13 research outputs found

    Passive Compliance Control of Aerial Manipulators

    Get PDF
    This paper presents a passive compliance control for aerial manipulators to achieve stable environmental interactions. The main challenge is the absence of actuation along body-planar directions of the aerial vehicle which might be required during the interaction to preserve passivity. The controller proposed in this paper guarantees passivity of the manipulator through a proper choice of end-effector coordinates, and that of vehicle fuselage is guaranteed by exploiting time domain passivity technique. Simulation studies validate the proposed approach.Comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 201

    Nonlinear Dynamics and Control of Aerial Robots

    Get PDF
    Aerial robotics is one of the fastest growing industry and has a number of evolving applications. Higher agility make aerial robots ideal candidate for applications like rescue missions especially in difficult to access areas. This chapter first derives the complete nonlinear dynamics of an aerial robot consisting of a quadcopter with a two-link robot manipulator. Precise control of such an aerial robot is a challenging task due to the fact that the translational and rotational dynamics of the quadcopter are strongly coupled with the dynamics of the manipulator. We extend our previous results on the control of quadrotor UAVs to the control of aerial robots. In particular, we design a backstepping and Lyapunov-based nonlinear feedback control law that achieves point-to-point control of the areal robot. The effectiveness of this feedback control law is illustrated through a simulation example

    Detection, location and grasping objects using a stereo sensor on UAV in outdoor environments

    Get PDF
    The article presents a vision system for the autonomous grasping of objects with Unmanned Aerial Vehicles (UAVs) in real time. Giving UAVs the capability to manipulate objects vastly extends their applications, as they are capable of accessing places that are difficult to reach or even unreachable for human beings. This work is focused on the grasping of known objects based on feature models. The system runs in an on-board computer on a UAV equipped with a stereo camera and a robotic arm. The algorithm learns a feature-based model in an offline stage, then it is used online for detection of the targeted object and estimation of its position. This feature-based model was proved to be robust to both occlusions and the presence of outliers. The use of stereo cameras improves the learning stage, providing 3D information and helping to filter features in the online stage. An experimental system was derived using a rotary-wing UAV and a small manipulator for final proof of concept. The robotic arm is designed with three degrees of freedom and is lightweight due to payload limitations of the UAV. The system has been validated with different objects, both indoors and outdoor

    Uncalibrated visual servo for unmanned aerial manipulation

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper addresses the problem of autonomous servoing an unmanned redundant aerial manipulator using computer vision. The overactuation of the system is exploited by means of a hierarchical control law, which allows to prioritize several tasks during flight. We propose a safety-related primary task to avoid possible collisions. As a secondary task, we present an uncalibrated image-based visual servo strategy to drive the arm end-effector to a desired position and orientation by using a camera attached to it. In contrast to the previous visual servo approaches, a known value of camera focal length is not strictly required. To further improve flight behavior, we hierarchically add one task to reduce dynamic effects by vertically aligning the arm center of gravity to the multirotor gravitational vector, and another one that keeps the arm close to a desired configuration of high manipulability and avoiding arm joint limits. The performance of the hierarchical control law, with and without activation of each of the tasks, is shown in simulations and in real experiments confirming the viability of such prioritized control scheme for aerial manipulation.Peer ReviewedPostprint (author's final draft

    Nonlinear model predictive control for aerial manipulation

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a nonlinear model predictive controller to follow desired 3D trajectories with the end effector of an unmanned aerial manipulator (i.e., a multirotor with a serial arm attached). To the knowledge of the authors, this is the first time that such controller runs online and on board a limited computational unit to drive a kinematically augmented aerial vehicle. Besides the trajectory following target, we explore the possibility of accomplishing other tasks during flight by taking advantage of the system redundancy. We define several tasks designed for aerial manipulators and show in simulation case studies how they can be achieved by either a weighting strategy, within a main optimization process, or a hierarchical approach consisting on nested optimizations. Moreover, experiments are presented to demonstrate the performance of such controller in a real robot.Peer ReviewedPostprint (author's final draft

    Modeling and nonlinear adaptive control of an aerial manipulation system

    Get PDF
    Autonomous aerial robots have become an essential part of many civilian and military applications. The workspace and agility of these vehicles motivated great research interest resulting in various studies addressing their control architectures and mechanical configurations. Increasing autonomy enabled them to perform tasks such as surveillance, inspection and remote sensing in hazardous and challenging environments. The ongoing research promises further contributions to the society, in both theory and practice. To furthermore extend their vast applications, aerial robots are equipped with the tools to enable physical interaction with the environment. These tasks represent a great challenge due to the technological limitations as well as the lack of sophisticated methods necessary for the control of the system to perform desired operations in an efficient and stable manner. Modeling and control problem of an aerial manipulation is still an open research topic with many studies addressing these issues from different perspectives. This thesis deals with the nonlinear adaptive control of an aerial manipulation system (AMS). The system consists of a quadrotor equipped with a 2 degrees of freedom (DOF) manipulator. The complete modeling of the system is done using the Euler-Lagrange method. A hierarchical nonlinear control structure which consists of outer and inner control loops has been utilized. Model Reference Adaptive Controller (MRAC) is designed for the outer loop where the required command signals are generated to force the quadrotor to move on a reference trajectory in the presence of mass uncertainties and reaction forces coming from the manipulator. For the inner loop, the attitude dynamics of the quadrotor and the joint dynamics of the 2-DOF robotic arm are considered as a fully actuated 5-DOF unified part of the AMS. Nonlinear adaptive control has been utilized for the low-level controller where the changes in inertias have been considered. The proposed controller is tested on a high fidelity AMS model in the presence of uncertainties, wind disturbances and measurement noise, and satisfactory trajectory tracking performance with improved robustness is achieved

