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a b s t r a c t

A practical high resolution upwind differencing scheme for the numerical solution of convection-domi-
nated transport problems is presented. The scheme is based on TVD and CBC stability criteria and is
implemented in the context of the finite difference methodology. The performance of the scheme is
investigated by solving the 1D/2D scalar advection equations, 1D inviscid Burgers’ equation, 1D scalar
convection–diffusion equation, 1D/2D compressible Euler’s equations, and 2D incompressible Navier–
Stokes equations. The numerical results displayed good agreement with other existing numerical and
experimental data.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The development of fast, reliable and accurate numerical
approximations for the convection terms of hyperbolic conserva-
tion laws and transport equations in fluid dynamics has presented
a continuing challenge. The most frustrating obstacle has been the
attempt to prevent the unbounded growth of the unphysical spa-
tial oscillations in the vicinity of sharp changes in gradients, or
jump discontinuities. It is also essential that certain transport vari-
ables remain bounded within physical limiting values. For exam-
ple, the fluid depth in shallow water flows, the mixture fraction
of reacting flows, the kinetic energy in turbulent flows, or species
concentration all cannot fall below zero. Previous studies by Smith
and Hutton [54] (see also van Albada et al. [64] and van Leer [69])
have shown that upwinding schemes may produce nonphysical
results when boundedness is not preserved.

In order to obtain stable, bounded and physically plausible solu-
tions, the classical first order upwind (FOU) difference scheme [21]
– or the hybrid central upwind (HCU) [48,58] – is often adopted.

However, this scheme is generally unsuitable for applications
involving long time evolution of complex flows (unless extremely
fine meshes are employed), mainly because extrema can become
‘‘clipped’’ and numerical dissipation (even spatial derivatives) can
become dominant (see Refs. [13,46,59]).

The cure for this has been to use conventional schemes, such as
central differences (CDs), second-order upwind (SOU) [70], and
quadratic-upstream interpolation for convective kinematics
(QUICK) [39] (or its related QUICK with estimated streamline terms
(QUICKEST) [41]), to name just a few. However, under highly con-
vective conditions, these schemes also inevitably generate spuri-
ous numerical (or non-monotonic) oscillations (wild [17] or
parasitic solutions [25]) and instabilities in regions where the con-
vected variables experience discontinuities.

To overcome these defects, a number of monotonic high-order
upwind schemes have appeared in the published literature such
as, for example, the sharp and monotonic algorithm for realistic
transport (SMART) [24], the simple high accuracy resolution pro-
gram (SHARP) [40], the variable-order non-oscillatory scheme (VO-
NOS) [65], the weighted-average coefficient ensuring boundedness
(WACEB) [57], the convergent and universally bounded interpola-
tion scheme for the treatment of advection (CUBISTA) [5], and an
adaptive bounded version of the QUICKEST (ADBQUICKEST) [23].
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In addition, from a more ‘‘compressible’’ point of view, one may
add to this list the monotone upstream scheme for conservation
laws (MUSCL) originally pioneered by van Leer [68] and the
associated limiters developed for the past 20 years: van Leer
[66,67], van Albada [64] (and its variants), Koren [35], Osher [47],
Superbee [7], Minmod [28], among others. The main objective of
these schemes is to recover smooth solutions from those that are
contaminated by oscillations and, at the same time, to improve
the rate of convergence. It should be also noted, however, that
these schemes (some of them at least), though performing well
on some problems, cannot be bounded in situations such as shock
phenomena in compressible flows (see, for instance [37,44]) and/or
incompressible viscoelastic flow calculations with hyperbolic con-
stitutive models (see, for instance [73]). Lin and Chieng [43] and
Lin and Lin [44], for example, observed that the SMART and SHARP
schemes, although preserving high-order accuracy, produce high
levels of oscillations in the case of the unsteady one-dimensional
shock tube problem; Alves et al. [4], using high-order upwind
schemes, ran a series of tests to simulate viscoelastic flows and
observed that the computations suffered from convergence diffi-
culties when the mesh was refined, and had a strong tendency to
oscillate.

Hence, the need for simple, accurate, efficient and robust up-
wind differencing schemes for approximating nonlinear convective
terms of conservation laws and related unsteady fluid dynamics
equations continues to stimulate a great deal of research. This is
the prime motivation for the upwind scheme presented in this
work. Further motivation for development of upwind differencing
schemes for approximating convective terms lies in the desire of
the authors to develop a numerical technique that will be equally
applicable both to compressible and incompressible problems.

Possibly because advection is one of the most expensive pro-
cesses in many numerical models, it is not surprising that mathe-
matically equivalent high resolution upwind schemes have been
invented independently, often from a different conceptual basis.
For example, the SMARTER scheme of Choi and his co-authors
[19] (see also the original Ref. [55]) is equivalent to the ISNAS of
Zijlema [76] and the CHARM of Zhou et al. [77]; the CROWLEY
scheme of Tremback et al. [63] is equivalent to the QUICKEST of
Leonard [41]; and HARMONIC of van Leer [68] was renamed as
HLPA by Zhu [79].

In this work, a new high resolution upwind scheme, called TO-
PUS (Third-Order Polynomial Upwind Scheme) is presented for
simulating compressible and incompressible flows; it may be
viewed as a generalization of the SMARTER scheme (see [19])
and follows the basic idea of constructing a numerical flux function
using a combination of low and high order schemes through some
switching function (limiter), which assesses local variation in the
solution. This scheme approximates the advective fluxes at the cell
boundaries with 1st, 2nd or 3rd order accuracy and displays little
dissipation at high wave number. The expectation is that the use
of this new polynomial upwind scheme will enable us not merely
to capture a shock, but also to resolve the delicate features and
structures of complex flows. In the derivation of the TOPUS
scheme, the total variation diminishing (TVD) and convection
boundedness criterion (CBC) are employed for the stability of the
solution; they also offer some flexibility in the construction of
the higher-order upwind bounded schemes.

It is important to bear in mind that there exists another very
successful class of high resolution shock-capturing schemes,
namely, the essentially non-oscillatory (ENO) [34] (and its related
weighted ENO (WENO) [9]). However, in comparison with the TO-
PUS scheme, the implementation of the ENO scheme can be diffi-
cult. For example, when dealing with systems of equations, the
ENO scheme requires the decomposition of the characteristic vari-
ables applied to each component of the vector of the characteristic

variable; then the numerical flux is required to be transformed
back to physical space (for more details, see [74]). Nonetheless,
there is no doubt that the ENO and WENO schemes are excellent
methods for compressible flow computation.

The main focus of the paper is to put forward an alternative uni-
versal numerical technique which can cope with both compress-
ible and incompressible fluid flows. However, the paper may also
be regarded as a review of existing bounded upwinding schemes,
the best of which (in the authors’ opinion) have been implemented
so that a comparison may be made with TOPUS.

The structure of the paper is as follows. In Section 2, we present
the mathematical formulation of the TOPUS scheme, a discussion
about the implementation of the scheme and finally a summary
of those schemes that are to be compared with TOPUS. The numer-
ical solutions for 1D and 2D problems are presented in Section 3 to
illustrate the versatility and robustness of TOPUS. Section 4 con-
tains a few concluding remarks.

2. The TOPUS scheme and its implementation

In this section, the TOPUS scheme will be derived and then is-
sues concerning implementation will be discussed. Also, a listing
of the schemes to be compared with TOPUS will be presented.

