
Applications and Applied Mathematics: An International Applications and Applied Mathematics: An International 

Journal (AAM) Journal (AAM) 

Volume 15 Issue 1 Article 8 

6-2020 

The Impact of Nonlinear Harvesting on a Ratio-dependent Holling-The Impact of Nonlinear Harvesting on a Ratio-dependent Holling-

Tanner Predator-prey System and Optimum Harvesting Tanner Predator-prey System and Optimum Harvesting 

Manoj Kumar Singh 
Banasthali Vidyapith 

B. S. Bhadauria 
Babasaheb Bhimrao Ambedkar University 

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam 

 Part of the Biology Commons, Ordinary Differential Equations and Applied Dynamics Commons, and 

the Partial Differential Equations Commons 

Recommended Citation Recommended Citation 
Singh, Manoj Kumar and Bhadauria, B. S. (2020). The Impact of Nonlinear Harvesting on a Ratio-
dependent Holling-Tanner Predator-prey System and Optimum Harvesting, Applications and Applied 
Mathematics: An International Journal (AAM), Vol. 15, Iss. 1, Article 8. 
Available at: https://digitalcommons.pvamu.edu/aam/vol15/iss1/8 

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for 
inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of 
Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu. 

https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam/vol15
https://digitalcommons.pvamu.edu/aam/vol15/iss1
https://digitalcommons.pvamu.edu/aam/vol15/iss1/8
https://digitalcommons.pvamu.edu/aam?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol15%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol15%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/121?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol15%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol15%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pvamu.edu/aam/vol15/iss1/8?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol15%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hvkoshy@pvamu.edu


Available at
http://pvamu.edu/aam

Appl. Appl. Math.
ISSN: 1932-9466

Applications and Applied

Mathematics:

An International Journal
(AAM)

Vol. 15, Issue 1 (June 2020), pp. 117 – 148

The Impact of Nonlinear Harvesting on a Ratio-dependent
Holling-Tanner Predator-prey System and Optimum Harvesting

1∗Manoj Kumar Singh and 2B.S. Bhadauria

1Department of Mathematics and Statistics
Banasthali Vidyapith

Newai
Rajasthan, India

s.manojbbau@gmail.com

2Department of Mathematics
Babasaheb Bhimrao Ambedkar University

Lucknow, India
mathsbsb@yahoo.com

∗Corresponding Author

Received: July 25, 2019; Accepted: May 2, 2020

Abstract

In this paper, a Holling-Tanner predator-prey model with ratio-dependent functional response and
non-linear prey harvesting is analyzed. The mathematical analysis of the model includes existence,
uniqueness and boundedness of positive solutions. It also includes the permanence, local stability
and bifurcation analysis of the model. The ratio-dependent model always has complex dynamics
in the vicinity of the origin; the dynamical behaviors of the system in the vicinity of the origin
have been studied by means of blow up transformation. The parametric conditions under which
bionomic equilibrium point exist have been derived. Further, an optimal harvesting policy has
been discussed by using Pontryagin maximum principle. The numerical simulations have been
presented in support of the analytical findings.

Keywords: Ratio-dependent; Bifurcation; Harvesting; Bionomic equilibria; Optimal harvesting
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118 M.K. Singh and B.S. Bhadauria

1. Introduction

The predator-prey interaction is one of the most important parts of the ecosystem. These interac-
tions can be seen everywhere in the biosphere and effects the human life in various ways. The
commercial exploitation of the renewable natural biological resources like fishery and forestry is
a global challenge for maintaining the ecosystem. The harvesting of species is a way of commer-
cial utilization of the species. The harvesting of species impact much on the ecosystem as over
harvesting of the species may collapse the ecosystem. The first mathematical model to study the
interactions between predators and their preys was proposed by Lotka (1925) and Volterra (1926),
independently. This model consists of a system of two first order nonlinear ordinary differential
equations equipped with a linear function (functional response: the function that describes the num-
ber of prey consumed by a predator per unit time). Thereafter, a number of functional response have
been developed by many researchers: Holling type (Freedman (1980); Gaie and Zhang (2006);
Hwang and Xiao (2004); Sugie et al. (1997)), ratio-dependent type (Arditi and Ginzburg (1989);
Arditi and Saiah (1992); Hsu et al. (2001)), Beddington-DeAngelis type (Cantrell and Cos-
ner (2001); Fan and Wang (2004); Holling (2011)), Hassell-Varley type (Hsu et al. (2005);
Wu and Lin (2009)), etc. The results of various field and laboratory experiments confirm that
the ratio-dependent predator-prey models are more appropriate for predator-prey interactions,
when the predators involve serious hunting processes (Arditi et al. (1991); Berryman (1992);
Reeve (1997)). The merits of ratio-dependent versus prey-dependent models are discussed by
Lundberg and Fryxell (1995).

The Holling-Tanner predator-prey model was proposed by May (1973). Hsu and Hwang (1995)
derived the conditions under which the model is globally stable. Saez and Oliares (1999) studied
the bifurcation of the model. A Holling-Tanner predator-prey model with ratio-dependent func-
tional response was proposed by Liang and Pan (2007). They studied the global stability of the
unique positive interior equilibrium point of the model by constructing Lyapunov function. Saha
and Chakrabarti (2009) studied a delayed ratio-dependent Holling-Tanner predator-prey model and
used blow up transformations to study the qualitative behavior of the origin.

The first mathematical model to study the impact of harvesting on a predator-prey model was
proposed by Clark (1976), in which he studied the problem of combined harvesting of two eco-
logically independent fish species. A predator-prey model with constant harvesting in predator
species has been studied by Brauer and Soudack (1979). The Bogdanov-Takens bifurcation of this
model was studied by Xiao and Ruan (1999). Beddington and May (1980) analyzed the Leslie-
Gower predator-prey model when both the species were harvested at linear rate. Xiao and Jennings
(2005) studied a ratio-dependent predator-prey model with constant harvesting in prey species
while Xiao et al. (2006) studied the same model for constant predator harvesting and obtained
different dynamics. Ragozin and Brown (2006) studied an optimal policy for a predator-prey sys-
tem in which the predator is selectively harvested and prey has no commercial value. Kar (2004)
proposed a ratio-dependent predator-prey model in which taxation is used as a controlling instru-
ment and only prey species are subjected to harvest, he also discussed the optimal tax policy using
the Pontryagin’s maximal principle. Kar et al. (2006) studied a ratio-dependent predator-prey sys-
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tem with combined harvesting and solved the problem of optimal harvesting using Pontryagin’s
maximal principle. Lenzini and Rebaza (2010) studied a ratio-dependent predator-prey model for
linear harvesting and nonlinear harvesting in prey species. Zhu and Lan (2010) proposed Leslie-
Gower predator-prey model in which the prey species are harvested at constant rate and discussed
the saddle-node bifurcation and the supercritical and subcritical hopf bifurcations. The Bogdanov-
Takens bifurcation for this model is discussed by Gong and Huang (2014). Gupta et al. (2012)
analysed a Leslie-Gower predator-prey model with nonlinear harvesting in prey. They derived the
conditions for existence of bionomic equilibrium and discussed optimal harvesting policy using
Pontryagin’s maximal principle. Singh et al. (2016) analyzed a Leslie-Gower predator-prey model
with Michaelis-Menten type predator harvesting.

