), the fluctuations of are small com-
pared with , and can be approximated
by . This approximation becomes less accurate
for moderate values of and as the step size increases.
Close to convergence tends to zero and the input
to the recursion can be approximated by if the
fluctuations in are sufficiently small so that7

(15)

for , where the subscript stands for the th compo-
nent of the vector. Approximation (15) is more valid for smaller
step sizes.

Assuming (15), (14) can be approximated by the recursion

(16)

Equation (16) can be used to explicitly determine the effects
of for on the behavior of the
weight error vector. Equation (16) implicitly assumes that IA
holds for the mean behavior of .

Viewing the last two terms on the right-hand side (RHS) of
(16) as forcing terms, (16) has an explicit closed form solution

(17)

Equation (17) represents a deterministic system with random
inputs and can be used to determine the response to corre-
lated inputs vectors ,

.

7Condition (15) is a small fluctuation assumption, not uncommon in analysis
of adaptive filters.
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TABLE I
SIGNIFICANT COEFFICIENTS OF THE PARTIAL-HAAR TRANSFORMS OF THE SPARSE RESPONSE FOR DIFFERENT BULK DELAYS

IV. STOCHASTIC BEHAVIOR ANALYSIS

A. Mean Weight Behavior

Averaging (17) and using the orthogonality principle

(18)

since . This result coincides with that obtained
from the IA model. Such coincidence is expected since the ef-
fects of input vector cross-correlation on the mean weight anal-
ysis are ignored in the approximation (16). Fortunately, this is
not the case for the weight fluctuation behavior, as will become
clear in the next section.

B. Weight Fluctuation Behavior

The covariance matrix of is

(19)

The evaluation of the expected values in (19) is detailed in
Appendix I, and leads to

(20)

where, defining

(21a)

(21b)

(21c)

(21d)

and

(21e)

with and as defined in Appendix I [(25) and
(26), respectively].

V. SIMULATION RESULTS

To verify the accuracy of the theoretical model, several
Monte Carlo simulations were carried out for different sets
of parameters. Consider the symmetric exponential channel
impulse response

(22)

for and , which is located in a span of
samples, leading to a sparse channel response. This is the same
response used in [3], and is again used here to facilitate compar-
ison. The optimum Partial-Haar responses for ,
128 and 64 were obtained from the dot product of and the
rows of the associated (inserting enough zeros so that the
dot product is defined). The channel bulk delay was varied from
zero to eight taps. The variable bulk delay represents the random
delay of the channel with respect to the 1024-tap time span. The
additive measurement noise was made equal to zero to em-
phasize the effects of the rank reducing transformation on the
mean square deviation.

The Partial-Haar transforms of the different channels are
shown in Table I [3].8 Figs. 4–6 show the tap weight vari-
ance over time, estimated from Monte Carlo simulations by
computing

for , 128 and 64 and for different

8Different bulk channel delays yield different partial Haar transforms for the
same impulse response. Table I presents some of these. All results for this im-
pulse response can be found in [3, Table I].
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Fig. 4. Weight variance tr[QQQ(n)] for q = 256, maxfw g = 0:375.
Theory (smooth plots), 100 MC Simulations (jagged plots) – Upper plots -In-
dependent (theory from [3]), Lower plots -TDL [theory from (20)].

Fig. 5. Weight variance tr[QQQ(n)] for q = 256, maxfw g = 0:5625,
Theory (smooth plots), 100 MC Simulations (jagged plots) – Upper plots -In-
dependent (theory from [3]), Lower plots -TDL [theory from (20)].

values of , the maximum value of . The
step sizes used were given by (about 1/20
of the stability limit) and in all cases. The adap-
tive filter coefficients were initialized at , or

. The theoretical curves were
obtained from (20). For comparison purposes, the simulations
are shown for a representative sample of the cases studied
in [3] and the figures also present the plots corresponding to
a sequence of statistically independent input vectors .
The curves identified as “TDL” in each plot correspond to the
theoretical results obtained using (20) and the Monte Carlo
simulations for a tapped delay line filter structure. The curves
identified as “Independent” correspond to the model in [3]
and simulations for statistically independent input vectors
satisfying for . Note that
there is good-to-excellent agreement between the theory and

Fig. 6. Weight variance tr[QQQ(n)] for q = 128, maxfw g = 0:3315.
Theory (smooth plots), 10 MC Simulations (jagged plots) – Upper plots -TDL
[theory from (20)], Lower plots – Independent (theory from [3]).