2.1. Description of the scheme

Before proceeding to the derivation of the TOPUS convective
scheme, it is essential to introduce the normalized variables (NV)
of Leonard [41] and the conditions required for the construction
of a monotonic upwinding scheme [40,41] (using the CBC criterion
of Gaskell and Lau [24]). To clarify our approach, consider the 1D
linear advection equation

@/
@t
þ a

@/
@x
¼ 0; ð1Þ

together with appropriate initial and boundary conditions. In Eq.
(1), / = /(x, t) is the dependent variable and a is the convection
speed (constant). The solution of this equation can be approximated
by the conservative finite difference method

/nþ1
i ¼ /n

i � h /n
iþ1=2 � /n

i�1=2

� �
; ð2Þ

where /n
i is the numerical solution at mesh point (idx, ndt), with dx

and dt being space and time increments in the x- and t-directions,
respectively, and h ¼ a dt

dx
is the Courant number. In the above equa-

tion, /n
iþ1=2 and /n

i�1=2, denoted by /f and /g respectively (see Fig. 1),
are approximations for the convected variable / which, in this pa-
per, will be calculated, according to the sign of the local advection
velocity, V(�) = V(through a control surface), as a function of the values at
three selected neighboring points (two upwind, U and R, and one
downwind D). For example, in Fig. 1 the f face is presented together
with its advection velocity Vf > 0 and neighboring nodes i + 1 = D,
i = U and i � 1 = R. The variation of a convected quantity / through,
for example, the boundary face f between two control volumes can

Fig. 1. Advection velocities through f and g faces, and neighboring nodes of these
faces.
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be represented by a functional relationship linking values /D,/U and
/R, which represent, respectively, the Downstream, the Upstream
and the Remote-upstream locations with respect to the advection
velocity Vf at this face. The neighbors of the g face can be similarly
classified. If this functional relationship, involving these three
neighboring positions, is prescribed, then the value of the interface
convected variable can be determined. To this end, the original
variable / is transformed into the NV of Leonard [41] by

/̂ðx; tÞ ¼ /ðx; tÞ � /n
R

/n
D � /n

R

: ð3Þ

The advantage of this normalization is that the interface value /̂f

depends on /̂n
U and h only, since /̂n

D ¼ 1 and /̂n
R ¼ 0. From now on,

the superscript n will be omitted for simplicity. The CBC is a
condition for achieving computed boundedness if only three neigh-
boring values are used to approximate the interface numerical con-
vected variables. According to Leonard [40,41], a bounded high
resolution second and/or third order accurate scheme (in general,
nonlinear) within the CBC region must pass through points O(0,0),
Q(0.5,0.75), P(1,1) and with inclination of 0.75 at Q. Passing through
Q will provide second order accuracy and passing through Q with a
slope of 0.75 will give third order accuracy.

The TOPUS scheme is derived by assuming that the NV at the
cell interface f ; /̂f , are related to /̂U by a fourth degree polynomial
function for 0 < /̂U < 1, and a linear function (the FOU scheme) for
/̂U 6 0 and /̂U P 1. The four conditions of Leonard presented
above, plus a free condition, are imposed to obtain

/̂f ¼
a/̂4

U þ ð�2aþ 1Þ/̂3
U þ 5a�10

4

� �
/̂2

U þ �aþ10
4

� �
/̂U ; /̂U 2 ð0;1Þ;

/̂U ; /̂U R ð0;1Þ;

(
ð4Þ

where a is an adjustable constant in the interval [ � 2,2]. If a = 0,
then TOPUS falls into the CBC region of Gaskell and Lau [24] and
corresponds to the SMARTER scheme of Choi and co-authors [19]
(see also Waterson and Deconinck [71]). By imposing an inclination
of 1 at point P (i.e. a continuously differentiable function at P), one
obtains a = 2. Fig. 2 depicts the TOPUS scheme for the case a = 2,
where one can see that it is entirely contained within the TVD re-
gion of Harten [29]. Other values of a ensure that TOPUS falls within
the CBC region. In practice, it is necessary to be careful. For incom-
pressible flows, it can be chosen from [�2,2] and boundedness will
be ensured; a good choice is a = 0 or a = 2. For compressible flows,
one must set a = 2 to guarantee the TVD criterion.

Let rf be a local shock sensor satisfying Sweby’s monotonicity
preservation condition when rf tends to zero. Then the correspond-
ing flux limiter w = w(rf) for the TOPUS scheme when a = 2 is de-
duced as follows. The variable rf is the ratio of upstream to
downstream (consecutive) gradients

rf ¼
@/
@x

� �
f

@/
@x

� �
g

; ð5Þ

which, for uniform meshes, can be rewritten as

rf ¼
/U � /R

/D � /U
; ð6Þ

and, in terms of the NV, expressed as

rf ¼
/̂U

1� /̂U

: ð7Þ

Consider the general approximation (FOU scheme plus an anti-
diffusive term) to the convected variable at the f face

/̂f ¼ /̂U þ
1
2

wðrf Þð1� /̂UÞ: ð8Þ

From Eq. (4), with a = 2, Eqs. (7) and (8), one determines w(rf) as

wðrf Þ ¼
ðjrf j þ rf Þ½3rf þ 1�
ð1þ jrf jÞ3

: ð9Þ

Fig. 3 displays the TOPUS flux limiter (9) in the rf � w(rf) plane. It
can be seen that the TOPUS flux limiter is a smooth function of rf

(>0) (see Zijlema [76] and Piperno et al. [49]), so there would appear
to be a real possibility that it might perform better than other well
recognized TVD schemes.

It is important to recognize that the TOPUS upwind scheme
developed here, for calculating flux derivatives, is derived from
1D theory; and in multidimensional cases, it has to be applied (fol-
lowing Zhang and Jackson [75]) to each of the coordinate directions
separately.

2.2. Implementation issues

In this subsection, we show how TOPUS (and other upwinding
schemes) may be incorporated into the discretized form of a num-
ber of model equations. In addition, a brief discussion concerning
the stability of the computations and the choice of the CFL param-
eter is provided. In all calculations, for simplicity, first order

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2
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1

1.2 TOPUS
Q=(0.5,0.75)
TVD region

Fig. 2. TOPUS with a = 2 on TVD region.
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Fig. 3. Flux limiter w(rf) for the TOPUS with a = 2 on TVD region.
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explicit methods have been used for marching forward in time, ex-
cept for the 1D inviscid Burgers equation, in which the 3th-order
accurate explicit TVD Runge–Kutta method [61] has been used,
and for the inviscid compressible flow over an airfoil, in which a
second-order accurate, five-stage, explicit Runge–Kutta method
[32] has been employed.

2.2.1. The TOPUS scheme for 1D and 2D advection equation
The advection of a quantity /(x, t) by a convecting speed a is

modeled by the unsteady linear transport Eq. (1), where its exact
solution is given by /(x, t) = /0(x � at), with /0(x) the initial condi-
tion. Eq. (1) is one of the simplest one-dimensional convection
models with a constant velocity contained within the initial data.
Both varying the velocity fields and increasing the dimensions con-
tribute to increased difficulties in modeling convection problems.
But if a numerical scheme cannot solve the simple 1D case cor-
rectly, then it will be of little use in more complex situations.
The solution is, in the 1D case, approximated by the method given
by Eq. (2), where the convected variable /, at the i � 1/2 and i + 1/2
faces, is calculated using the upwind technology. Eq. (3) is then
employed to transform Eq. (4), with a = 2, giving

/i�1=2 ¼
/R þ ð/D � /RÞ½2ð/̂UÞ4 � 3ð/̂UÞ3 þ 2/̂U �; /̂U 2 ð0;1Þ;
/U ; /̂U R ð0;1Þ;

(
ð10Þ

with D, U and R previously defined. The solution for the 2D case fol-
lows similar lines.

