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Abstract

Aerial robotics is one of the fastest growing industry and has a number of evolving
applications. Higher agility make aerial robots ideal candidate for applications like
rescue missions especially in difficult to access areas. This chapter first derives the
complete nonlinear dynamics of an aerial robot consisting of a quadcopter with a two-
link robot manipulator. Precise control of such an aerial robot is a challenging task due
to the fact that the translational and rotational dynamics of the quadcopter are strongly
coupled with the dynamics of the manipulator. We extend our previous results on the
control of quadrotor UAVs to the control of aerial robots. In particular, we design a
backstepping and Lyapunov-based nonlinear feedback control law that achieves point-
to-point control of the areal robot. The effectiveness of this feedback control law is
illustrated through a simulation example.

Keywords: quadcopter, robot manipulator, backstepping method, nonlinear control

1. Introduction

The recent surge of interest in applications involving unmanned aerial vehicles (UAVs) has

inspired several research efforts in UAV dynamic modeling and control. In particular,

nonlinear control of fixed-wing UAVs has attracted considerable research efforts during recent

years both for civilian and military purposes. The control approaches developed for fixed-

wing UAVs include gain scheduling, model predictive control, backstepping, sliding mode,

nested saturation, fuzzy control, H
∞
control, dynamic inversion based control, model reference

adaptive control, and model based fault tolerant control [1–12].

While control applications involving fixed-wing UAVs have been widely investigated in recent

literature, quadrotor UAV (quadcopter) control applications are growing in popularity due to

their maneuverability and versatility. Quadcopters offer practical advantages over fixed-wing
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UAVs in military and civilian applications involving search and rescue, area mapping,

and surveillance. However, actuator constraints, sensor limitations, and the high degree of

nonlinearity and uncertainty inherent in the system dynamics present specific challenges in

control system design for quadcopters. Linear control approaches, such as PID, LQR or LQG

are popularly utilized to address the quadcopter control problem [13–15]. Although linear

control methods have been shown to perform well in their respective quadcopter control tasks,

the effectiveness of linear control methods can only be guaranteed over a limited range of

operating conditions. The highly agile nature of quadcopters necessitates the development of

control methods that can be applied over a wide range of time-varying, uncertain, and poten-

tially adversarial operating conditions. To achieve reliable quadcopter control over a wider

operational envelope, several nonlinear control methods have recently been presented. Popu-

lar nonlinear control methods for quadrotor systems include backstepping, feedback lineari-

zation, dynamic inversion, adaptive control, Lyapunov-based robust control, fuzzy-model

approach, and sliding mode control [16–19]. In Ref. [16], a passivity-based quaternion feed-

back control strategy is presented for a hover system (quadrotor UAV test bed), which achieves

asymptotic attitude regulation. The proposed control design incorporates the input voltage

constraints inherent in practical UAV systems. A rigorous Lyapunov-based analysis is pro-

vided to prove asymptotic regulation of the hover system attitude to a desired set point. In Ref.

[17], a sliding mode control (SMC) strategy is presented for a quadrotor-based hover system,

which achieves asymptotic attitude regulation in the presence of electrical and physical con-

straints. A sliding mode observer is employed to estimate the angular velocities. In addition,

the proposed control design incorporates the input voltage constraints inherent in practical

systems. A rigorous Lyapunov-based analysis is provided to prove asymptotic regulation of

the hover system attitude to a desired set point.

Aerial robotics is one of the fastest growing industry and has a number of evolving applications.

Higher agility make aerial robots ideal candidate for applications like rescue missions especially

in difficult to access areas. Furthermore, swarm robotics (multiple robot working together) is

another exciting application of the aerial robotics, for example coordinated assembly at higher

altitudes. These robots can behave like individuals working in a group without centralized

control. Researchers have developed intelligent control algorithms for the swarms after deep

study of animal behavior in herds, bird flocks and fish schools. In some applications, for an aerial

robot, linear control theory works well but these control techniques are effective in a limited

operating regions. Moreover, the motion of arm induces disturbances to the quadcopter dynam-

ics so the linear controllers lose their effectiveness during operation and sometime the closed loop

system becomes unstable. In order to accomplish complex missions in presence of uncertainties

in the environment, to achieve better maneuverability and precise 3D position and attitude

control, nonlinear control techniques have been found effective [20–27], In Ref. [20] a set of

nonlinear control laws have been proposed for aerial manipulator that provide asymptotic

attitude and position tracking. Backstepping-based nonlinear control scheme for automatic tra-

jectory tracking for aerial manipulators has been proposed in Refs. [22, 24].