The aim of this work is to study the impact of nonlinear harvesting on ratio-dependent predator-
prey system proposed by Liang and Pan (2007), and determine how much one can harvest without
altering dangerously the harvested species. We also find an optimal harvesting policy which maxi-
mizes the total discount net revenue derived from exploitation of natural renewable resources.

2. Model Equations

A Leslie-Gower type predator-prey model with ratio-dependent functional response is given by{
dN
dT

= Nf(N)− g
(
N
P

)
P,

dP
dT

= s(1− P
bN

)P,
(1)

with the initial conditions N(0) > 0, P (0) > 0, where N(T ) and P (T ) denote the densities of
prey and predator at time T , respectively; f(N) is the per capita growth rate of prey; g(N

P
) is the

predator functional response to prey; s the intrinsic growth rate of predator; 1
b

is the amount of prey
required to support a predator at equilibrium.

The per capita growth rate f(N) and the functional response g
(
N
P

)
are considered as

f(N) = r
(

1− N

K

)
; g

(N
P

)
=

mN

AP +N
, (2)

where the positive parameters r denotes the intrinsic growth rate of prey, K represents the car-
rying capacity of prey in the absence of predator, m represents the maximal predator per capita
consumption rate and A is the number of prey necessary to achieve one half of the maximum rate
m. Thus, the model (1) becomes

dN
dT

= r
(

1− N
K

)
N − mNP

AP+N
,

dP
dT

= s
(

1− P
bN

)
P,

(3)

with the initial conditions N(0) > 0, P (0) > 0. The system (3) is a ratio-dependent Holling-
Tanner predator-prey model. The system (3) is not well defined at origin and to avoid this problem,

3
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we redefine it as 
dN
dT

= r
(

1− N
K

)
N − mNP

AP+N
,

dP
dT

= s(1− P
bN

)P,
dN
dT

= dP
dT

= 0 at (0, 0),

(4)

with the initial conditions N(0) > 0, P (0) > 0.

Next, we consider the prey species are harvesting with Michalis-Menten type function:

H(N) =
qEN

m1E +m2N
, (5)

where q, E > 0 denote the catchability coefficient, effort applied to harvest individuals, respec-
tively and m1,m2 are suitable positive constants.

Thus, the model (4) becomes
dN
dT

= r
(

1− N
K

)
N − mNP

AP+N
− qEN

m1E+m2N
,

dP
dT

= s(1− P
bN

)P,
dN
dT

= dP
dT

= 0 at (0, 0),

(6)

with the initial conditions N(0) > 0, P (0) > 0.

Let N = Kx, P = Ky
A
, T = t

r
, the system (6) takes the form

dx
dt

= x(1− x)− αxy
x+y
− hx

c+x
≡ xf1(x, y),

dy
dt

= ρ(β − y
x
)y ≡ yf2(x, y),

dx
dt

= dy
dt

= 0 at (0, 0),

(7)

with the initial conditions: x(0) > 0, y(0) > 0, where α = m
rA
, β = Ab, h = qE

rKm2
, C = m1E

m2K
,

ρ = s
Abr

. The set R2
+ = {(x, y) ∈ R2 : x, y ≥ 0} represents the closed first quadrant. In the

following, it is demonstrated that the system (7) is "well behaved" in R2
+.

Proposition 2.1.

a) There exists a unique continuous solution of the system (7) in the interior of R2
+.

b) The set R2
+ is invariant for the system (7).

c) The nonnegative solutions (x(t), y(t)) of the system (7) are bounded for all t ≥ 0.
d) The system (7) is permanent whenever the condition α + h

c
< 1 holds.

Proof:

a) Let

F (x, y) =

{
x(1− x− αy

x+y
− h

c+x
), (x, y) 6= (0, 0),

0, (x, y) = (0, 0),
; G(x, y) =

{
ρ(β − y

x
)y, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

4
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Then the system (7) reduces to

dx

dt
= F (x, y),

dy

dt
= G(x, y).

It is easy to observe that the functions F (x, y), G(x, y) and their first order partial derivatives
∂F
∂x
, ∂F
∂y
, ∂G
∂x
, ∂G
∂y

are continuous in R2
+. The existence and uniqueness theorem (Simmons (2017))

confirms that there exist a unique solution for the system (7) through any point (x(0), y(0)) of R2
+,

which is well defined and is continuous for all t ≥ 0.

b) The integration of the system (7) yields

x(t) = x(0) exp

(∫ t

0

f1(x(s), y(s))ds

)
, (8)

y(t) = y(0) exp

(∫ t

0

f2(x(s), y(s))ds

)
. (9)

Equations (8) and (9) with initial conditions of the system (7) confirms that x(t) > 0, y(t) > 0.
Moreover, x(t) = 0 for t > 0 whenever x(0) = 0, and so, the y-axis {(x, y) : x(t) = 0, y(t) ≥ 0}
is positively invariant. Similarly, the x-axis {(x, y) : y(t) = 0, x(t) ≥ 0} is positive invariant.
Hence, the result.

c) Using condition (b), from the first equation of system (7), we get

dx

dt
≤ x(1− x). (10)

On simplifying (10), we get

x(t) ≤ 1

1 + C0e−t
, (11)

where C0 = 1−x(0)
x(0)

. Now, consider the following two cases:

i) If x(0) ≤ 1, then C0 ≥ 0. It is evident from equation (11) that x(t) ≤ 1 for all t ≥ 0.
ii) If x(0) > 1, then C0 < 0, hence equation (11) leads to x(t) ≥ 1. From equation (10), we get

dx
dt
≤ 0. This implies that x(t) is monotonic decreasing. Hence, max

t≥0
{x(t)} = x(0).

The above said cases yield: x(t) ≤ max{x(0), 1} ≡M1.

The second equation of system (7) with the boundedness of x(t) leads to

dy

dt
≤ ρy

(
β − y

M1

)
. (12)

Similar computation gives

y(t) ≤ max{y(0), βM1} ≡M2. (13)

5
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d) From first equation of the system (7), we have

dx

dt
≥ x

(
1− α− h

c
− x
)
. (14)

If x0 is the root of the equation 1− α− h
c
− x = 0, then by standard comparison argument we get

lim
t→∞

inf x(t) ≥ x0. Hence, we have x(t) ≥ x0 for large t.

Further, from the second equation of the system (7), we have

dy

dt
≥ ρy

(
β − y

x0

)
. (15)

If y0 is the root of the equation β − y
x0

= 0, we obtain lim
t→∞

inf y(t) ≥ y0. It is to be noticed that

x0 > 0 whenever α + h
c
< 1.

Thus, from Equation (11), we have

lim
t→∞

supx(t) ≤ 1.