The foregoing explicit numerical method has been imple-
mented using an in-house computational fluid dynamics code,
and its stability is governed by the CFL condition. In order to ensure
stability, the time step is selected (automatically) in such a way
that the CFL parameter satisfies CFL 6 1. Here, CFL denotes, in the
1D case, the maximum propagation speed in a control volume at
a given time level. In the 2D simulations, CFL ¼ max juj dt

dx
þ

max jv j dt
dx

.

2.2.2. The TOPUS scheme for 1D convection–diffusion equations
We now consider a model of convection–diffusion, namely

@/
@t
þ e

@/
@x
¼ m

@2/
@x2 ; ð11Þ

where the dependent variable / may, for example, be considered to
be a concentration in an incompressible fluid, e = e(/) and m is the
diffusion coefficient. When in Eq. (11) e = 1, the model corresponds
to a linear viscous flow model, with a boundary layer (see [22]). In
the case when e ¼ 1

2 /, Eq. (11) becomes the nonlinear viscous Bur-
gers’ equation [14] with m now interpreted as kinematic viscosity. It
is well known that for large enough m > 0, smooth solutions are ob-
tained, and the energy of the system dissipates smoothly. However,
for m ? 0, discontinuities (shocks) can develop in the solution, even
for prescribed smooth initial data. Burgers’ equation serves as a
good model (combining nonlinear advection and linear diffusion)
for understanding shock formation and turbulence. The numerical
solution of this equation, in the linear case, is calculated in a man-
ner similar to that used for solving the 1D advection equation in the
previous subsection, with the diffusive term approximated by sec-
ond order central differences. In the nonlinear case, the diffusive
term is also approximated by the second order CD scheme, but
the advection term (in the conservative form) is approximated by

eð/Þ @/
@x

� �����
i

¼ 1
2

@/2

@x

 !�����
i

¼ 1
2

�/iþ1=2 � /iþ1=2 � �/i�1=2 � /i�1=2

2ðdx=2Þ

 !
;

ð12Þ

with the advection velocities given by

�/i�1=2 ¼
1
2
ð/i þ /i�1Þ and �/iþ1=2 ¼

1
2
ð/iþ1 þ /iÞ; ð13Þ

and the convected variable / at the i + 1/2 and i � 1/2 calculed by
the TOPUS scheme (10). It is important to observe here that by
using the formula (13), for computing convection velocities, the
simple formula (12), which provides a simplified implementation
on the TOPUS, is rendered globally second-order accurate. However,
in regions where the solution is sufficiently smooth, the order of
convergence with the TOPUS scheme can be improved by implem-
entating it in the context of flux function upwind reconstruction,
associated with a high order time accuracy method and a suitable
mesh refinement (similar to that appearing in Section 6, Eq. (84),
of the Ref. [74]).

In the in-house numerical code equipped with the TOPUS
scheme, the stability condition for solving Eq. (11) and the choice
of the CFL parameter are made in a manner similar to the 1D
advection equation.

2.2.3. The TOPUS scheme for 1D Euler equations
The one-dimensional flow of an inviscid and compressible gas

obeys the Euler equations (see, for example [32])

@U
@t
þ @FðUÞ

@x
¼ 0; ð14Þ

where the conservative state vector U and the convective flux vec-
tor F(U) along the x-direction are defined by

U ¼ ½q;qu; E�T ;
F ¼ ½qu;qu2 þ p;uðEþ pÞ�T :

(
ð15Þ

In the above vectors, x is distance, q density, u the x-component of
velocity, p pressure, and E the total energy per unit volume. The ra-
tio of specific heats is set as c = 1.4 and, for a perfect gas, the system
is completed by the equation of state p = (c � 1)[E � qu2/2]. Eq.
(14) is numerically solved by using the explicit finite difference con-
servative formula

Unþ1
i ¼ Un

i þ
dt

dx
½Fi�1=2 � Fiþ1=2�n; ð16Þ

with the interface flux vector evaluated by using the method pro-
posed by Roe and Pike [51], namely: first the Roe average values
are computed (see Toro [62]); after that, for k = 1, 2, 3, the eigen-
values ekk and the eigenvectors eK ðkÞ of the Jacobian matrix bA (both
evaluated using averaging) are computed; next the wave strengthseak are calculated; and then, with all of the aforementioned quanti-
ties, the flux vectors Fi�1/2 and Fi+1/2 (omitting for simplicity the
time index) are directly approximated by using flux limiters in
the framework of Sweby [60]. In particular, in a similar manner as
was done by Hubbard and Garcia-Navarro [31], we implement the
generic flux Fi+1/2 as

Fiþ1=2 ¼ FLOW
iþ1=2 þ

1
2

X3

k¼1

signð~kkÞ~kkð1� jhkjÞw rk
f

� �
~ak
eK ðkÞjiþ1=2; ð17Þ

where FLOW
iþ1=2 is a monotone low-order accurate (building block)

numerical flux, hk ¼ ~kkdt=dx, and w(�) is the TOPUS flux limiter (9).
The sensor rk

f is calculated by

rk
f ¼

~aupwind
k

~alocal
k

; ð18Þ

where ~alocal
k ¼ ~akjiþ1=2 and ~aupwind

k is obtained at the upwind location
according to the velocity ~kk at the face i + 1/2. Finally, for the build-
ing block FLOW

iþ1=2 in Eq. (17) we use

FLOW
iþ1=2 ¼

1
2
ðFi þ Fiþ1Þ �

1
2

X3

k¼1

~akj~kkjeK ðkÞ: ð19Þ
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The numerical method for solving 1D Euler equations is explicit,
and its stability is governed by the CFL condition (see [10]). In this
case, the time step dt is assumed to satisfy

dt

dx
max k�iþ1

2

��� ���; kþiþ1
2

��� ���n o
6 1;

where k�iþ1
2

are the numerical acoustic waves associated with the
numerical flux function.

2.2.4. The TOPUS scheme for 2D Euler equations
The two-dimensional time-dependent Euler equations in con-

servation form are

@U
@t
þ @FðUÞ

@x
þ @GðUÞ

@y
¼ 0; ð20Þ

where the conservative state vector U and the convective flux vec-
tors F(U) and G(U) along the x- and y-directions, respectively, are
defined by

U ¼ ½q;qu;qv ; E�T ;
F ¼ ½qu;qu2 þ p;quv; ðEþ pÞu�T ;
G ¼ ½qv ;quv;qv2 þ p; ðEþ pÞv �T ;
E ¼ p

ðc�1Þ þ 1
2 qðu2 þ v2Þ:

8>>>><>>>>: ð21Þ

In Eqs. (20) and (21), v is y-velocity component; other constants and
variables have been defined previously.

Two codes, implemented in the context of standard finite vol-
ume methodology, were employed to solve the conservation law
systems (20) and (21): the software package CLAWPACK (Conser-
vation LAWs PACKage) of Leveque [42] and the code proposed by
Bigarella [11]. The TOPUS scheme was applied only in the specific
limiter routines of these codes. In particular, in the case of 2D aero-
dynamic applications (two-dimensional limiters), the ideas of Big-
arella and Azevedo [12] were used to generalize the derivative
ratios, allowing the usage of any 1D limiter. In summary, the lim-
iter w(rf) is an extension of the work of Barth and Jespersen [8] and
is given by

wðrf Þ ¼
ðjrf j þ rf Þ½3rf þ 1� þ �LIM

ð1þ jrf jÞ3 þ �LIM

; ð22Þ

where �LIM is a control parameter designed to prevent singularities
(see [12]). The sensor rf corresponds to the ratio of the f-th volume
given by

rf ¼
numþ=den; if den > 0;
num�=den; if den < 0;
1; if den ¼ 0:

8><>: ð23Þ

In the above equation, num± and den are defined as (see [12,11])

numþ ¼ maxðqi; qf Þ � qi; num� ¼ minðqi; qf Þ � qi; den ¼ ðqiÞf � qi;

ð24Þ

with qi a variable associated with the volume i,qf a variable associ-
ated with the face f of the volume, and (qi)f a variable associated
with the volume i reconstructed at the f face.