In this chapter, we extend our results on the control of quadcopters to the control of aerial

robots. We derive the complete nonlinear dynamics of an aerial robot consisting of a

quadcopter with a two-link robot manipulator. Precise control of such a robot is a challenging

task because attitude and position dynamics of the quadcopter are strongly coupled with the
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dynamics of the manipulator. We develop nonlinear control laws that ensure the control of

position and attitude of the aerial robot. Simulation results are included to demonstrate the

effectiveness of the control laws.

2. Mathematical model

This section formulates the dynamics of an aerial robot consisting of a quadcopter with a two-

link robot manipulator. The quadcopter is represented as a base body and the links as internal

bodies. The equations of motion are expressed in terms of the three dimensional translational

velocity vector, the attitude, the angular velocity, and the internal (shape) coordinates repre-

senting the configuration of the two links.

2.1. Multibody vehicle dynamics

Following the development in [28], let v ∈ R
3, ω ∈ R

3, and η∈ S
1 � S

1 denote the base body

translational velocity vector, the base body angular velocity vector, and the vector of internal

coordinates, respectively. In these variables, the kinetic energy has the form T ¼ Tðv,ω, η, _ηÞ,

which is SE(3)-invariant in the sense that it does not depend on the base body position and

attitude. The equations of motion of the quadrotor with internal dynamics are shown to be

given by:

d

dt

∂T

∂ν
þ ω̂

∂T

∂ν
¼ Ft, ð1Þ

d

dt

∂T

∂ω
þ ω̂

∂T

∂ω
þ ν̂

∂T

∂ν
¼ τr, ð2Þ

d

dt

∂T

∂ _η
�

∂T

∂η
¼ τs, ð3Þ

where Ft ∈ R
3, τr ∈ R

3 denote the vectors of generalized control forces and generalized control

torques, respectively, that act on the base body, and τs ∈ R
3 is the vector of joint torques. For a

given vector a = [a1 a2 a3]
T
∈ R

3, the skew-symmetric matrix â defines the corresponding cross-

product operation a�, given by

â ¼
0 �a3 a2
a3 0 �a1
�a2 a1 0

2

4

3

5

: ð4Þ

Note that Eqs. (1) and (2) are identical to Kirchhoff’s equations [29], which can also be

expressed in the form of Euler-Poincaré equations.

2.2. Nonlinear equations of motion

Consider an aerial robot that consists of a quadcopter with a two DOF manipulator arm

moving in a three-dimensional space as shown in Figure 1, where p = [x y z]T denotes the
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inertial position of the center of mass of the quadcopter. Denote by xyz axes the inertial frame

F 1 and by xB yB zB axes the body-fixed frame FB with the origin at the CM of the quadcopter.

Let R denote the attitude matrix of the quadcopter and (v, ω) be the translational and angular

velocities of the CM of the quadrotor in FB. Then, the translational and rotational kinematics

can be expressed as

_p ¼ Rv, ð5Þ

_R ¼ Rω̂: ð6Þ

The quadcopter consists of four propellers connected to a rigid frame. Each propeller is mounted

on the frame at a distance l from the origin. The quadcopter has a mass m and inertia matrix J

defined with respect to the axes of rotation. Due to symmetry of the system, J is diagonal, that is,

J = diag{Jxx, Jyy, Jzz}. We refer to rotation about the xB-axis as roll, rotation about the yB-axis as

pitch, and rotation about the zB-axis as yaw. The propellers generate lift forces

Fi ¼ bΩ2
i ¼ bK2

ν
V2

i , ð7Þ

whereΩi, Vi denote, respectively, the angular rate and input voltage for propeller i, and b is the

thrust coefficient. The total thrust is given by

Fp ¼
X4

i¼1

Fie3 ¼ bK2
vðV

2
1 þ V2

2 þ V2
3 þ V2

4Þe3, ð8Þ

where e3 = [0 0 1]T ∈ R3 is the third standard basis vector.