Similarly,

lim
t→∞

sup y(t) ≤M1β.

This completes the proof. �

3. Equilibrium points

The equilibrium points of the system (7) are the nonnegative real solutions of zero growth isoclines

xf1(x, y) = 0, (16)

yf2(x, y) = 0, (17)

where Equation (16) is the prey zero growth isocline and Equation (17) is the predator zero growth
isocline of the system. The following three types of equilibrium points for the system (7) exist.

(a) Trivial equilibrium point: The trivial equilibrium point of the system (7) is E0 = (0, 0).

(b) Axial equilibrium points: The axial equilibrium points of the system (7) are only the points of
intersection of the curves y = 0 and f1(x, y) = 0. The Abscissa of these equilibrium points
are the roots of the quadratic equation:

x2 − (1− c)x+ h− c = 0. (18)

The quadratic equation (18) has two distinct positive roots

xk =
1− c+ (−1)k

√
(1− c)2 − 4(h− c)
2

, k = 1, 2,

6
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if c < 1, c < h <
(

1+c
2

)2
; one positive root x2 if h < c; a double positive root

x1 = x2 =
1− c

2
,

if c < 1, h = (1+c
2

)2, and a positive root

x2 = 1− c,

if h = c < 1.

(c) Interior equilibrium points: The interior equilibrium points of the system (7) are the intersec-
tion points of the curves f1(x, y) = 0 and f2(x, y) = 0 and the abscissa of these equilibrium
points are given by the solution of the quadratic equation

(1 + β)x2 − (1− c+ β − cβ − αβ)x+ h− c+ hβ − cβ + αβc = 0, (19)

while the ordinates are given by y∗k = βx∗k, k = 1, 2.

The quadratic equation (19) has two distinct positive roots

x∗k =
1− c+ β − cβ − αβ + (−1)k

√
(1− c+ β − cβ − αβ)2 − 4(1 + β)(h− c+ hβ − cβ + αβc)

2(1 + β)
, k = 1, 2,

if c < 1 − αβ
1+β

, c(1+β−αβ)
1+β

< h < 1
4

(
1 + c − αβ

1+β

)2

; one positive root x∗2, if h < c(1+β−αβ)
1+β

; a
double root

x =
1− c+ β − cβ − αβ

2(1 + β)
,

if c < 1− αβ
1+β

, h = 1
4

(
1 + c− αβ

1+β

)2

, and a positive root

x∗ =
1− c+ β − cβ − αβ

1 + β
,

if c < 1− αβ
1+β

, h = c(1+β−αβ)
1+β

.

The above discussion is summarized in Table (1).

4. Qualitative analysis of equilibrium points

In this section, the dynamical behaviors of system (7) have been discussed in the neighborhood of
each biological feasible equilibrium point.

4.1. Trivial equilibrium point

The functions f1 and f2 are not differentiable at the origin, to analyze the behavior of this point we
use blow up transformation: x = x, y = vx (Jost et al. (1999)), which transforms the system (7)

7
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Table 1. Table presenting the equilibrium solutions admitted by the system (7) in various regions

Range of c Conditions Equilibrium Points
1 ≤ c c < h E0(0, 0)

0 < h < c(1+β−αβ)
1+β

E0(0, 0), E2(x2, 0), E∗2(x∗2, y
∗
2, )

1+β−αβ
1+β

< c < 1 h >
(

1+c
2

)2

E0(0, 0)

h =
(

1+c
2

)2

E0(0, 0), E1(x1, 0) = E2(x2, 0)

c < h <
(

1+c
2

)2

E0(0, 0), E1(x1, 0), E2(x2, 0)
c(1+β−αβ)

1+β
≤ h ≤ c E0(0, 0), E2(x2, 0)

0 < h < c(1+β−αβ)
1+β

E0(0, 0), E2(x2, 0), E∗2(x∗2, y
∗
2, )

c < 1+β−αβ
1+β

h >
(

1+c
2

)2

E0(0, 0)

h =
(

1+c
2

)2

E0(0, 0), E1(x1, 0) = E2(x2, 0)

c < h <
(

1+c
2

)2

E0(0, 0), E1(x1, 0), E2(x2, 0)

1
4

(
1 + c− αβ

1+β

)2

≤ h ≤ c E0(0, 0, )E2(x2, 0)

h = 1
4

(
1 + c− αβ

1+β

)2

E1(x1, 0), E2(x2, 0), E(x, y)

c < h < 1
4

(
1 + c− αβ

1+β

)2

E0(0, 0), E1(x1, 0), E2(x2, 0), E∗1(x∗1, y
∗
1),

E∗2(x∗2, y
∗
2)

h = c < 1
4

(
1 + c− αβ

1+β

)2

E0(0, 0), E2(x2, 0), E∗1(x∗1, y
∗
1), E∗2(x∗2, y

∗
2)

c(1+β−αβ)
1+β

< h < c E0(0, 0), E2(x2, 0), E∗1(x∗1, y
∗
1), E∗2(x∗2, y

∗
2)

h = c(1+β−αβ)
1+β

E0(0, 0), E2(x2, 0), E∗(x∗, y∗)

0 < h < c(1+β−αβ)
1+β

E0(0, 0), E2(x2, 0), E∗2(x∗2, y
∗
2)

into 
dx
dt

= x
(
1− x− αv

1+v
− h

c+x

)
,

dv
dt

= v
(
ρ(β − v)− 1 + x+ αv

1+v
+ h

c+x

)
.

(20)

The above system has either two or three equilibrium points at positive v-axis, namely, E00 =
(0, 0), E01 = (0, v1) and E02 = (0, v2), where v1 and v2 (0 ≤ v1 < v2) are two distinct real roots
of the following quadratic equation

cρv2 + (c− h+ cρ− cα− cρβ)v + (c− h− cρβ) = 0, (21)

that is, vk = −ζ+(−1)k∆
2cρ

, k = 1, 2, where ζ = c − h + cρ − cα − cρβ, ∆2 = (c − h + cρ − cα −
cρβ)2 − 4cρ(c− h− cρβ).
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The Jacobian matrix of the system (20) at the equilibrium point E00 is

JE00
=

[
c−h
c

0

0 −c+h+cρβ
c

]
,

and at the equilibrium points E0k = (0, vk), k = 1, 2,

JE0k
=

[
ρ(β − vk) 0
vk(1− h

c2
) vk(

α
(1+vk)2

− ρ)

]
.

There are only three possibilities.

1) If c − h − cρβ < 0, then the system (20) has two equilibrium points E00 = (0, 0) and
E02 = (0, v2), where v2 = −ζ+∆

2cρ
on the positive v-axis. The eigenvalues of the Jacobian

matrix JE00
are λ1 = c−h

c
and λ2 = −c+h+cρβ

c
> 0. Thus, the equilibrium point E00 is an

unstable node for c > h and is a saddle point for c < h.