    Visual guidance of unmanned aerial manipulators

    Get PDF
    The ability to fly has greatly expanded the possibilities for robots to perform surveillance, inspection or map generation tasks. Yet it was only in recent years that research in aerial robotics was mature enough to allow active interactions with the environment. The robots responsible for these interactions are called aerial manipulators and usually combine a multirotor platform and one or more robotic arms. The main objective of this thesis is to formalize the concept of aerial manipulator and present guidance methods, using visual information, to provide them with autonomous functionalities. A key competence to control an aerial manipulator is the ability to localize it in the environment. Traditionally, this localization has required external infrastructure of sensors (e.g., GPS or IR cameras), restricting the real applications. Furthermore, localization methods with on-board sensors, exported from other robotics fields such as simultaneous localization and mapping (SLAM), require large computational units becoming a handicap in vehicles where size, load, and power consumption are important restrictions. In this regard, this thesis proposes a method to estimate the state of the vehicle (i.e., position, orientation, velocity and acceleration) by means of on-board, low-cost, light-weight and high-rate sensors. With the physical complexity of these robots, it is required to use advanced control techniques during navigation. Thanks to their redundancy on degrees-of-freedom, they offer the possibility to accomplish not only with mobility requirements but with other tasks simultaneously and hierarchically, prioritizing them depending on their impact to the overall mission success. In this work we present such control laws and define a number of these tasks to drive the vehicle using visual information, guarantee the robot integrity during flight, and improve the platform stability or increase arm operability. The main contributions of this research work are threefold: (1) Present a localization technique to allow autonomous navigation, this method is specifically designed for aerial platforms with size, load and computational burden restrictions. (2) Obtain control commands to drive the vehicle using visual information (visual servo). (3) Integrate the visual servo commands into a hierarchical control law by exploiting the redundancy of the robot to accomplish secondary tasks during flight. These tasks are specific for aerial manipulators and they are also provided. All the techniques presented in this document have been validated throughout extensive experimentation with real robotic platforms.La capacitat de volar ha incrementat molt les possibilitats dels robots per a realitzar tasques de vigilància, inspecció o generació de mapes. Tot i això, no és fins fa pocs anys que la recerca en robòtica aèria ha estat prou madura com per començar a permetre interaccions amb l’entorn d’una manera activa. Els robots per a fer-ho s’anomenen manipuladors aeris i habitualment combinen una plataforma multirotor i un braç robòtic. L’objectiu d’aquesta tesi és formalitzar el concepte de manipulador aeri i presentar mètodes de guiatge, utilitzant informació visual, per dotar d’autonomia aquest tipus de vehicles. Una competència clau per controlar un manipulador aeri és la capacitat de localitzar-se en l’entorn. Tradicionalment aquesta localització ha requerit d’infraestructura sensorial externa (GPS, càmeres IR, etc.), limitant així les aplicacions reals. Pel contrari, sistemes de localització exportats d’altres camps de la robòtica basats en sensors a bord, com per exemple mètodes de localització i mapejat simultànis (SLAM), requereixen de gran capacitat de còmput, característica que penalitza molt en vehicles on la mida, pes i consum elèctric son grans restriccions. En aquest sentit, aquesta tesi proposa un mètode d’estimació d’estat del robot (posició, velocitat, orientació i acceleració) a partir de sensors instal·lats a bord, de baix cost, baix consum computacional i que proporcionen mesures a alta freqüència. Degut a la complexitat física d’aquests robots, és necessari l’ús de tècniques de control avançades. Gràcies a la seva redundància de graus de llibertat, aquests robots ens ofereixen la possibilitat de complir amb els requeriments de mobilitat i, simultàniament, realitzar tasques de manera jeràrquica, ordenant-les segons l’impacte en l’acompliment de la missió. En aquest treball es presenten aquestes lleis de control, juntament amb la descripció de tasques per tal de guiar visualment el vehicle, garantir la integritat del robot durant el vol, millorar de l’estabilitat del vehicle o augmentar la manipulabilitat del braç. Aquesta tesi es centra en tres aspectes fonamentals: (1) Presentar una tècnica de localització per dotar d’autonomia el robot. Aquest mètode està especialment dissenyat per a plataformes amb restriccions de capacitat computacional, mida i pes. (2) Obtenir les comandes de control necessàries per guiar el vehicle a partir d’informació visual. (3) Integrar aquestes accions dins una estructura de control jeràrquica utilitzant la redundància del robot per complir altres tasques durant el vol. Aquestes tasques son específiques per a manipuladors aeris i també es defineixen en aquest document. Totes les tècniques presentades en aquesta tesi han estat avaluades de manera experimental amb plataformes robòtiques real
    corecore