486 research outputs found

    The Impact of Nonlinear Harvesting on a Ratio-dependent Holling-Tanner Predator-prey System and Optimum Harvesting

    Get PDF
    In this paper, a Holling-Tanner predator-prey model with ratio-dependent functional response and non-linear prey harvesting is analyzed. The mathematical analysis of the model includes existence, uniqueness and boundedness of positive solutions. It also includes the permanence, local stability and bifurcation analysis of the model. The ratio-dependent model always has complex dynamics in the vicinity of the origin; the dynamical behaviors of the system in the vicinity of the origin have been studied by means of blow up transformation. The parametric conditions under which bionomic equilibrium point exist have been derived. Further, an optimal harvesting policy has been discussed by using Pontryagin maximum principle. The numerical simulations have been presented in support of the analytical findings

    Diffusion-driven instabilities and emerging spatial patterns in patchy landscapes

    Get PDF
    Spatial variation in population densities across a landscape is a feature of many ecological systems, from self-organised patterns on mussel beds to spatially restricted insect outbreaks. It occurs as a result of environmental variation in abiotic factors and/or biotic factors structuring the spatial distribution of populations. However the ways in which abiotic and biotic factors interact to determine the existence and nature of spatial patterns in population density remain poorly understood. Here we present a new approach to studying this question by analysing a predator–prey patch-model in a heterogenous landscape. We use analytical and numerical methods originally developed for studying nearest- neighbour (juxtacrine) signalling in epithelia to explore whether and under which conditions patterns emerge. We find that abiotic and biotic factors interact to promote pattern formation. In fact, we find a rich and highly complex array of coexisting stable patterns, located within an enormous number of unstable patterns. Our simulation results indicate that many of the stable patterns have appreciable basins of attraction, making them significant in applications. We are able to identify mechanisms for these patterns based on the classical ideas of long-range inhibition and short-range activation, whereby landscape heterogeneity can modulate the spatial scales at which these processes operate to structure the populations

    Modelling the Dynamics of a Renewable Resource under Harvesting with Taxation as a Control Variable

    Get PDF
    The present paper describes a model of resource biomass and population with a non-linear catch rate function on resource biomass. The harvesting effort is assumed to be a dynamical variable. Tax on per unit harvested resource biomass is used as a tool to control exploitation of the resource. Pontryagin’s Maximum Principle is used to find the optimal control to maintain the resource biomass and population at an optimal level. A numerical simulation is also carried out to support the analytical results

    Hopf bifurcation and optimal control in a diffusive predator-prey system with time delay and prey harvesting

    Get PDF
    In this paper, we investigated the dynamics of a diffusive delayed predator-prey system with Holling type II functional response and nozero constant prey harvesting on no-flux boundary condition. At first, we obtain the existence and the stability of the equilibria by analyzing the distribution of the roots of associated characteristic equation. Using the time delay as the bifurcation parameter and the harvesting term as the control parameter, we get the existence and the stability of Hopf bifurcation at the positive constant steady state. Applying the normal form theory and the center manifold argument for partial functional differential equations, we derive an explicit formula for determining the direction and the stability of Hopf bifurcation. Finally, an optimal control problem has been considered

    Hopf Bifurcation in a Modified Leslie-Gower Two Preys One Predator Model and Holling Type II Functional Response with Harvesting and Time-Delay

    Get PDF
    In this paper, a modified Leslie-Gower two preys one predator model and Holling type II functional response with harvesting and time-delay were discussed. Model analysis is carried out by determining fixed points, then analyzing the stability of the fixed points and discussing the existence of the Hopf bifurcation. In some conditions that occur in nature indicate the occurrence of hunting of prey and predator species by humans. Therefore, this model is modified by adding the assumption that prey and predators are being harvested. Another modification given to the model is the use of time delays.The delay time term is for taking into account the case that the members of the predator species need time from birth to predation for being active predators. The first case is a model without time delay, it is obtained that 3 fixed points are unstable and 7 fixed points are stable. One of them is the interior fixed point tested with the Routh-Hurwitz criteria. The second case is a model with a delay time, the critical delay value is obained. Hopf bifurcation occurs when the delay time value is equal to the critical delay value and also fulfills the transversality condition. Observations on the model simulation are carried out by varying the value of the delay time. When the Hopf bifurcation occurs, the graph on the solution plane shows a constant oscillatory movement. If the value of the delay time given is less than the critical value of the delay, the controlled system solution goes to a balanced state. Then when the delay time value is greater than the critical delay value, the system solution continues to fluctuate causing an unstable system condition

    Non-Linear Effort dynamics for Harvesting in a Predator- Prey System

    Get PDF
    In this paper, a non-linear harvesting of prey is considered in a prey-predator system. The predator is considered to be of modified Leslie- Gower type. The effort is taken as dynamic variable. The steady states of the system are determined and the dynamical behavior of the system for its all steady states is discussed under certain conditions. Necessary condition for global stability of the system is analyzed at the positive interior equilibrium point. Numerical simulations are carried out to explore the dynamics of the system for the suitable choice of parameters. Keywords: Modified Leslie-Gower predation, Nonlinear Harvesting, stability, Numerical Simulations

    (R2020) Dynamical Study and Optimal Harvesting of a Two-species Amensalism Model Incorporating Nonlinear Harvesting

    Get PDF
    This study proposes a two-species amensalism model with a cover to protect the first species from the second species, with the assumption that the growth of the second species is governed by nonlinear harvesting. Analytical and numerical analyses have both been done on this suggested ecological model. Boundedness and positivity of the solutions of the model are examined. The existence of feasible equilibrium points and their local stability have been discussed. In addition, the parametric conditions under which the proposed system is globally stable have been determined. It has also been shown, using the Sotomayor theorem, that under certain parametric conditions, the suggested model exhibits a saddle-node bifurcation. The parametric conditions for the existence of the bionomic equilibrium point have been obtained. The optimal harvesting strategy has been investigated utilizing the Pontryagins Maximum Principle. The potential phase portrait diagrams have been provided to corroborate the acquired findings
    corecore