Note that, as shown in Figure 2, propellers 1 and 3 rotate clockwise, and propellers 2 and 4

rotate counter-clockwise. By balancing the torque between opposing propellers, the roll and

pitch angle can be controlled. Since all four propellers generate a net torque about the yaw axis,

the yaw angle can be controlled by balancing the torque generated by clockwise and counter-

clockwise rotating propellers.

FB

yB

xB
θ2

θ1

FI

z

x

y

p

zB

Figure 1. Model of a quadcopter with a robotic arm.
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The arm is attached at the CM of the quadcopter and it can only move in xz-plane of the body-

fixed frame FB. The physical constants are the quadcopter mass m, the link masses mi, i = 1,2,

and the payload mass mp. Let lci denote the distance from joint i to the CM of link i and li be the

length of link i. The position vectors for the CM of the links and the payload with respect to the

CM of the base body in FB can be written as

ρ1 ¼ ½ lc1 cosθ1 0 lc1 sinθ1 �
T , ð9Þ

ρ2 ¼ ½ l1 cosθ1 þ lc2 cosθ2 0 l1 sinθ1 þ lc2 sinθ2 �
T , ð10Þ

ρp ¼ ½ l1 cosθ1 þ l2 cosθ2 0 l1 sinθ1 þ l2 sinθ2 �
T
: ð11Þ

Let Ft = Fg +Fp, where Fg and Fp denote, respectively, the gravitational force acting on aerial

robot and the total thrust generated by the four propellers. Also let τr = τg + τp, where τg and τp
are the torque acting on the aerial robot due to gravity and the torque generated by the

propellers, respectively.

Clearly, Fg and τg can be computed as

Fg ¼ �mtgR
Te3, ð12Þ

τg ¼ �g½m1ρ1 þm2ρ2 þmpρp� � RTe3, ð13Þ

where mt = m + m1 + m2 + mp.

The generalized torque vector τp (expressed in the body frame) comprises the following

components:

• Propellers 2 and 4 generate a moment lðF4 � F2Þ ¼ blK2
νðV

2
4 � V2

2Þ about the roll axis.

• Propellers 1 and 3 generate a moment lðF3 � F1Þ ¼ blK2
νðV

2
3 � V2

1Þ about the pitch axis.

• The sum of all torques about z-axis is dK2
νðV

2
1 � V2

2 þ V2
3 � V2

4Þ and causes a yaw moment.

• The rotation of the propellers causes the gyroscopic effect JrKνωyðV1 � V2 þ V3 � V4Þ

about the roll-axis and �JrKνωxðV1 � V2 þ V3 � V4Þ about the pitch-axis.

zB

yB xB

F3

F4 F1

F2

mg

l
x

z

y

Figure 2. Model of the quadcopter.
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Here d denotes the drag coefficient, l is the distance from the pivot to the motor, and Jr is the

rotor inertia. Combined, the generalized torque τp can be expressed as

τp ¼

blK2
νðV

2
4 � V2

2Þ þ JrωyΩr

blK2
νðV

2
3 � V2

1Þ � JrωxΩr

dK2
νðV

2
1 � V2

2 þ V2
3 � V2

4Þ

2

6

6

6

4

3

7

7

7

5

, ð14Þ

where Ωr :¼ KνðV1 � V2 þ V3 � V4Þ is the overall residual angular speed of the propellers.