2.2.5. The TOPUS scheme for 2D incompressible fluid flows
The conservation laws for time-dependent 2D incompressible

fluid flow are the continuity and the momentum (Navier–Stokes)
equations. In the Einstein index notation they are, respectively,

@ui

@xi
¼ 0; ð25Þ

@ui

@t
þ @uiuj

@xj
¼ � @p

@xi
þ 1

Re
@

@xj

@ui

@xj

� �
þ 1

Fr2 gi; i ¼ 1;2; ð26Þ

where t is the time, xi the Cartesian coordinates, ui the correspond-
ing velocity components, p the kinematic pressure, gi the compo-
nents of the gravitational acceleration, and R = U0D/m and
Fr ¼ U0=

ffiffiffiffiffiffiffiffiffi
Djgj

p
, the Reynolds and Froude numbers, respectively.

Here the usual Einstein summation convention is applied to re-
peated indices. The dependent variables in Eqs. (25) and (26) have
been nondimensionalized by a characteristic velocity U0, a length
scale D and a reference kinematic viscosity m. To simulate the flow
problems modeled by Eqs. (25) and (26), the primitive variable Mar-
ker-And-Cell (MAC, Los Alamos) method was used: this is a special
case of the projection method of Chorin [20] described by Harlow
and Welch [30] (see also McKee et al. [45]). This finite difference
method, defined on a staggered grid system, has been incorporated
into the 2D version of the Freeflow code [16]. The MAC method uses
massless marker particles, which are employed to indicate the fluid
configuration showing which regions are occupied by fluid and
which are empty. At each time step, the marker particles are moved
to new positions using local fluid velocities.

For the spatial advection terms of the Navier–Stokes Eq. (26),
the application of the TOPUS scheme is as follows. For the stag-
gered grid used in this paper, a f face for discretization can assume
one of the following faces of the control volume depicted in Fig. 4:

iþ 1
2
; j

� �
or i; jþ 1

2

� �
:

The convected variable /, calculated by the TOPUS scheme, can be
one of the velocity components u or v. For conciseness, only the dis-
cretization of the nonlinear advection terms in the u-component of
the Navier–Stokes equations will be presented. The discretization of
the other nonlinear terms are similar. In the position iþ 1

2 ; j
� �

of the
2D computational mesh (see Fig. 4), this term can be approximated
by the following conservative scheme:

@ðuuÞ
@x
þ @ðuvÞ

@y

� �
jiþ1

2;j
�

�uiþ1;j � uiþ1;j � �ui;j � ui;j

dx

þ
�v iþ1

2;jþ
1
2
� uiþ1

2;jþ
1
2
� �v iþ1

2;j�
1
2
� uiþ1

2;j�
1
2

dy
;

where the advection velocities �uiþ1;j; �ui;j; �v iþ1
2;jþ

1
2

and �v iþ1
2;j�

1
2

are ob-
tained by averaging, in a similar manner as in Eq. (13) for Burgers’
equation, and the convected velocities follow similar procedures to
that in Eq. (12). The following criterion was used for selecting an
appropriate time step

dt ¼minfFACT1 � dt CFL; FACT2 � dt VISCg;

where 0 < FACT1 6 1 and 0 < FACT2 6 1 are constants chosen to en-
sure that the calculations are stable with

Fig. 4. Cell-variable locations for 2D calculation, showing the faces where u and v
velocities are evaluated.
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dt CFL ¼max
dx

juj ;
dy

jv j


 �
and dt VISC ¼

Re
2

d2
xd

2
y

d2
x þ d2

y

:

2.2.6. Popular upwinding schemes
In this subsection, we list the schemes that are to be compared

with TOPUS. We also detail flux limiter functions.Non-normalized
variable schemes:

� SMART [24]:

/f ¼

/U if /̂U R ½0;1�;

10/U � 9/R if 0 6 /̂U < 3=74;
1
8 ð3/D þ 6/U � /RÞ if 3=74 6 /̂U < 5=6;

/D if 5=6 6 /̂U 6 1;

8>>>>><>>>>>:
� VONOS [65]:

/f ¼

/U if /̂U R ½0;1�;

10/U � 9/R if 0 6 /̂U < 3=74;
3
8 /D þ 3

4 /U � 1
8 /R if 3=74 6 /̂U < 1=2;

1:5/U � 0:5/R if 1=2 6 /̂U < 2=3;

/D if 2=3 6 /̂U 6 1;

8>>>>>>>>><>>>>>>>>>:
� WACEB [57]:

/f ¼

/U if /̂U R ½0;1�;

2/U � /R if 0 6 /̂U < 3=10;
3
4 /U � 3

8 /D � 1
8 /R if 3=10 6 /̂U < 5=6;

/D if 5=6 6 /̂U 6 1;

8>>>>><>>>>>:
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Fig. 5. Test case 1: numerical (blue symbol) and exact (red line) of the unsteady linear advection equation. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Table 1
Computing time per mesh point per iteration and normalized costs by the unit cost of
the WACEB scheme (cheapest).

Scheme Unit cost (ls) Normalized costs

ADBQUICKEST 0.35 1.13
SMART 2.13 6.87
WACEB 0.31 1.00
VONOS 1.45 4.68
van Albada 0.33 1.06
TOPUS 0.32 1.03
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� Superbee [7]:

/f ¼

/U if /̂U R ½0;1�;
2/U � /R if 0 6 /̂U < 1=3;
1
2 ð/D þ /UÞ if 1=3 6 /̂U < 1=2;
3
2 /U � 1

2 /R if 1=2 6 /̂U < 2=3;

/D if 2=3 6 /̂U 6 1;

8>>>>>>><>>>>>>>:
� CUBISTA [5]:

/f ¼

/U if /̂U R ½0;1�;
7
4 /U � 3

4 /R if 0 6 /̂U < 3=8;
3
8 /D � 3

4 /U � 1
8 /R if 3=8 6 /̂U < 3=4;

3
4 /D þ 1

4 /U if 3=4 6 /̂U 6 1;

8>>>>><>>>>>:
� ADBQUICKEST [23]:

/f ¼

/U if /̂U R ½0;1�;
ð2� hÞ/U � ð1� hÞ/R if 0 6 /̂U < a;

aD/D þ aU/U � aR/RÞ if a 6 /̂U 6 b;

ð1� hÞ/D þ h/U if b < /̂U < 1;

8>>>><>>>>:
with

aD ¼ 1
6 ð2� 3hþ h2Þ; aU ¼ 1

6 ð5þ 3h� 2h2Þ; aR ¼ 1
6 ð1� h2Þ;

a ¼ 2� 3hþ h2

7� 9hþ 2h2 ; b ¼ �4þ 3hþ h2

�5þ 3hþ 2h2 :

Flux limiter functions:

� Minmod [28]: w(rf) = minmod (1,rf);

� Superbee [7]: w(rf) = max (0,min (1,2rf), min (2,rf));

� monotonized centered (MC) [67]: w(rf) = max (0,min ((1 + rf)/
2,2,2rf));
� van Leer [66]: wðrf Þ ¼

rf þ jrf j
1þ jrf j

;

� van Albada [64]: wðrf Þ ¼
r2

f þ rf

1þ r2
f

;

� ADBQUICKEST [23]:

wðrf Þ ¼max 0;min 2rf ;
2þh2�3hþð1�h2Þrf

3�3h ;2
n on o

:

3. Numerical experiments

In order to demonstrate the behavior, validity, flexibility,
robustness and practicality of the TOPUS scheme, we have per-
formed numerous simulations based on benchmark test cases,
including 2D compressible/incompressible flows. Comparisons
are made both with exact solutions and with well-recognized

Table 2
Errors and computed convergence rates for 2D advection equation, with CFL = 0.5 at time t = 2. Here, ADB refers to ADBQUICKEST.