The eigenvalues of the Jacobian matrix of the system (20) at the equilibrium point E02 =

(0, v2) are λ1 = ρ(β−v2) = 2cρβ+ζ−∆
2c

and λ2 = v2

(
α

(1+v2)2
−ρ
)

. From the quadratic equation

(21), we have
√

α
ρ
− 1 < v2, and so, λ2 < 0. Thus, the equilibrium point E02 is a saddle point

for 2cρβ + ζ − ∆ > 0 and a stable point for 2cρβ + ζ − ∆ < 0. Hence, by inverse blow
up transformation the trivial equilibrium point E0 of the system (7) is asymptotically stable if
2cρβ + ζ −∆ < 0.

2) If c−h−cρβ > 0, then the system (20) has three equilibrium pointsE00 = (0, 0),E01 = (0, v1)
and E02 = (0, v2) on the positive v-axis provided ζ < 0 and ∆2 > 0, where v1 = −ζ−∆

2cρ
and

v2 = −ζ+∆
2cρ

. The eigenvalues of the Jacobian matrix JE00
are λ1 = c−h

c
and λ2 = −c+h+cρβ

c
< 0.

Thus, the equilibrium point E00 is a saddle point if c > h.

The eigenvalues of the Jacobian matrix of the system (20) at the equilibrium point E01 =

(0, v1) are λ1 = ρ(β−v1) = 2cρβ+ζ+∆
2c

and λ2 = v1

(
α

(1+v1)2
−ρ
)
. From the quadratic equation

(21), we have 0 < v1 <
√

α
ρ
− 1, and so, λ2 > 0. This shows that the equilibrium point E01 of

the system (20) is a saddle point if 2cρβ+ζ+∆ < 0 and an unstable node if 2cρβ+ζ+∆ > 0.

The eigenvalues of the Jacobian matrix of the system (20) at the equilibrium point E02 =

(0, v2) are λ1 = 2cρβ+ζ−∆
2c

and λ2 = v2

(
α

(1+v1)2
− ρ
)
. From quadratic equation (21), we have

0 <
√

α
ρ
− 1 < v02, and so, λ2 < 0. This shows that the equilibrium point E02 of the system

(20) is a saddle point if 2cρβ + ζ − ∆ > 0 and asymptotically stable if 2cρβ + ζ − ∆ < 0.
Hence, by inverse blow up transformation the trivial equilibrium point E0 of the system (7) is
asymptotically stable if 2cρβ + ζ −∆ < 0.

3) If c − h − cρβ = 0, then the system (20) has two equilibrium points E00 = (0, 0) and
E03 = (0, v3) on the positive v-axis, where v3 = α−ρ

ρ
. The eigenvalues of the Jacobian matrix
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of the system (20) at the equilibrium point E00 are λ1 = ρβ and λ2 = 0. So, we cannot study
the equilibrium point E00 using linearization technique.

Now, we use the technique given in Zhang et al. (1991). Using the condition c−h− cρβ = 0,
the system (20) reduces to {

dx
dt

= x+ P2(x, v),
dv
dt

= Q2(x, v),
(22)

where

P2(x, v) =
1

ρβ
((−1 +

h

c2
x2)x2−αvx+ · · · );Q2(x, v) =

1

ρβ
((α− ρ)v2 + (1− h

c2
)vx). (23)

From x+ P2(x, v) = 0, we obtain

x(v) = 0, ψ =
α− ρ
ρβ

v2 + [v]3, (24)

which implies that m = 2 and am = α−ρ
ρβ

> 0 as α > ρ. Hence, the trivial equilibrium point
E00 is a saddle-node, and the parabolic sector is on the right half-plane.

The eigenvalues of the Jacobian matrix of the system (20) at the equilibrium point E03 are
λ1 = ρβ − α + ρ and λ2 = v3

(
α

(1+v2)2
− ρ

)
= (α−ρ)(ρ−α)

ρ
, and so, λ2 < 0. This shows

that the equilibrium point E03 of the system (20) is a saddle point if ρβ − α + ρ > 0 and is
asymptotically stable if ρβ − α + ρ < 0. By using inverse blow up transformation the trivial
equilibrium point E0 of the system (7) is asymptotically stable if ρβ − α + ρ < 0.

The above discussions can be summarized as follows.

Theorem 4.1.

The trivial equilibrium point E0 = (0, 0) of the system (7) is locally asymptotically stable if any
one of the following conditions is satisfied

a) c− h− cρβ < 0, and 2cρβ + ζ −∆ < 0. (see figure 2a)
b) c− h− cρβ > 0, ζ < 0,∆ > 0 and 2cρβ + ζ −∆ < 0. (see figure 2b)
c) c− h− cρβ = 0 and ρβ − α + ρ < 0. (see figure 2c)

4.2. Axial equilibrium point

In Section (3), we have obtained the parametric conditions for the existence of axial equilibrium
points. Now, we will discuss the nature of these axial equilibrium points.

Theorem 4.2.

a) The axial equilibrium points E1 is an unstable point.
b) The axial equilibrium points E2 is a saddle point.
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Proof:

a) The Jacobian matrix of the system (7) at the axial equilibrium point E1 is given by

JE1
=

[
x1

c+x1

√
(1− c)2 − 4(h− c) −α

0 ρβ

]
.

The above matrix confirms that the axial equilibrium point E1 is an unstable point.
b) The Jacobian matrix of the system (7) at the axial equilibrium point E2 is given by

JE2
=

[
− x2

c+x2

√
(1− c)2 − 4(h− c) −α

0 ρβ

]
.

The above matrix confirms that the axial equilibrium point E2 is a saddle point. �

4.3. Interior equilibrium point

In Section (3), parametric conditions for the existence of interior equilibrium points have been
obtained. We have also shown that the number of interior equilibrium points varies from two to
zero. Now we discuss the nature of these interior equilibrium points.

Theorem 4.3.

a) The interior equilibrium point E∗1 of the system (7) is always a saddle point.

b) The interior equilibrium point E∗2 of the system (7) is asymptotically stable point if x∗2
(
− 1 +

h
(c+x∗

2)2

)
+ αβ

(1+β)2
−ρβ < 0, is an unstable hyperbolic node if x∗2

(
−1+ h

(c+x∗
2)2

)
+ αβ

(1+β)2
−ρβ > 0

and is a weak focus or a center if x∗2
(
− 1 + h

(c+x∗
2)2

)
+ αβ

(1+β)2
− ρβ = 0.

c) The interior equilibrium point E∗ of the system (7), if exist, is asymptotically stable point if
x∗(−1+ h

(c+x∗)2
)+ αβ

(1+β)2
−ρβ < 0, is weak focus or center if x∗(−1+ h

(c+x∗)2
)+ αβ

(1+β)2
−ρβ = 0

and is an unstable hyperbolic saddle node if x∗(−1 + h
(c+x∗)2

) + αβ
(1+β)2

− ρβ > 0.

Proof:

a) The Jacobian matrix of the system (7) at the equilibrium point E∗1 is given by

JE∗
1

=

[
x∗1

(
− 1 + h

(c+x∗
1)2

)
+ αβ

(1+β)2
−α

(1+β)2

ρβ2 −ρβ

]
.