Let η ¼ ½θ1 θ2�
T denote the shape variables. Then, the linear and angular velocities of each link,

and the linear velocity of the payload can be expressed in FB as

νi ¼ νþ ω̂ρi þ
∂ρi

∂η
_η ¼ ν� ρ̂ iωþ

∂ρi

∂η
_η, i ¼ 1; 2; ð15Þ

ωi ¼ ωþ _θie2 ¼ ωþ CiðηÞ _η, i ¼ 1; 2; ð16Þ

νp ¼ νþ ω̂ρp þ
∂ρp

∂η
_η ¼ ν� ρ̂pωþ

∂ρp

∂η
_η, ð17Þ

where e2 = [0 1 0]
T
∈ R

3 is the second standard basis vector. The total kinetic energy can now be

expressed as

Tðν,ω, η, _ηÞ ¼
1

2
mνTνþ

1

2
ωTJωþ

1

2

X

2

i¼1

ðmiνi
Tνi þ ωi

TJiωiÞ þ
1

2
mpνp

2, ð18Þ

where Ji ¼ RT
i JiRi is the inertia matrix of the ith link with respect the body frame FB, Ri is the

rotation matrix of the ith link, which is given by

Ri ¼

cosθi 0 sinθi

0 1 0

� sinθi 0 cosθi

2

6

4

3

7

5
, i ¼ 1; 2; ð19Þ

and Ji denotes the inertia matrix of the ith link with respect to xiyizi-axes attached to the link.

Assuming the two links are made up of homogeneous rods, Ji can be expressed as

Ji ¼

0 0 0

0
1

12
mil

2
i 0

0 0
1

12
mil

2
i

2

6

6

4

3

7

7

5

: ð20Þ

Applying Kirchhoff’s equations (1) and (2), the complete nonlinear equations of motion can be

obtained as
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M K Bt

KT J Br

BT
t BT

r m

2

6

4

3

7

5

_v

_w

€η

2

6

4

3

7

5
¼

Ft

τr

τs

2

6

4

3

7

5

�

ŵM _K þ ŵK _Bt þ ŵBt

_KT þ ŵKT þ ν̂M _J þ ŵJ þ ν̂K _Ba þ ŵBa þ ν̂Bt

_B
T

t
_B
T

a
_m

2

6

6

4

3

7

7

5

v

w

_η

2

6

4

3

7

5
þ

0

0
∂L

∂η

2

6

6

4

3

7

7

5

,

ð21Þ

where

M ¼ mtI3�3, ð22Þ

J ¼ J þm1ρ̂
T
1 ρ̂1 þm2ρ̂

T
2 ρ̂2 þmpρ̂

T
p ρ̂p þ J1 þ J2, ð23Þ

m ¼ m1
∂ρ1
∂η

T ∂ρ1

∂η
þm2

∂ρ2

∂η

T
∂ρ2

∂η
þmp

∂ρp

∂η

T
∂ρp

∂η
þ CT

1 J1C1 þ CT
2 J2C2, ð24Þ

K ¼ �m1ρ̂1�m2ρ̂2 �mpρ̂p, ð25Þ

Bt ¼ m1
∂ρ1

∂η
þm2

∂ρ2

∂η
þmp

∂ρp

∂η
, ð26Þ

Br ¼ m1ρ̂1

∂ρ1

∂η
þm2ρ̂2

∂ρ2

∂η
þmpρ̂p

∂ρp

∂η
þ J1C1 þ J2C2: ð27Þ

Complete description of the above coefficient matrices are given in the appendix. The objective

is to simultaneously control the 6 DOF motion of the quadcopter and the 2 DOF internal

dynamics of the robot arm using only 4 propellers and 2 joint torque motors. In this regard,

equations of motion given by (21) represents an interesting example of underactuated mechan-

ical systems. In our previous research [30–32], we have developed theoretical controllability

and stabilizability results for a large class of underactuated mechanical systems using tools

from nonlinear control theory. We have also developed effective nonlinear control design

methodologies [32] that we applied to several examples of underactuated mechanical systems,

including underactuated space vehicles [33].