Scheme Mesh L1-error Convergence rate L2-error Convergence rate

ADB 16 � 16 7.40e�3 – 3.00e�2 –
32 � 32 1.81e�3 2.0 1.09e�2 1.5
64 � 64 4.74e�4 1.9 4.14e�3 1.4
128 � 128 1.20e�4 2.0 1.50e�3 1.5
256 � 256 3.03e�5 2.0 5.37e�4 1.5

Superbee 16 � 16 8.94e�3 – 3.63e�2 –
32 � 32 1.87e�3 2.3 1.15e�2 1.7
64 � 64 4.60e�4 2.0 4.05e�3 1.5
128 � 128 1.19e�4 2.0 1.49e�3 1.4
256 � 256 3.02e�5 2.0 5.35e�4 1.5

van Leer 16 � 16 6.97e�3 – 2.81e�2 –
32 � 32 1.82e�3 1.9 1.09e�2 1.4
64 � 64 4.74e�4 1.9 4.14e�3 1.4
128 � 128 1.20e�4 2.0 1.50e�3 1.5
256 � 256 3.03e�5 2.0 5.37e�4 1.5

van Albada 16 � 16 8.85e�3 – 3.61e�2 –
32 � 32 4.47e�3 1.0 2.67e�2 0.4
64 � 64 6.08e�4 2.9 5.29e�3 2.3
128 � 128 1.46e�4 2.1 1.82e�3 1.5
256 � 256 3.40e�5 2.1 6.02e�4 1.6

TOPUS 16 � 16 1.01e�2 – 4.09e�2 –
32 � 32 3.39e�3 1.6 2.02e�2 1.0
64 � 64 5.63e�4 2.6 4.91e�3 2.0
128 � 128 1.34e�4 2.1 1.67e�3 1.6
256 � 256 3.20e�5 2.1 5.66e�4 1.6

Table 3
Errors and computed convergence rates for 1D inviscid Burgers’ equation, with u0(x) = 1 + 0.5sin(px), �1 < x < 1 at time t = 0.12.

Scheme Mesh L1-error Convergence rate L1-error Convergence rate

van Albada 20 2.880e�02 – 7.017e�02 –
40 7.872e�03 1.8 2.462e�02 1.5
80 1.700e�03 2.2 9.010e�03 1.4

160 5.350e�04 1.7 2.862e�03 1.6
320 1.248e�04 2.1 8.219e�04 1.8

TOPUS 20 1.825e�02 – 5.250e�02 –
40 3.551e�03 2.3 1.530e�02 1.7
80 9.460e�04 1.9 4.630e�03 1.7

160 1.720e�04 2.4 1.150e�03 2.0
320 3.492e�05 2.3 3.303e�04 1.8
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high-resolution bounded schemes. The formal order of accuracy of
the schemes is 2, except for TOPUS, ADBQUICKEST, WACEB, SMART
and 3rd-WENO schemes. For the second order spatial derivatives
and pressure terms, second order CD was employed. In all numer-
ical tests presented in this article, the TOPUS scheme is used with
a = 2. For compressible flow calculations, the parameter �LIM

(appearing in Eq. (22)) is set as 10�7. All simulations have been per-
formed on a Sony VAIO VGN-CS325J laptop with a Intel Core 2 Duo
T6500/ 2.1 GHz (Dual-Core) processor and 4 Gbytes RAM running
Linux 2.6.30-bpo.2-amd64.

3.1. 1D scalar advection problem

The first test case consists of the advection of a quantity /(x, t)
with a convecting speed a = 1 modeled by the unsteady linear
advection Eq. (1). The physical relevance of this problem is that

it models entropy waves in gas dynamics. In this test case, Eq.
(1), x 2 [0,101], is solved in conjunction with the following combi-
nation of smooth and sharp distributions as initial condition:

�1 /0ðxÞ ¼

e
�log50

x� 0:15
0:05

� �2

; x 2 ½0;0:2Þ;
1; x 2 ð0:3;0:4Þ;
20x� 10; x 2 ð0:5;0:55Þ;
12� 20x; x 2 ½0:55;0:66Þ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x�0:75
0:05

� �2
q

; x 2 ð0:7;0:8�;
0; otherwise:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð27Þ

In the foregoing numerical simulations, a mesh size of N = 2200
computational cells was adopted with time spacing dt = 0.0025
and the final simulation time t = 100.0. Fig. 5 depicts the exact solu-
tion and the numerical results obtained with ADBQUICKEST,
SMART, WACEB, VONOS, van Albada and TOPUS schemes. It can
be seen from this figure that, for long simulation times, WACEB,
van Albada and TOPUS schemes perform reasonably well, but exhi-
bit the peak ‘‘clipping’’ problem.

The unit costs (computation time per mesh point per iteration)
and the unit normalized costs for the various choice of limiters are
provided in Table 1. The cost for the TOPUS scheme is smaller than
the corresponding costs for SMART, VONOS, ADBQUICKEST and van
Albada schemes, but higher than that for WACEB scheme. The com-
putations were then carried out on a sequence of meshes and sim-
ilar patterns were observed.

3.2. 2D scalar advection problem

We choose the 2D scalar convection equation, on the unit
square, to check the numerical order of accuracy of the TOPUS
scheme, with the advection velocities u = v = 1, the initial condition

/0ðx; yÞ ¼ sinð2pxÞ sinð2pyÞ ð28Þ

and with periodic boundary conditions. The exact solution is given
by (see [78])
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Fig. 6. Solution of the Riemann problem for the inviscid Burgers’ equation using the initial condition (29).
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Fig. 7. Total variation of the Burgers’ equation with respect to time.
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/ðx; y; tÞ ¼ sinð2pðx� tÞÞ sinð2pðy� tÞÞ:

Table 2 gives the L1 and L2 errors and the corresponding orders of
convergence for the ADBQUICKEST, Superbee, TOPUS, van Albada
and van Leer schemes with CFL = 0.5 at final time t = 2. Practically,
the same order of convergence is observed for all schemes. The
numerical results are omitted here to save space.

3.3. 1D Burgers’ equation

Here simulations are performed for the classic 1D Burgers’
equation, namely Eq. (11) with / = u and � ¼ 1

2 u. Both the inviscid
(m = 0.0) and viscous (m = 0.05) cases are considered. Firstly, we
solve the inviscid case with a smooth initial distribution to study
the convergence. Next, we employ a specific initial distribution
to assess the shock capturing capabilities of the schemes. We ad-
dress, in the following, the nonlinear stability of the TOPUS
scheme. Finally, by resolving the viscous case, we check the impact
of the flux function upwind reconstruction on the TOPUS’s conver-
gence rate.