simulations, especially when one compares these results with
those in [3] for the IA model. Fig. 6 ( )
illustrates the difficulty of the new model to accurately predict
the algorithm behavior for large step sizes, small values of
(large scales) and small peak values of the partial-Haar trans-
formed impulse response. Fig. 4 shows some mismatch in the
steady-state behavior between the TDL theory and simulations.
However, the independence theory model clearly does not
provide good predictions, even in steady state, for this case.
Fig. 5 shows that the accuracy of the new model is excellent
throughout all phases of adaptation, especially in steady state. It
is conjectured that the mismatch in Fig. 4 is due to the relatively
small value of as compared to that of Fig. 5.
This is because displays the attenuation of
( ) caused by the partial Haar transformation.
The spreading caused by the transformation can cause a signifi-
cant loss of the peak value of the impulse response (see Table I)
as seen through the partial Haar transform. This conjecture was
also supported by simulation results obtained for the remaining
cases in [3].

VI. CONCLUSION

This paper has developed a new theoretical model for pre-
dicting the behavior of the first and second moments of the LMS
algorithm with a tapped delay line filtering structure for a low
rank system identification problem. The analysis considered the
general case of order reducing transformations which do not
capture the exact input subspace. The new theory was applied to
the partial-Haar transformed adaptive filtering scheme proposed
in [3] for network echo cancellation. The theoretical predictions
were found in good-to-excellent agreement with Monte Carlo
simulations. This was not the case for the theoretical model
based on the Independence Theory assumption derived in [3].
The new model can be used to better design the scheme pro-
posed in [3] for estimating the location of the peak of an un-
known impulse response for a sparse channel. It can also be
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used to study the transient behavior of low rank adaptive systems
driven by the LMS algorithm and using different input subspace
estimation strategies. Finally, it is anticipated that the present
analysis can be easily extended to the case of complex signals,
coefficients and transformations with the proper considerations
regarding specific mathematical evaluations such as the use of
the Gaussian moment factoring theorem.

APPENDIX I
EVALUATION OF EXPECTED VALUES IN (19)

The expectations in the third line of (19) can be factored using
the Gaussian moment factoring theorem for real variates [28,
p. 318]. The first expectation can be written

(23)

The second term on the RHS is zero from the orthogonality
principle and disappears from the summation. When the projec-
tion onto the correct input subspace is used (and, thus, IA holds),
the third term on the RHS is zero for all and and the first
term on the RHS is also zero for . This is not the case in
general, and (23) needs to be carefully evaluated. The various
terms are evaluated in Appendix II yielding

(24)

where

(25)

and

(26)

The expectation of the second term in the brackets in (19) can
be evaluated as follows:

(27)

where from (18). Expanding the
term in brackets yields

(28)

Note that the product of the middle four factors in the expec-
tation is equivalent to the product of two scalars so that Gaussian
moment factorization can be immediately applied, yielding

(29)

Using (14), the third term within the brackets in (19) can be
written as

(30)

Noting that and are scalars and using
the moment factorization theorem yields

(31)

The first term in (31) is zero both because the first term is zero
by the orthogonality principle and because . Using
the expressions for and , the second term can be
expanded as

(32)

where the definition of and the fact that is indepen-
dent and zero-mean have been used to obtain the last expression.

The second expectation in (32) is

(33)
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with defined below (24). Inserting (33) in (32) yields

(34)

for the second term in (31).
For the third term in (31), the expectation is

the transpose of (33). The remaining expectation is given by

(35)

Thus, the third term in (31) is

(36)

Finally, entering (34) and (36) in (31), using (18) and factoring
out common matrix terms from both sides yields

(37)

The last expectation in (19) is the transpose of (37) with and
exchanged. Thus

(38)

Inserting (29) in (28), and then using (24), (28), (37) and (38)
in (19) yields (39), shown at the bottom of the page.

The double sums in (39) can be simplified to single sums by
a change of variable and an interchange of the order
of the double sum yielding (20).

APPENDIX II
EVALUATION OF (24)

Consider first

(40)

The matrices and
appear in many places in the subsequent calculations. In the case
of partial Haar transformations is an sparse matrix
with all zeros except on the main diagonal and the adjacent 3
or 7 or 15 off-diagonal terms for Haar 256, Haar 128, and Haar
64 transforms, respectively. is idempotent. The middle ex-
pectation term is a sparse matrix with only on the
off-diagonal and zeros elsewhere. If , then the upper
diagonal is nonzero. If , then the lower diagonal is
nonzero. When , the matrix is null, displaying the
independence of input vectors which are separated in time by
more than the length of the delay line.

Thus, the first term in (23) is

(41)

The third line in (23) is .
Now

(42)

Hence

(43)

Inserting (41) and (43) in the left–hand side (LHS) of (24)
leads to the RHS of (24).

(39)
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