3. Nonlinear control design

The translational and rotational dynamics of the quadcopter are coupled with the dynamics of

its robotic arm; this makes controller design very complicated. The equations of motion in

component form are given by

M _ν þ K _ω þ Bt€η ¼ Ft � ω̂Mν� ð _K þ ω̂KÞω� ð _Bt þ ω̂BtÞ _η, ð28Þ

KT
_ν þ J _ω þ Ba€η ¼ τr � ð _K

T
þ ω̂KT þ ν̂MÞν� ð _J þ ω̂J þ ν̂KÞω� ð _Ba þ ω̂Ba þ ν̂BtÞ _η, ð29Þ
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BT
t _ν þ BT

a _ω þm€η ¼ τs � _B
T

t ν�
_B
T

a ω� _m _η þ
∂L

∂η
: ð30Þ

Eq. (28) can be rewritten as

M _ν ¼ Ft � ω̂Mνþ Fd, ð31Þ

where

Fd ¼ �K _ω � Bt €η � ð _K þ ω̂KÞω� ð _Bt þ ŵBtÞ _η: ð32Þ

Eq. (31) can be simplified as

€x
€y
€z

2

4

3

5 ¼
0
0
�g

2

4

3

5þ Rê3u1 þ Fd: ð33Þ

where Fd ¼ Fd=mt and

u1 ¼ bK2
vðV

2
1 þ V2

2 þ V2
3 þ V2

4Þ=mt, ð34Þ

Similarly, Eq. (29) can be rewritten as

J _ω ¼ τr � ð _J þ ω̂JÞωþ τd, ð35Þ

where

τd ¼ �KT
_v � Ba€η � ð _K

T
þ ω̂KT þ ν̂MÞν� ν̂Kω� ð _Ba þ ω̂Ba þ ν̂BtÞ _η: ð36Þ

Eq. (35) can be simplified as

_ω ¼ J
�1
τr � J

�1
ð _J þ ω̂JÞωþ τd, ð37Þ

where τd ¼ J
�1
τd.

Ignoring Fd and τd in Eqs. (33) and (37), equations of motion can be expressed as

€x ¼ ð cosφ sinθ cosΨ þ sinφ sinΨ Þu1, ð38Þ

€y ¼ ð cosφ sinθ sinΨ � sinφ cosΨ Þu1, ð39Þ

€z ¼ �gþ ð cosφ cosθÞu1, ð40Þ

_ωx

_ωy

_ωz

2

4

3

5 ¼ J
�1

τg þ
JrωyΩr

�JrωxΩr

0

2

4

3

5� ð _J þ ω̂JÞω

0

@

1

Aþ
u2
u3
u4

2

4

3

5, ð41Þ
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where

u2
u3
u4

2

4

3

5 ¼ J
�1

blK2
νðV

2
4 � V2

2Þ

blK2
νðV

2
3 � V2

1Þ

blK2
νðV

2
1 � V2

2 þ V2
3 � V2

4Þ

2

6

4

3

7

5
: ð42Þ

We now design a nonlinear controller based on integrator backstepping. If φ, θ and Ψ are small

(sin θ ≈ θ and cos θ ≈ θ), then ω ≈ ½ _φ _θ _Ψ �T and _ω ≈ ½ €φ €θ €Ψ �T , and hence the equation of

motions can be simplified as

€x ¼ θu1, ð43Þ

€y ¼ �φu1, ð44Þ

€z ¼ �gþ u1, ð45Þ

€φ ¼ f 1ðφ,θ,Ψ Þ þ u2, ð46Þ

€θ ¼ f 2ðφ,θ,Ψ Þ þ u3, ð47Þ

€Ψ ¼ f 3ðφ,θ,Ψ Þ þ u4, ð48Þ

where

f 1
f 2
f 3

2

4

3

5 ¼ J
�1

τg þ

Jr
_θΩr

�Jr
_φΩr

0

2

6

4

3

7

5
� ð _J þ ω̂JÞ

_φ

_θ
_Ψ

2

6

4

3

7

5

0

B

@

1

C

A
: ð49Þ

3.1. Controller design

In this section a nonlinear controller is designed to stabilize the system (43)–(48) to the desired

equilibrium configuration ðx, y, z, φ, θ, Ψ Þ ¼ ðxd, yd, zd, φd, θd, Ψ dÞ.

We choose u1 as

u1 ¼ g� jz� zdj
a sign ðz� zdÞ � j _zjb sign ð _zÞ, ð50Þ

where b ∈ (0, 1), a > b / (2 � b), i = 1,2, are controller parameters. The feedback law (50) controls

the quadcopter z-dynamics to ðz, _zÞ ¼ ðzd, 0Þ in finite time [34] so that u1 ! g in finite time.