The accuracy of the spatial discretization is checked by solving
Eq. (11), x 2 [�1,1], with the smooth initial distribution
u(x,0) = 1 + 0.5sin(px). The third order accurate TVD Runge–Kutta
method presented in Tang and Warnecke [61] was used for evolu-
tion in time. The accuracy for all the popular upwinding schemes,
given in Section 2.2.6, and that for Shu and Osher’s third-order
WENO are shown to be O(h5/2) in both the discrete L1 and L1
norms. The FOU scheme using a mesh size of 800 cells has been
used for determining errors. In particular, Table 3 summarizes
the errors and convergence rates observed for u at time t = 0.12
for the TOPUS and van Albada schemes. One can see that, for this
nonlinear test case, convergence rates in excess of second order
is obtained several times with the TOPUS scheme. One possible
reason for these rates may be the rapid dampening of oscillations
in the computed variable u as the mesh increases.

The shock capturing property of the TOPUS scheme is studied
by solving (11) with the initial distribution

Table 4
Comparison of the errors and convergence orders for 1D viscous Burgers’ equation at time 0.25, for dt = 0.001, using the simplified and flux function upwind reconstruction modes.
Measured errors as function of the mesh size and Re = 20.

Mode Mesh L1-error Order L2-error Order L1-error Order

Simplified 25 9.374e�4 – 1.696e�3 – 4.035e�3 –
50 3.045e�4 1.6 5.012e�4 1.8 1.089e�3 1.9

100 9.111e�5 1.7 1.400e�4 1.8 2.887e�4 1.9
200 2.472e�5 1.8 3.700e�5 1.9 7.420e�5 2.0

Flux function 25 2.772e�3 – 3.574e�3 – 5.729e�3 –
50 5.595e�4 2.3 7.360e�4 2.3 1.228e�3 2.2

100 9.544e�5 2.6 1.222e�4 2.6 2.238e�4 2.5
200 1.397e�5 2.8 1.797e�5 2.8 3.374e�5 2.7
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Fig. 8. Convergence history obtained with the TOPUS scheme, implemented in the
context of simplified and flux function upwind reconstruction modes, for the 1D
viscous Burgers’ equation at Re = 20.

Table 5
Comparison of the errors for 1D scalar convection–diffusion equation, at different times, for dt = 0.01/N. Measured errors as function of the mesh size and Re = 100. ADB refers to
ADBQUICKEST.

Scheme N L1-error Order L2-error Order L1-error Order

ADB 80 3.748e�2 – 4.349e�2 – 5.545e�2 –
160 6.810e�3 2.5 1.013e�2 2.1 1.379e�2 2.0
320 2.700e�3 1.3 4.497e�3 1.2 6.299e�3 1.1
640 9.200e�4 1.6 1.645e�3 1.5 2.311e�3 1.4

SMART 80 5.960e�3 – 6.731e�3 – 8.284e�3 –
160 1.430e�3 2.1 2.122e�3 1.7 2.877e�3 1.5
320 8.600e�4 0.7 1.437e�3 0.6 2.005e�3 0.5
640 2.900e�4 1.6 5.220e�4 1.5 7.334e�4 1.5

Superbee 80 3.647e�2 – 4.228e�2 – 5.386e�2 –
160 1.212e�2 1.6 1.793e�2 1.2 2.404e�2 1.2
320 3.020e�3 2.0 4.998e�3 1.8 6.970e�3 1.8
640 7.500e�4 2.0 1.335e�3 1.9 1.888e�3 1.9

van Albada 80 8.023e�2 – 9.582e�2 – 1.266e�1 –
160 2.607e�2 1.6 3.912e�2 1.3 5.401e�2 1.2
320 6.830e�3 1.9 1.140e�2 1.8 1.601e�2 1.8
640 1.630e�3 2.1 2.923e�3 2.0 4.122e�3 2.0

TOPUS 80 5.330e�2 – 6.248e�2 – 8.073e�2 –
160 1.319e�2 2.0 1.968e�2 1.7 2.692e�2 1.6
320 2.690e�3 2.3 4.484e�3 2.1 6.278e�3 2.1
640 5.300e�4 2.3 9.608e�4 2.2 1.352e�3 2.2
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uðx;0Þ ¼
0:0; if x 6 �1;
0:5; if � 1 < x < 0;
0:0; if x P 0:

8><>: ð29Þ

The exact solution is the rarefaction wave given by Ahmed (see [3]):

uðx; tÞ ¼

0:0; if x 6 �1;
xþ1

t ; if � 1 < x 6 t
2� 1;

0:5; if t
2� 1 < x < t

4 ;

0:0; if x P t
4 :

8>>><>>>: This problem consists of a jump from zero to one at x = � 1/3 which
creates an expansion fan, while the jump from one to zero at x = 1/3
produces a shock wave. The purpose of this test is to check whether
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Fig. 9. Density distribution for the Shu–Osher shock tube problem using ADBQUICKEST, Lax-Wendroff, Minmod, Superbee, van Leer and TOPUS schemes.

Fig. 10. Geometry of the backward facing step problem, showing a set of
computational cells adjacent to the wall.
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Fig. 11. Comparison between experimental data and numerical results for the size
of the recirculation region length x1 as a function of the Reynolds number. A close-
up of the results are provided in the inset.
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the TOPUS scheme needs an additional smooth transition function
(or not) to avoid entropy violation. A mesh size of N = 200 compu-
tational cells, final time t = 2, x 2 [�1.5,1] and dt = 0.01125 were
used in the simulation. The numerical results obtained with ADB-
QUICKEST, SMART, TOPUS, and VONOS schemes and the exact solu-
tion are presented in Fig. 6. Once again, it is seen that in comparison
with the other methods TOPUS gives satisfactory results, capturing
quite well the expansion fan and the shock wave without the need
for adding an entropy correction formula.

Before concluding this section, we address the issue of nonlin-
ear stability for the TOPUS scheme by checking the numerical time
dependent total variation (TV) on progressively refined mesh sizes
using the nonlinear problem (11) subject to the initial condition
(29). Fig. 7 shows the TV calculated for N = 25, 50, 100 and 200
computational cells. It can be seen that as time progresses the TV
decreases or remains constant indicating that there is no loss of
TV at local extrema.

Finally, the viscous Burgers’ equation is solved in order to show
that, for smooth solutions, the accuracy of the TOPUS scheme can

be improved by implementating it in the flux function upwind
reconstruction mode (similar to that appearing in Section 6, Eq.
(84), in Ref. [74]). The boundary conditions are chosen equal to
be u(0, t) = tanh (Re/4) and u(1, t) = � u(0, t), with Re = 1/m = 20.
The initial condition is taken from the exact steady state solution
in [22]. The observed order of accuracy with the TOPUS scheme,
computed with both simplified and flux function reconstruction
implementation modes, is depicted in Table 4. One can clearly
see that, with the use of the flux function implementation, the TO-
PUS’s convergence rate is improved. Also shown in Fig. 8 is the con-
vergence history obtained with the TOPUS scheme, on a mesh size
of 200 computational cells, using both simplified and flux function
implementations. The explicit Euler method was used for the time
March in this test case. The TOPUS scheme converges rapidly, at
about thirteen orders of magnitude reduction in the residual.
Therefore, in this paper, for all nonlinear problems involving con-
vection–diffusion effects, we will use, for simplicity, the simplified
implementation version of the TOPUS scheme given by Eqs. (12)
and (13).

