438 research outputs found

    A bounded upwinding scheme for computing convection-dominated transport problems

    Get PDF
    A practical high resolution upwind differencing scheme for the numerical solution of convection-dominated transport problems is presented. The scheme is based on TVD and CBC stability criteria and is implemented in the context of the finite difference methodology. The performance of the scheme is investigated by solving the 1D/2D scalar advection equations, 1D inviscid Burgers’ equation, 1D scalar convection–diffusion equation, 1D/2D compressible Euler’s equations, and 2D incompressible Navier–Stokes equations. The numerical results displayed good agreement with other existing numerical and experimental data

    A coupled implicit-explicit time integration method for compressible unsteady flows

    Get PDF
    This paper addresses how two time integration schemes, the Heun's scheme for explicit time integration and the second-order Crank-Nicolson scheme for implicit time integration, can be coupled spatially. This coupling is the prerequisite to perform a coupled Large Eddy Simulation / Reynolds Averaged Navier-Stokes computation in an industrial context, using the implicit time procedure for the boundary layer (RANS) and the explicit time integration procedure in the LES region. The coupling procedure is designed in order to switch from explicit to implicit time integrations as fast as possible, while maintaining stability. After introducing the different schemes, the paper presents the initial coupling procedure adapted from a published reference and shows that it can amplify some numerical waves. An alternative procedure, studied in a coupled time/space framework, is shown to be stable and with spectral properties in agreement with the requirements of industrial applications. The coupling technique is validated with standard test cases, ranging from one-dimensional to three-dimensional flows

    Dynamics of Numerics & Spurious Behaviors in CFD Computations

    Get PDF
    The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD

    Nonlinear dynamics and numerical uncertainties in CFD

    Get PDF
    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations

    Adaptive multiresolution computations applied to detonations

    Full text link
    A space-time adaptive method is presented for the reactive Euler equations describing chemically reacting gas flow where a two species model is used for the chemistry. The governing equations are discretized with a finite volume method and dynamic space adaptivity is introduced using multiresolution analysis. A time splitting method of Strang is applied to be able to consider stiff problems while keeping the method explicit. For time adaptivity an improved Runge--Kutta--Fehlberg scheme is used. Applications deal with detonation problems in one and two space dimensions. A comparison of the adaptive scheme with reference computations on a regular grid allow to assess the accuracy and the computational efficiency, in terms of CPU time and memory requirements.Comment: Zeitschrift f\"ur Physicalische Chemie, accepte

    High-order ENO schemes applied to two- and three-dimensional compressible flow

    Get PDF
    High order essentially non-oscillatory (ENO) finite difference schemes are applied to the 2-D and 3-D compressible Euler and Navier-Stokes equations. Practical issues, such as vectorization, efficiency of coding, cost comparison with other numerical methods, and accuracy degeneracy effects, are discussed. Numerical examples are provided which are representative of computational problems of current interest in transition and turbulence physics. These require both nonoscillatory shock capturing and high resolution for detailed structures in the smooth regions and demonstrate the advantage of ENO schemes

    A higher order numerical method for transonic flows

    Get PDF
    This thesis presents and verifies a numerical method for solving the compressible Euler equations. The method is based on a finite volume method with an upwind type TVD dissipation terms originally developed by Harten ( 1983 ) for scalar hyperbolic conservation law and extended to Euler equations by using Roe's approximate Riemann solver. The present method has second-order accurate in smooth region of the solution and intelligently switches the scheme to first-order accurate in the vicinity of shocks to presents a sharp and smooth shock wave profile. The present method contains no user-dependent and problem-dependent parameters. An explicit multistage Runge-Kutta time stepping is used to integrate the system. A multigrid method is employed in the present method to accelerate to convergence. Meanwhile a fully implicit time integration scheme is also investigated and adopted in this method. The explicit multistage time stepping with the multigrid acceleration is modified to solve the fully implicit system. The present method is programmed in two-dimensions for the Euler equations aiming at the application to internal flows. Numerical experiments are carried out to test the accuracy and the efficiency of the present method. Results compare well with exact solutions and perform better than some well-documented results. The desired efficiency is obtained. The connection between central difference and upwind difference is investigated. It is found that the widely used Jameson's central differencing plus explicit adaptive artificial viscosity can be interpreted as a hybrid scheme by a weighted average of a first order upwind scheme and a second order upwind scheme
    corecore