After reaching the desired altitude, Eqs. (43) and (44) take the following form:

€x ¼ gθ, ð51Þ

€y ¼ �gφ: ð52Þ

We now apply a backstepping method to design the controls u2 and u3 to stabilize the system

to the equilibrium at ðx, y, φ, θÞ ¼ ðxd, yd, φd, θdÞ.
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Assume that θ and φ are virtual inputs for the x and y subsystems, respectively. Stabilizing

feedback functions for the x-subsystem is given by

θ ¼ �k1ðx� xdÞ � k2 _x, ð53Þ

φ ¼ k3ðy� ydÞ þ k4 _y, ð54Þ

where ki > 0, i = 1,…,4, so that

€x þ gk2 _x þ gk1ðx� xdÞ ¼ 0; ð55Þ

€y þ gk3 _y þ gk4ðy� ydÞ ¼ 0: ð56Þ

Define

y1 ¼ θþ k1ðx� xdÞ þ k2 _x, ð57Þ

y2 ¼ φ� k3ðy� ydÞ � k4 _y, ð58Þ

and consider the y1 and y2 dynamics given by

_y1 ¼
_θ þ k1 _x þ k2€x ¼ _θ þ k1 _x þ k2gθ, ð59Þ

_y2 ¼
_φ � k3 _y � k4€y ¼ _φ � k3 _y þ k4gφ: ð60Þ

Define the sliding variables (s1, s2)

s1 ¼ _y1 þ α1y1, ð61Þ

s2 ¼ _y2 þ α2y2, ð62Þ

where αi > 0, i = 1,2, which can be simplified as

s1 ¼ _θ þ ðk2gþ α1Þθþ ðk1 þ α1k2Þ _x þ α1k1ðx� xdÞ, ð63Þ

s2 ¼ _φ þ ðk4gþ α2Þφ� ðk3 þ α2k4Þ _y � α2k3ðy� ydÞ: ð64Þ

The dynamics of sliding variables are found simply by taking time derivative of the sliding

variables as

_s1 ¼ €θ þ ðk2gþ α1Þ _θ þ ðk1 þ α1k2Þgθþ α1k1 _x, ð65Þ

_s2 ¼ €φ þ ðk4gþ α2Þ _φ þ ðk3 þ α2k4Þgφ� α2k3 _y: ð66Þ

Substituting the expressions for €φ and €θ from (46) and (47), respectively, we obtain

_s1 ¼ f 2ðφ,θ,Ψ Þ þ u3 þ ðk2gþ α1Þ _θ þ ðk1 þ α1k2Þgθþ α1k1 _x, ð67Þ

_s2 ¼ f 1ðφ,θ,Ψ Þ þ u2 þ ðk4gþ α2Þ _φ þ ðk3 þ α2k4Þgφ� α2k3 _y: ð68Þ
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We choose the inputs u2 and u3 as

u2 ¼ �λ2 sign ðs2Þ � f 1ðφ,θ,Ψ Þ � ðk4gþ α2Þ _φ � ðk3 þ α2k4Þgφþ α2k3 _y, ð69Þ

u3 ¼ �λ1 sign ðs1Þ � f 2ðφ,θ,Ψ Þ � ðk2gþ α1Þ _θ � ðk1 þ α1k2Þgθ� α1k1 _x, ð70Þ

so that the following closed-loop response for the sliding variables is obtained:

_s1 ¼ �λ1 sign ðs1Þ, ð71Þ

_s2 ¼ �λ2 sign ðs2Þ, ð72Þ

where we choose λ1 > 0 and λ2 > 0 large enough so that the terms Fd and τd are dominated by

the sliding mode terms.

Now consider the Ψ-dynamics given by (48). The following control law stabilizes the

Ψ-dynamics to ðΨ , _Ψ Þ ¼ ðΨ d, 0Þ:

u4 ¼ �k5ðΨ � Ψ dÞ � k6 _ψ � f 3ðφ,θ,Ψ Þ, ð73Þ

where k5, k6 > 0.

The voltage inputs Vi, i = 1,…, 4, are determined by substituting the expressions for the virtual

control inputs ui, i = 1,…, 4, into Eqs. (34) and (42).