3.4. 1D scalar convection–diffusion equation

Having solved linear and nonlinear equations with different ini-
tial data, we now consider the most popular 1D scalar convection–
diffusion model (11) with 0 < x < 1 and e = 1 (the so-called 1D
boundary layer problem). The initial and boundary conditions are
u(x,0) = 0 and u(0, t) = 0; u(1, t) = 1, t P 0, respectively. The exact
steady state solution of this problem on the i cell ((idx)(06i6N)) is gi-
ven by (see [22]) ui = (1 � exp (iRed))/(1 � exp (Re)), where Red = Re
dx denotes the cell Reynolds number. The solution is obtained on a
series of refined grids (from N = 80 up to N = 640 computational
cells). A numerical convergence study is performed from calcula-
tions on several grids. Table 5 depicts the computed convergence
rate when the ADBQUICKEST, SMART, Superbee, van Albada and
TOPUS schemes are used for this problem for Re = 100. It can be
seen from this table that the L1,L2 and L1 errors for the TOPUS
scheme decrease with increasing grid points (mesh refinement),
indicating convergence. In addition, the TOPUS scheme shows
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Fig. 13. Density contour lines of the numerical solutions of the Riemann problem computed with TOPUS and van Albada schemes at time t = 0.8, using a mesh size of
200 � 200 computational cells.
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improved numerical orders of accuracy compared with the global
accuracy of the other schemes. The accuracy analysis performed
here seems to indicate the dominant error is, in fact, the second-
order truncation error arising from the discretization of the diffu-
sive term. In particular, the numerical diffusion introduced by TO-
PUS is significantly smaller than the physical diffusion coefficient
m.

3.5. 1D Shu–Osher’s shock tube problem

In order to verify that the TOPUS scheme is effective in prevent-
ing oscillations in unsteady flows, the 1D inviscid Euler Eq. (14) of
gas dynamics was solved. The problem that was chosen is the
Shu–Osher’s shock tube [56] (see also [74]), that describes a shock
interacting with smooth density fluctuations. This case provides a
good test for examining the performance of the high order upwind
schemes, because it possesses both strong discontinuous and
smooth structures. Here, Eq. (14) is considered in the interval
[�1,3] with the initial condition

ðq; t; pÞT ¼ ð3:86;2:63;10:33ÞT ; if x 2 ½�1;0:8Þ;
ð1þ 0:2 sinð5xÞ;0;1ÞT ; if x 2 ½0:8;3�:

(
ð30Þ

In this case, two meshes (N = 200 with dx = 0.02 and N = 300 with
dx = 0.0133), time spacing dt = 0.6dx and final time t = 1.0 are used.
The numerical results for density using ADBQUICKEST, Lax-
Wendroff, Minmod, Superbee, van Leer and TOPUS schemes, and
the reference solution (FOU scheme with N = 2000) are presented
in Fig. 9. One can observe that TOPUS provides reasonable
resolution.

3.6. 2D incompressible flow over a backward facing step

The flow over a backward facing step, comprehensively studied
over the years and extensively used to analyze the quality of
schemes, is computed here for laminar flow. The relevant conser-
vation laws for 2D time-dependent incompressible fluid flow are
the continuity (25) and the momentum (Navier–Stokes) (26) equa-
tions. The geometry of the problem is illustrated in Fig. 10. This
problem is challenging computationally as it involves flow separa-
tion and recirculation. The size and location of the separation zone
is very sensitive to the pressure gradient, thereby providing a good
flow validation test case. Furthermore, there is extensive numerical
and experimental data available in the literature. With a fully
developed Poiseuille parabolic velocity profile prescribed at the
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Fig. 15. Density contour lines of the numerical solutions of the Riemann problem computed with TOPUS and van Albada schemes at time t = 0.8, using a mesh size of
1500 � 1500 computational cells.
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inlet section, we simulated numerically this fluid flow problem for
a wide range of Reynolds numbers. These were based on the max-
imum velocity U0 = Umax = 1 m/s at the entrance section and the
height of the step s (s = D = 0.1 m). The dimension of the computa-
tional domain is 4.0 m � 0.2 m and the total time of simulation is
100 seconds. A mesh size of 800 � 40 computational cells has been
used in the simulations.

Fig. 11 graphically displays the evolution of reattachment
lengths x1, normalized by the step height s. With Reynolds num-
bers from 100 up to 800, we have the following data: 2D numerical
results of Armaly et al. [6] and Willians and Baker [72]; 3D numer-
ical results of Willians and Baker [72], Ku et al. [36], Jiang et al. [34]
and the experimental data of Armaly et al. [6]. We also have calcu-
lations using TOPUS and ADBQUICKEST schemes (no significant
improvement was observed in the results obtained using the other
schemes). The numerical results using ADBQUICKEST, for
0 < Re < 400, show good agreement with the 2D results of Willians
and Baker [72]; they would appear, however, to diverge from the
data of Armaly et al. [6] and the 3D calculations. For Re P 400,
the numerical results of both TOPUS and ADBQUICKEST give poor
agreement with 3D data; this may be explained by 3D effects
and, possibly, the turbulence transition in this high Reynolds num-
ber problem, as postulated by Ghia et al. [26]. This figure also
shows a close-up, where it can be seen that the results obtained
with the TOPUS scheme are marginally better than those obtained
using the ADBQUICKEST scheme.

In addition, a convergence test of the numerical solution for
(streamwise) velocity component u was performed with a Rey-
nolds number of 400 on three uniform meshes consisting of
200 � 10, 400 � 20 and 800 � 40 cells. This is illustrated in
Fig. 12, which shows how the reattachment length x1 was esti-
mated (i.e. the change in the sign of the u velocity profile adjacent
to the lower bounding wall (see Fig. 10)).

3.7. 2D compressible Euler equations

In this section, the TOPUS scheme is used to solve the 2D com-
pressible Euler equations in conservative form (20) for steady and
unsteady flows. The specific problems considered here are: (i) the
shock–shock interaction problem originally defined by Schulz-
Rinne et al. [53] (see also [15]) in the square domain

[0,1] � [0,1]; and (ii) the steady transonic flow around the NACA
0012 airfoil with M1 = 0.85 and a = 1�.

Computations for the shock–shock interaction problem were
performed by using the CLAWPACK software [42], implemented
with TOPUS, van Albada and MC limiter of van Leer [67] (see also
[42] p. 115, or [27]). In the version of the CLAWPACK code that
we have used, the Godunov’s first-order explicit time marching
method with second-order spatial corrections is implemented,
where the flux functions are calculated by solving local Riemann
problems; this allows the easy introduction of limiter functions
to give high-resolution results. The solution of the problem using
the MC limiter, on a mesh size of 2000 � 2000 computational cells,
was selected as a reference solution, since this limiter has been one
of the more widely used in engineering applications (see, for in-
stance [18,38] or [27]). This problem, a useful test to measure
the smallness of the inherent numerical viscosity of the scheme,
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arises frequently as a model for simulating thin shear layers or
sharp interfaces between inviscid fluids [52]. The solutions were
marched in time until time t = 0.8 by using a mesh size of
200 � 200 computational cells and at CFL number of 0.8. Fig. 13
shows density contour lines computed with TOPUS and van Albada
limiters. One can observe that TOPUS provides qualitatively the
same resolution as van Albada except at the top right region, where
the TOPUS limiter captures the vortical structures a little better.
However, when the density and pressure profiles are plotted along
the diagonal (x = y line), as shown in Fig. 14, significant differences
between the TOPUS and the van Albada solutions can clearly be ob-
served, indicating that TOPUS has behaved somewhat better than
the van Albada limiter. In addition, to show that the TOPUS scheme
is capable of capturing the complex interacting structures in the
flow (i.e., vortex sheets), we repeat the numerical experiment
shown in Fig. 13 using a mesh size of 1500 � 1500 computational
cells. The density contour lines are depicted in Fig. 15, from which
it can be seen that the TOPUS scheme provides a substantial
improvement at the contact surface, where instabilities manifest
themselves. So, it would appear that the TOPUS limiter introduces
less numerical viscosity than van Albada.