The determinant of the Jacobian matrix JE∗
1

is det(JE∗
1
) = ρβx∗1(1 − h

(c+x∗
1)2

). Using the value of
x∗1 from (19), we have

det(JE∗
1
) = − ρβx∗

1

(1+β)(c+x∗
1)

√
(1− c+ β − cβ − αβ)2 − 4(1 + β)(h− c+ hβ − cβ + cαβ) < 0,
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which confirms that the equilibrium point E∗1 is an unstable hyperbolic saddle.

b) The Jacobian matrix of the system (7) at the equilibrium point E∗2 is

JE∗
2

=

[
x∗2

(
− 1 + h

(c+x∗
2)2

)
+ αβ

(1+β)2
−α

(1+β)2

ρβ2 −ρβ

]
.

The determinant of the Jacobian matrix JE∗
2

is det(JE∗
2
) = ρβx∗2(1 − h

(c+x∗
2)2

). Using the value of
x∗2 from (19), we have

det(JE∗
2
) = ρβx∗

2

(1+β)(c+x∗
2)

√
(1− c+ β − cβ − αβ)2 − 4(1 + β)(h− c+ hβ − cβ + cαβ) > 0,

and the trace of JE∗
2

is tr(JE∗
2
) = x∗2

(
− 1 + h

(c+x∗
2)2

)
+ αβ

(1+β)2
− ρβ.

The Routh-Hurwitz criterion confirms the result.

c) The Jacobian matrix of the system (7) at the equilibrium point E∗ is

JE∗ =

[
x∗
(
− 1 + h

(c+x∗)2

)
+ αβ

(1+β)2
−α

(1+β)2

ρβ2 −ρβ

]
.

The determinant of the Jacobian matrix JE∗ is det(JE∗) = ρβx∗(1 − h
(c+x∗)2

). Using the value of
x∗ from (19), we have

det(JE∗) = ρβx∗

(1+β)(c+x∗)

√
(1− c+ β − cβ − αβ)2 − 4(1 + β)(h− c+ hβ − cβ + cαβ) > 0,

and trace of the Jacobian matrix JE∗ is tr(JE∗) = x∗
(
− 1 + h

(c+x∗)2

)
+ αβ

(1+β)2
− ρβ.

The Routh-Hurwitz criterion confirms the result. �

The Jacobian matrix of the system (7) at the equilibrium point E is

JE =

[
x
(
− 1 + h

(c+x)2

)
+ αβ

(1+β)2
−α

(1+β)2

ρβ2 −ρβ

]
.

Since h
(c+x)2

= 1, determinant of JE = 0. Thus, E is a degenerate singularity and may have
complex nature. The following theorem depicts the nature of this equilibrium point.

Theorem 4.4.

If E exist, it is a saddle node if ρ 6= α
(1+β)2

and is a cusp of codimension 2 if ρ = α
(1+β)2

.
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Proof:

By using the transformation x̂ = x− x, ŷ = y − y we shift the equilibrium point E of the system
(7) to the origin and still denote x̂ as x and ŷ as y, the system (7) can be rewritten as

dx
dt

= αβ
(1+β)2

x− α
(1+β)2

y + ξ1x
2 + ξ2xy + ξ3y

2 + o3(x, y),

dy
dt

= ρβ2x− ρβy − ρβ2

x
x2 + 2ρβ

x
xy − ρ

x
y2 + o3(x, y),

(25)

where ξ1 = −1 + ch
(c+x)3

+ αβ2

x(1+β)3
, ξ2 = − 2αβ

x(1+β)3
, ξ3 = α

x(1+β)3
.

If ρ 6= α
(1+β)2

, the trace of the Jacobian matrix of the system (7) at the equilibrium point E is
nonzero while the determinant is zero. Hence, E is a saddle node.

If ρ = α
(1+β)2

, the trace of the Jacobian matrix of the system (7) at the equilibrium point E is zero,
hence both the eigenvalue of the Jacobian matrix of the system (7) is zero. The system (25) can be
written as 

dx
dt

= αβ
(1+β)2

x− α
(1+β)2

y + ξ1x
2 + ξ2xy + ξ3y

2 + o3(x, y),

dy
dt

= αβ2

(1+β)2
x− αβ

(1+β)2
y − αβ2

x(1+β)2
x2 + 2αβ

x(1+β)2
xy − α

x(1+β)2
y2 + o3(x, y).

(26)

Let T = αβ
(1+β)2

t, then the system (26) reduces to the following system (after transformation T is
taken as t) 

dx
dt

= x− 1
β
y + ξ1x

2 + ξ2xy + ξ3y
2 + o3(x, y),

dy
dt

= βx− y − β
x
x2 + 2

x
xy − 1

xβ
y2 + o3(x, y),

(27)

where ξ1 = (1+β)2

αβ

(
− 1 + ch

(c+x)3
+ αβ2

x(1+β)3

)
, ξ2 = − 2

x(1+β)
, ξ3 = 1

β(1+β)x
.

On using the transformation x0 = x, y0 = x − 1
β
y, then the system (27) reduces to the following

system 
dx0

dt
= y0 + ξ̂1x

2
0 + ξ̂3y

2
0 + o3(x, y),

dy0
dt

= ξ̂1x
2
0 + (ξ̂3 + 1

x
)y2

0 + o3(x, y),

(28)

where ξ̂1 = − x(1+β)2

αβ(c+x)
, ξ̂3 = β

(1+β)x
.

On using the transformation x1 = x0, y1 = y0 + ξ̂3y
2
0 , the system (28) reduces to

dx1

dt
= y1 + ξ̂1x

2
1 + o3(x, y),

dy1
dt

= ξ̂1x
2
1 + (ξ̂3 + 1

x
)y2

1 + o3(x, y).

(29)
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On using the transformation x2 = x1, y2 = y1 − (ξ̂3 + 1
x
)x1y1, the system (29) reduces to

dx2

dt
= y2 + ξ̂1x

2
2 + (ξ̂3 + 1

x
)x2y2 + o3(x, y),

dy2
dt

= ξ̂1x
2
2 + o3(x, y).

(30)

Finally, using the transformation X = x2− 1
2
(ξ̂3 + 1

x
)x2

2, Y = y2 + ξ̂1x
2
2 +o3(x, y), the system (30)

reduces to 
dX
dt

= Y

dY
dt

= ξ̂1X
2
2 + 2ξ̂1XY + o3(X, Y ).

(31)

Since ξ̂1 6= 0, therefore the system (31) confirms that origin in XY plane, that is, E in xy-plane is
a cusp of codimension 2 (Perko (1996)). �

5. Bifurcation Analysis

In this section, we investigate the bifurcations that take place in system (7) with the original pa-
rameters varying.

5.1. Hopf bifurcation

In Theorem 4.3(a), it is proved that if both interior equilibrium points E∗1 and E∗2 of the system (7)
exist, then E∗1 is always a saddle point while E∗2 is a weak focus or a center provided x∗2

(
− 1 +

h
(c+x∗

2)2

)
+ αβ

(1+β)2
− ρβ = 0. Now, we show that system (7) undergoes to a hopf bifurcation.