Consider Eqs. (31) and (35), and ignore Fd and τd. Then we have

_ν ¼ M�1Ft �M�1ŵMν, ð74Þ

_ω ¼ J
�1
τr � J

�1
ð _J þ ω̂JÞω: ð75Þ

Eq. (30) can be rewritten as

€η ¼ m�1 �BT
t _ν � BT

a _w þ τs � _B
T

t ν�
_B
T

aw� _m _η þ
∂L

∂η

� �

, ð76Þ

which can be expressed in terms of Ft and τr as

€η ¼ m�1 τs �
BT
t Ft
mt

� BT
t ω̂ν� BT

a J
�1
ðτr � ð _J þ ω̂JÞωÞ � _B

T

t ν�
_B
T

aw� _m _η þ
∂L

∂η

� �

: ð77Þ

In order to have exponential convergence of the shape variables η to the desired ηd we choose

τs as

τs ¼
BT
t Ft
mt

þ BT
t ω̂vþ BT

a J
�1
ðτr � ð _J þ ω̂JÞωÞ þ _B

T

t νþ
_B
T

awþ _m _η �
∂L

∂η
�m

�

2λ _η þ λ2ðη� ηdÞ
�

ð78Þ
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where λ > 0, so that

€η þ 2λ _η þ λ2ðη� ηdÞ ¼ 0: ð79Þ

4. Simulation

The controller developed in the previous sections is applied to the full nonlinear model of the

aerial robot. The relevant parameter values of the system are listed in Table 1.

A rest-to-rest motion was simulated with initial conditions ðx0, y0, z0Þ ¼ ð0; 0; 0Þ,

ðφ0, θ0, Ψ 0Þ ¼ ð0; 0; 0Þ, and ðθ10, θ20Þ ¼ ð0; 0Þ. The desired position, attitude, and joint angles

were set as ðxd, yd, zdÞ ¼ ð30; 50; 40Þ [m], ðφd, θd, Ψ dÞ ¼ ð0; 0; 0Þ, and ðθ1d, θ2dÞ ¼ ð30; 60Þ [�],

respectively.

The control parameters are chosen as

ðk1, k2, k3, k4, k5, k6Þ ¼ ð2; 0:1; 2; 0:1; 2; 2Þ, ð80Þ

ðλ1, λ2Þ ¼ ð1; 1Þ, ðα1, α2Þ ¼ ð0:1; 0:1Þ: ð81Þ

As shown in Figures 3–5, the position, attitude, and joint angles converge to their desired

values in around 40 s. Figure 6 shows the time responses of the control inputs ui, i = 1,…,4.

Symbol Parameter Value Unit

Kv Transformation constant 54.945 rad s V�1

Jr Rotor inertia 6 � 10�5 kg m2

Jxx MOI about x axis 0.0552 kg m2

Jyy MOI about y axis 0.0552 kg m2

Jzz MOI about z axis 0.1104 kg m2

b Thrust coefficient 3.935139 � 10�6 N V�1

d Drag coefficient 1.192564 � 10�7 Nm V�1

l Distance from pivot to motor 0.1969 m

m Mass 2.85 kg

g Acceleration of gravity 9.81 ms�2

V Maximum input voltage 10 V

m1 Mass of link 1 0.1 kg

m2 Mass of link 2 0.1 kg

mp Mass of the payload 0.1 kg

l1 Length of link 1 0.5 m

l2 Length of link 2 0.5 m

Table 1. Parameters of the aerial robot.
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Figure 3. Time responses of the aerial robot’s position x, y, and z.

Figure 4. Time responses of the aerial robot’s Euler angles φ, θ, and Ψ.
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5. Conclusions

This chapter first derives the complete nonlinear dynamics of an aerial robot consisting of a

quadcopter with a two-link robot manipulator. Precise control of such an aerial robot is a

challenging task since the translational and rotational dynamics of the quadcopter are strongly

coupled with the dynamics of the manipulator. We extend our previous results on the control

of quadrotor UAVs to the control of aerial robots. In particular, we design a backstepping and
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Figure 6. Time responses of the control inputs ui, i = 1,…,4.
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Figure 5. Time responses of the robotic arm’s joint angles θ1 and θ2.
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Lyapunov-based nonlinear feedback control law that achieves the point-to-point control of the

areal robot. The effectiveness of this feedback control law is illustrated through a simulation

example.