We now focus on the specific AGARD test case (see [2]) of the
steady inviscid compressible flow over a NACA 0012 airfoil at free-
stream Mach number M1 = 0.85 and angle-of-attack a = 1 deg. The
objective of this test is to investigate whether the TOPUS scheme
could resolve flows possessing strong shocks as well as the van
Albada limiter, a widely used upwinding scheme for compressible
flow computations. This classical case is computed using a mesh
size of 251 points over the airfoil surface, 151 points in radial direc-
tion and the farfield boundary is set at 70 chords of radius. The
solution is obtained using single-precision operations. The CFL
number is set as a constant value of 0.7 and the maximum density
residual for accepting convergence is chosen to be 10�7. Time
March to steady state uses the 5-stage, 2th-order accurate, explicit
Runge–Kutta method presented in Ref. [32]. In Fig. 16, the conver-
gence curves obtained with the van Albada and TOPUS schemes are
presented, showing that both schemes converge, at about the same
rate, with eight orders of magnitude reduction in the residual.

The pressure coefficient distributions, Cp, on the upper and
lower surfaces of the airfoil obtained with TOPUS and van Albada
limiters are plotted in Fig. 17. The overall views of the Cp distri-

butions are shown in Fig. 17a and detailed views of the upper
and lower surface shock waves are shown in Fig. 17b. From these
figures, it is seen that both TOPUS and van Albada limiters pro-
vide similar results, showing that the strength of the shock is in
good agreement with the ones given in [2]. The results are also
indicating that the shocks can be captured by the TOPUS scheme
with 1–2 mesh points, whereas 3–4 points in the shock transition
are observed when the van Albada limiter is used. The data in
Fig. 17b also indicate that TOPUS is slightly less dissipative than
the van Albada limiter at the shock. Away from the shock waves,
both TOPUS and van Albada schemes produce almost identical
results.

Further investigation of these results can be achieved by
inspecting the entropy generated by the numerical solutions.
Hence, Fig. 18 presents the entropy generated at the airfoil surface
by the two schemes for the same flight condition. Moreover, the
entropy fields are shown in Fig. 19a and b for van Albada and TO-
PUS schemes, respectively. The clear conclusion from these figures
is that the entropy generated by the two schemes is quite compa-
rable. In Fig. 18, one can see that TOPUS creates slightly more en-
tropy at the airfoil surface than the van Albada limiter. Again, these
results emphasize that TOPUS has essentially the same shock cap-
turing characteristics as the widely used van Albada limiter for
such inviscid transonic applications.

Finally, drag and lift coefficients (Cd and Cl) are summarized in
Table 6. In this particular case, besides the comparison between
TOPUS and van Albada schemes, we have included results for the
present test case obtained by Amaladas and Kamath [1], Jameson
and Martinelli [33] and by Pulliam and Barton [50]. The table also
includes the range of values for lift and drag coefficients reported
in [2]. Such data provide for a more quantitative comparison of
the presently proposed scheme. One can see in Table 6 that the
present results for lift and drag coefficients are between those pro-
vided by the van Albada limiter and those provided by the centered
schemes. Again, the current results are very close to those provided
by the van Albada limiter, except that we obtain a slightly higher
value of lift coefficient, which is probably a consequence of the less
dissipative behavior at the shock, as previously discussed, and also
a somewhat higher drag coefficient. We believe that the higher
drag coefficient is associated with the fact that TOPUS is generating
slightly more entropy at the airfoil surface than the van Albada
limiter, as indicated in Fig. 18. Hence, TOPUS produces more spuri-
ous drag than the van Albada limiter, explaining the higher Cd val-
ues. However, one should notice that, clearly, such additional
spurious drag is quite lower than what is generated by the other
schemes compared in Table 6. Furthermore, the current results
for both lift and drag coefficients are well within the ranges re-
ported in [2].

4. Closing remarks

A high degree polynomial upwind-based finite difference
scheme (TOPUS) has been introduced for the numerical solution
of convection-dominated transport problems. This new scheme
was derived from the application of the TVD/CBC stability criteria
combined with the four conditions of Leonard [41]. TOPUS is pre-
sented in both the normalized variables of Leonard and also as a
flux limiting technique, and has been shown to possess three
important features: simplicity, robustness and generality of appli-
cation. By setting the free parameter a equal to 2, the scheme is
then guaranteed to be oscillation-free; and, with this value of a,
the performance of the scheme was evaluated by solving a variety
of test problems. These included the 1D/2D advection of scalars,
the 1D Riemann problem for Euler’s/Burgers’ equation, the 2D Rie-
mann problem for Euler’s equation, the 2D incompressible Navier–
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Stokes equations and flow over a 2D airfoil. Reasonable results
were obtained for all tests.

This study establishes the potential of the TOPUS scheme for
solving a large class of complex problems and allows us to make
the following points regarding TOPUS.

The TOPUS scheme can reach third-order accuracy in the case of
linear advection, is second-order accurate in smooth regions of
nonlinear problems, and is free from spurious oscillations around
discontinuities. A comparison of the unit cost with other upwind
schemes shows it in a favorable light.

For moderate CFL numbers and problems involving convection
and diffusion, the parameter a should be chosen from [�2,2]; how-
ever, for problems involving shocks it is recommended that the
user chooses a = 2. In particular, the choice of a good parameter
a for simulations with the TOPUS scheme (especially for incom-

pressible flows over a backward facing step at high Reynolds
numbers and compressible flows along NACA0012 airfoils with
strong shocks) is important and always impacts upon the rate of
convergence of steady-state solutions.
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Table 6
Drag and lift aerodynamic coefficients for NACA 0012 airfoil at Mach 0.85 and 1� angle
of attack.

Scheme Cd Cl

Amaladas and Kamath [1] 0.0546 0.3799
Jameson and Martinelli [33] 0.0582 0.3861
Pulliam and Barton [50] 0.0604 0.3938
van Albada 0.0597 0.3617
TOPUS 0.0602 0.3616
AGARD interval 0.0464–0.0590 0.330–0.3889
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The 1D numerical results in this paper show that TOPUS is a ro-
bust strategy for capturing shocks while maintaining a non-oscilla-
tory profile, and when compared with reference solutions and the
best existing schemes, TOPUS does as well and occasionally better.

However, although TOPUS competes well with existing
schemes, such as SMARTER, 3rd WENO, MUSCL and ADBQUICKEST,
it is certainly not always better. Its main advantage lies in the sys-
tematic nature of the scheme, its low cost and its fast implementa-
tion for prototyping and fluid model verification/validation.

In particular, TOPUS provides practically the same resolution as
ADBQUICKEST without the need to tune the Courant parameter at
each time step, and requires less computational time.

Overall, the TOPUS scheme is an alternative to the family of up-
wind schemes for simulating shock wave propagation and other
phenomena where the nonlinear advection term requires special
attention. We have numerically shown that the method can solve
nonstationary as well as stationary problems in two space vari-
ables. In the transonic inviscid flow over NACA0012 airfoil compu-
tation, for example, TOPUS provided results compatible both with
that given by van Albada and existing experimental data. However,
as a perspective for improvement of steady compressible flow cal-
culations, an extra effort will have to be undertaken in the future in
order to couple the TOPUS scheme with an efficient implicit solver.
For incompressible flows, TOPUS has proved to be an effective tool
for resolving the delicate features and structures of a laminar flow
over a backward facing step.
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