If ρ is considered as a bifurcation parameter, then the threshold magnitude is ρ = ρ[hf ] = x∗
2

β

(
−

1 + h
(c+x∗

2)2

)
+ α

(1+β)2
, and for ρ = ρ[hf ], we have

(a) det(JE∗
2
) > 0; (b) tr(JE∗

2
) = 0; and (c)

[
∂
∂ρ

(TrJE∗
2
)
]

= −β 6= 0.

Thus, the transversality condition for the hopf bifurcation is satisfied (condition (c)). This guaran-
tees the existence of hopf bifurcation, that is, a limit cycle exists around the interior equilibrium
point E∗2(x∗2, y

∗
2).

Next, stability of limit cycle is discussed by computing the first Lyapunov number (Perko (1996))
σ at interior equilibrium point E∗2(x∗2, y

∗
2). Using the transformation x = u − x∗2, y = v − y∗2 , the

system (7), in the vicinity of origin can be written as
du

dt
= a10u+ a01v + a20u

2 + a11uv + a02v
2 + a30u

3 + a21u
2v + a12uv

2 + a03v
3 + P (u, v),

dv

dt
= b10u+ b01v + b20u

2 + b11uv + b02v
2 + b30u

3 + b21u
2v + b12uv

2 + b03v
3 +Q(u, v),
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where a10 = x∗2

(
− 1 + h

(c+x∗
2)2

)
+ αβ

(1+β)2
, a01 = − α

(1+β)2
, a20 = −1 + hc

(c+x∗
2)3

+ αβ2

(1+β)3x∗
2
,

a11 = − 2αβ
(1+β)3x∗

2
, a02 = α

(1+β)3x∗
2
, a30 = − αβ2

(1+β)4x∗
2
2 − hc

(c+x∗
2)4
, a21 = 2αβ−αβ2

(1+β)4x∗
2
2 , a12 =

2αβ−α
(1+β)4x∗

2
2 , a03 = − α

(1+β)4x∗
2
2 , b10 = ρβ2, b01 = −ρβ, b20 = −ρβ2

x∗
2
, b11 = 2ρβ

x∗
2
, b02 =

− ρ
x∗
2
, b30 = ρβ2

x∗
2
2 , b21 = −2ρβ

x∗
2
2 , b12 = ρ

x∗
2
2 , b03 = 0, P (u, v) =

∑∞
i+j=4 aiju

ivj and
Q(u, v) =

∑∞
i+j=4 biju

ivj.

Hence, the first Lyapunov number σ for the planer system is

σ = − 3π

2a01∆3/2

{[
a10b10(a2

11 + a11b02 + a02b11) + a10a01(b2
11 + a20b11 + a11b02)

+b2
10(a11a02 + 2a02b02)− 2a10b10(b2

02 − a20a02)− 2a10a01(a2
20 − b20b02)

−a2
01(2a20b20 + b11b20) + (a01b10 − 2a2

10)(b11b02 − a11a20)
]

−(a2
10 + a01b10)[3(b10b03 − a01a30) + 2a10(a21 + b12) + (b10a12 − a01b21)]

}
,

where ∆ = ρβx∗
1

(1+β)(c+x∗
1)

√
(1− c+ β − cβ − αβ)2 − 4(1 + β)(h− c+ hβ − cβ + cαβ).

The above discussions can be summarized as follows

Theorem 5.1.

The system (7) undergoes a hopf bifurcation at the point E∗2 whenever x∗2
(
− 1 + h

(c+x∗
2)2

)
+

αβ
(1+β)2

− ρβ = 0. Moreover, an unstable (stable) limit cycle arises around the equilibrium point E∗2
as σ > 0(σ < 0).

5.2. Saddle-node bifurcation

It has been shown that the system (7) has two axial equilibrium points E1 and E2, if 1+β−αβ
1+β

<

c < 1 and h <
(

1+c
2

)2

. These two axial equilibrium points coincide, if h =
(

1+c
2

)2

and no axial

equilibrium point exists, if h >
(

1+c
2

)2

. Thus, the number of axial equilibrium points vary from

two to zero as the harvesting parameter h crosses the critical value h =
(

1+c
2

)2

from left to right,
and so,

SN1 =
{

(α, β, c, h, ρ) :
1 + β − αβ

1 + β
< c < 1, h =

(1 + c

2

)2}
be a saddle-node bifurcation surface.

It is proved in Theorem (4.4) that if E exist, then it is a saddle-node when ρ 6= α
(1+β)2

. It has also
been shown that the system (7) has two interior equilibrium pointE∗1 andE∗2 , whenever c < 1+β−αβ

1+β

and c ≤ h < 1
4

(
1 + c− αβ

1+β

)2

. These two interior equilibrium points coincide to a unique interior
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equilibrium point E = (x, y) where

x =
1− c+ β − cβ − αβ

2
, y = βx,

whenever c < h = 1
4

(
1+c− αβ

1+β

)2

(this value of h is known as critical harvesting rate and written

as h[SN ]) and no interior equilibrium point exists, whenever h > 1
4

(
1 + c − αβ

1+β

)2

. Thus, the
number of interior equilibrium points vary from two to zero as the harvesting parameter h crosses
the critical value h[SN ] from left to right, and so,

SN2 =
{

(α, β, c, h, ρ) : c <
1 + β − αβ

1 + β
, c < h =

1

4

(
1 + c− αβ

1 + β

)2

, ρ 6= α

(1 + β)2

}
,

be another saddle-node bifurcation surface.

Considering harvesting parameter h as bifurcation parameter, Sotomayor’s theorem is used in the
following to guarantee that the system (7) undergoes a saddle-node bifurcation.

Theorem 5.2.

The system (7) undergoes a saddle-node bifurcation with respect to the bifurcation parameter h

around the equilibrium point E = (x, y) if c < 1+β−αβ
1+β

, c < h = 1
4

(
1 + c− αβ

1+β

)2

, ρ > α
(1+β)2

.

Proof:

The Jacobian matrix of the system (7) at the equilibrium point E(x, y) is given by

JE = DG(x, y) =

[
αβ

(1+β)2
− α

(1+β)2

ρβ2 −ρβ

]
,

where G(x, y, h) = (g1, g2)T , g1 = xf1(x, y), g2 = yf2(x, y), and f1, f2 are defined in equation
(7). The determinant of JE is zero and trace is αβ

(1+β)2
− ρβ < 0 as ρ > α

(1+β)2
, and so, one

of the eigenvalues is zero and other has negative real part. Hence, the parametric conditions of
the Sotomayor’s theorem is satisfied. Let V and W be the eigenvectors corresponding to zero
eigenvalue for JE and the transpose (JE)T , respectively. A simple computation yields

V =

[
1
β

]
and W =

[
1

− α
ρβ(1+β)2

]
.