The many avenues considered for future research include problems involving collaborative

control of multiple aerial robots. Future research also includes designing nonlinear control

laws that achieve robustness, insensitivity to system and control parameters, and improved

disturbance rejection. We also plan to explore the use of geometric mechanics formulation of

such control problems.

Appendix A

The matrices M and J can be expressed as

M ¼ mt

1 0 0
0 1 0
0 0 1

2

4

3

5, J ¼

J11 J12 J13
J21 J22 J23
J31 J32 J33

2

6

4

3

7

5
,

where

J11 ¼ Jxx þ ½m1l
2
c1 þ ðm2 þmpÞl

2
1 þ

1

12
m1l

2
1� sin

2
θ1 þ ½m2l

2
c2 þmpl

2
2 þ

1

12
m2l

2
2� sin

2
θ2

þ 2l1ðm2lc2 þmpl2Þ sinθ1 sinθ2,

J22 ¼ Jyy þm1l
2
c1 þ ðm2 þmpÞl

2
1 þ ðm2l

2
c2 þmpl

2
2Þ þ 2l1ðm2lc2 þmpl2Þ cos ðθ2 � θ1Þ

þ
1

12
½m1l

2
1 þm2l

2
2�,

J33 ¼ Jzz þ ½m1l
2
c1 þ ðm2 þmpÞl

2
1 þ

1

12
m1l

2
1� cos

2
θ1 þ ½m2l

2
c2 þmpl

2
2 þ

1

12
m2l

2
2� cos

2
θ2

þ 2l1ðm2lc2 þmpl2Þ cosθ1 cosθ2,

J12 ¼ J21 ¼ J23 ¼ J32 ¼ 0;

J13 ¼ J31 ¼ �
1

2
½m1l

2
c1 þ ðm2 þmpÞl1 þ

1

12
m1l

2
1� sin 2θ1

� l1ðm2lc2 þmpl2Þ sin ðθ1 þ θ2Þ �
1

2
½ðm2l

2
c2 þmpl

2
2Þ þ

1

12
m2l

2
2� sin 2θ2:

The matrix m can be computed as

m ¼
m1l

2
c1 þ ðm2 þmpÞl

2
1 þ

1

12
m1l

2
1 ðm2lc2 þmpl2Þl1 cos ðθ2 � θ1Þ

ðm2lc2 þmpl2Þl1 cos ðθ2 � θ1Þ m2l
2
c2 þmpl

2
2 þ

1

12
m2l

2
2

2

6

4

3

7

5
:

The matrices K, Br, and Bt are given by
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K ¼

0 �Kxy 0

Kxy 0 �Kxz

0 Kxz 0

2

6

4

3

7

5
, Br ¼

0 0

Br1 Br2

0 0

2

6

4

3

7

5
,

where

Kxy ¼ ½m1lc1 þ ðm2 þmpÞl1� sinθ1 þ ðm2lc2 þmpl2Þ sinθ2,

Kxz ¼ ½m1lc1 þ ðm2 þmpÞl1� cosθ1 þ ðm2lc2 þmpl2Þ cosθ2,

Br1 ¼ �½m1l
2
c1 þ ðm2 þmpÞl

2
1 þ ðm2lc2 þmpl2Þl1 cos ðθ2 � θ1Þ� þ

1

12
m1l

2
1,

Br2 ¼ �½m2l
2
c2 þmpl

2
2 þ ðm2lc2 þmpl2Þl1 cos ðθ2 � θ1Þ� þ

1

12
m2l

2
2,

and

Bt ¼

�ðm1lc1 þm2l1 þmpl1Þ sinθ1 �ðm2lc2 þmpl2Þ sinθ2

0 0

ðm1lc1 þm2l1 þmpl1Þ cosθ1 ðm2lc2 þmpl2Þ cosθ2

2

6

6

4

3

7

7

5
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