On computing, we get

Gh(x, y, h
[SN ]) =

[
− x
c+x

0

]
,

D2Gh(x, y, h
[SN ])(V, V ) =

[
−2 + 2αβ

(1+β)2x
− 2αβ

(1+β)3x
+ 2h

(c+x)2
− 2hx

(c+x)3
− 2αβ2

(1+β)3x

0

]
.
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Noticed that h
(c+x)2

= 1, we have

W T .Gh(x, x, h
[SN ]) = − x

c+ x
6= 0,

W T .D2G(x, x, h[SN ])(V, V ) = −2(1− hc

(c+ x)3
) = − 2x

c+ x
6= 0.

Thus, the transversality conditions for the saddle-node bifurcation are satisfied. This guarantees
the existence saddle-node bifurcation at the equilibrium point E = (x, y). �

5.3. Bogdanov-Takens bifurcation

The occurrence of codimension one bifurcations for the system (7) have been discussed so far. In
Theorem 4.4, it is shown that if E exist, then it is a cusp of codimension 2 whenever ρ = α

(1+β)2
.

Therefore, codimension 2 bifurcation (Bogdanov-Takens bifurcation of codimension 2) occurs for
the system. Below the normal form of the Bogdanov-Takens bifurcation has been derived by using
a series of nontrivial transformations (Xiao and Ruan (1999)).

Theorem 5.3.

The system (7) undergoes a Bogdanov-Takens bifurcation with respect to the bifurcation pa-
rameters h and ρ around the equilibrium point E = (x, y), whenever c < 1+β−αβ

1+β
, c < h =

1
4

(
1 + c − αβ

1+β

)2

, ρ = α
(1+β)2

. Also in the small neighbourhood of the point E, the system (7) is
topologically equivalent to the following model

dZ1

dt
= Z2,

dZ2

dt
= µ1(λ1, λ2) + µ2(λ1, λ2)Z2 + Z2

1 + Z1Z2.
(32)

Moreover, the following bifurcation curves divides the bifurcation plane into four regions.

Saddle-node curve: SN = {(λ1, λ2) : µ1(λ1, λ2) = 0},

Hopf bifurcation curve: H = {(λ1, λ2) : µ2(λ1, λ2) = γ11√
γ20

√
−µ1(λ1, λ2), µ2(λ1, λ2) < 0},

Homoclinic bifurcation curve: HL = {(λ1, λ2) : µ2(λ1, λ2) = 5γ11
7
√
γ20

√
−µ1(λ1, λ2), µ2(λ1, λ2) <

0}.

Proof:

Let the parameters h and ρ vary in a small neighbourhood of Bogdanov-Taken point (in brief,
BT-point) (h0, ρ0), where h0 and ρ0 are the threshold magnitude of bifurcation parameters h and ρ
respectively such that [det(JE)](h0,ρ0) = 0 and [tr(JE)](h0,ρ0) = 0. Also suppose (h0 + λ1, ρ0 + λ2)
be a point of the neighbourhood of the BT-point (h0, ρ0), where λ1, λ2 are small. Thus, the system
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(7) can be written as follows 
dx
dt

= x(1− x)− αxy
x+y
− h0x

c+x
− λ1x

c+x
,

dy
dt

= (ρ0 + λ2)(β − y
x
)y.

(33)

Noticed that the system (33) is C∞ smooth with respect to the variables x, y in a small neighbor-
hood of (h0, ρ0).

Using the transformation x1 = x− x, x2 = y − y, the system (33) gets modified to
dx1

dt
= a00(λ) + a10(λ)x1 + a(λ)x1 + b(λ)x2 + 1

2
p20(λ)x2

1 + p11(λ)x1x2 + 1
2
p02(λ)x2

2 +R1,

dx2

dt
= b00(λ) + b10(λ)x1 + b01(λ)x2 + 1

2
q20(λ)x2

1 + q11(λ)x1x2 + 1
2
q02(λ)x2

2 +R2,
(34)

where a00(λ) = − λ1x
c+x

, a10(λ) = − λ1c
(c+x)2

, a(λ) = αβ
(1+β)2

, b(λ) = − α
(1+β)2

, p20(λ) =
2αβ2

(1+β)3x
+ 2λ1c

(c+x)3
− 2x

c+x
, p11(λ) = − 2αβ

(1+β)3x
, p02(λ) = 2α

(1+β)3x
, b00(λ) = 0, b10(λ) =

β2(ρ+λ2), b01(λ) = −β(ρ+λ2), q20(λ) = −2(ρ+λ2)y2

x3 , q11(λ) = 2(ρ+λ2)y
x2 , q02(λ) = −2(ρ+λ2)

x
,

andR1 = R1(x1, x2), R2 = R2(x1, x2) are the power series in (x1, x2) with powers xi1x
j
2 satisfying

i+ j ≥ 3.

Now, on introducing the affine transformation y1 = x1, y2 = ax1 + bx2 in the system (34), we get
dy1
dt

= α00(λ) + α10(λ)y1 + y2 + 1
2
α20(λ)y2

1 + 1
2
α02(λ)y2

2 +R1(y1, y2),

dy2
dt

= β00(λ) + β10(λ)y1 + β01(λ)y2 + 1
2
β20(λ)y2

1 + 1
2
β02(λ)y2

2 +R2(y1, y2),

(35)

where α00(λ) = − λ1x
c+x

, α10(λ) = αβ
(1+β)2

, α20(λ) = 2λ1c
(c+x)3

− 2x
c+x

, α02(λ) = 2(1+β)
αx

, β00(λ) =

−aλ1x
c+x

, β10(λ) = α2β2

(1+β)4
, β01(λ) = αβ

(1+β)2
− β(ρ + λ2), β20(λ) = 2αβ

(1+β)2(c+x)

(
λ1c

(c+x)2
−

x

)
, β02(λ) = − 2

bx
(ρ+λ2 + αβ

(1+β)3
), and R1, R2 are the power series in (y1, y2) with powers yi1y

j
2

satisfying i+ j ≥ 3.

Consider the C∞ change of coordinates in the small neighbourhood of (0, 0) : z1 = y1 −
1
2
β02y

2
1, z2 = y2 + 1

2
α20y

2
1 + 1

2
α02y

2
2, which transforms the system (35) into

dz1
dt

= r00(λ) + r10(λ)z1 + z2 + r20(λ)z2
1 + r11(λ)z1z2 +R1(z1, z2),

dz2
dt

= s00(λ) + s10(λ)z1 + s01(λ)z2 + s20(λ)z2
1 + s11(λ)z1z2 + s02(λ)z2

2 +R2(z1, z2),

(36)

where r00 = α00, r10 = α10 − α00β02, r20 = −1
2
β02(β02α00 + α10), r11 = −β02, s00 =

β00, s10 = β10 + α00α20, s01 = β01 + α02β00, s20 = 1
2
(β02β10 + α00α20β02 − α20β01 −

α20β00α02 + β20 + 2α10α20), s11 = α20 +α02β10, s02 = 1
2
(β02 +α02β01−α2

02β00) and R1, R2

are the power series in (z1, z2) with powers zi1z
j
2 satisfying i+ j ≥ 3.

Next, consider C∞ change of coordinates in the small neighbourhood of (0, 0): u1 = z1 − 1
2
(r11 +
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s02)z2
1 , u2 = z2 + r20z

2
1 − s02z1z2. Then, the system (36) becomes

du1

dt
= ξ00 + ξ10u1 + u2 + ξ20u

2
1 + R̂1(u1, u2),

du2

dt
= η00 + η10u1 + η01u2 + η20u

2
1 + η11u1u2 + R̂2(u1, u2),

(37)

where ξ00 = r00, ξ10 = r10−r00(r11+s02), ξ20 = 1
2
(r11+s02)(r10−r00(r11+s02))−r10(r11+s02),

η00 = s00, η10 = s10 + 2r20r00− s02s00, η01 = s01− s02r00, η20 = 1
2
(r11 + s02)(s10 + 2r20r00−

s02s00)−r20(s01−s02r00)+(s20 +2r20r10−s02s10), η11 = s11 +2r20−s01s02−s02r10 +s02(s01−
s02r00), and R̂1, R̂2 are the power series in (u1, u2) with powers ui1u

j
2 satisfying i+ j ≥ 3.

Again consider C∞ change of coordinates in the small neighbourhood of (0, 0) : v1 = u1, v2 =
ξ00 + ξ10u1 + u2 + ξ20u

2
1 which transformed the system (37) into

dv1
dt

= v2 + s1(v1, v2),

dv2
dt

= γ00 + γ10v1 + γ01v2 + γ20v
2
1 + γ11v1v2 + s2(v1, v2),

(38)

where γ00 = η00 − η01ξ00, γ10 = η10 − η01ξ10 − ξ00η11, γ01 = ξ10 + η01, γ20 = η20 − η01ξ20 −
ξ10η11, γ11 = η11 + 2ξ20 and s1(v1, v2), s2(v1, v2) are the power series in (v1, v2) with powers
vi1v

j
2 satisfying i+ j ≥ 3.

Next, we consider C∞ change of coordinates in the small neighbourhood of (0, 0) : w1 = v1, w2 =
v2 + s1(v1, v2) which transforms the system (38) into

dw1

dt
= w2,

dw2

dt
= γ00 + γ10w1 + γ01w2 + γ20w

2
1 + γ11w1w2

+F1(w1) + w2F2(w1) + w2
2F3(w1, w2),

(39)

where F1, F2 and F3 are the power series in w1 and (w1, w2) with powers wk11 , w
k2
1 and wi1w

j
2

satisfying k1 ≥ 3, k2 ≥ 2 and i+ j ≥ 1, respectively.

It is cumbersome to obtain the sign of γ20(0) analytically. Therefore, we use numerical simulation.
We take α = 0.9, β = 0.5, ρ = 0.4, h = 0.16, c = 0.1. It is easy to verify that for these values
system 7 has a unique interior equilibrium point which is a cusp of codimension 2. Also

γ00 = (−0.15λ1 + 1.75λ2
1 + 5.20833λ3

1) + (−0.375λ1 + 3.125λ2
1)λ2, γ10 = (0.04 −

18.0556λ2
1 − 34.7222λ3

1) + (0.1 + 0.833333λ1 − 59.0278λ2
1 − 86.8056λ3

1)λ2 + (2.08333λ1 −
52.0833λ2

1)λ2
2, γ01 = (0.2 + 5λ1 + 13.8889λ2

1) + (−0.5 + 8.33333λ1)λ2, γ20 = (−0.15 −
3.4375λ1 + 294.271λ2

1 − 769.596λ3
1 + 160.751λ4

1 + −669.796λ5
1) + (−0.486111 + 4.36921λ1 +

1552.13λ2
1−2780.99λ3

1 +803.755λ4
1)λ2 +(−0.277778+76.3889λ1 +2883.87λ2

1−2652.39λ3
1)λ2

2 +
(109.954λ1 + 1880.79λ2

1)λ3
2, γ11 = (−2.83333 + 88.3102λ1 − 123.457λ2

1 + 128.601λ3
1) +

(−2.22222 + 370.37λ1 − 308.642λ2
1)λ2 + 393.519λ1λ

2
1.

We have γ20(0) = −0.15 < 0. To make it positive we consider Z1 = −w1, Z2 = w2, T = −t.
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The system (39) can be written as
dZ1

dT
= Z2,

dZ2

dT
= −γ00 + γ10Z1 − γ20Z

2
1 +R1(Z1)− γ01Z2 + γ11Z1Z2

+Z2R2(Z1) + Z2
2R3(Z1, Z2),

(40)

where R1, R2 and R3 are the power series in Z1 and (Z1, Z2) with powers Zk1
1 , Z

k2
1 and Zi

1Z
j
2

satisfying k1 ≥ 3, k2 ≥ 2 and i+ j ≥ 1, respectively.

Applying the Malgrange preparation theorem (Chow and Hale (1983)) on

−γ00 + γ10Z1 − γ20Z
2
1 +R1(Z1),

we have

−γ00 + γ10Z1 − γ20Z
2
1 +R1(Z1) =

(
Z2

1 −
γ10

γ20

Z1 +
γ00

γ20

)
B1(w1, λ),

where B1(0, λ) = −γ20 and B1 is a power series of Z1 whose coefficients depend on parameters
(λ1, λ2).

Let X1 = Z1, X2 = Z2√
−γ20 , and dτ =

√
−γ20dT , then the system (40) gets modified to

dX1

dτ
= X2,

dX2

dτ
= γ00

γ20
− γ10

γ20
X1 − γ01√

−γ20X2 +X2
1 + γ11√

−γ20X1X2 + S(X1, X2, λ),
(41)

where S(X1, X2, 0) is a power series in (X1, X2) with powers X i
1X

j
2 satisfying i + j ≥ 3 with

j ≥ 2.

Applying the parameter dependent affine transformation Y1 = X1 − γ10
2γ20

, Y2 = X2 in the system
(41) and using Taylor series expansion, we get

dY1

dτ
= Y2,

dY2

dτ
= µ1(λ1, λ2) + µ2(λ1, λ2)Y2 + Y 2

1 − 7.31564Y1Y2 + S(Y1, Y2, µ),

(42)

where µ1(λ1, λ2) = γ00
γ20
− γ2

10

4γ2
20
, µ2(λ1, λ2) = − γ01√

−γ20 + γ11γ00

2(−γ20)
3
2

and S(X1, X2, 0) is a power

series in (Y1, Y2) with powers Y i
1Y

j
2 satisfying i+ j ≥ 3 with j ≥ 2.

The system (42) is strongly topologically equivalent to the normal form of the Bogdanov-Takens
bifurcation as given below

dZ1

dt
= Z2,

dZ2

dt
= µ1(λ1, λ2) + µ2(λ1, λ2)Z2 + Z2

1 + Z1Z2.
(43)

The determinant of the matrix
[ ∂µ1

∂λ1

∂µ1

∂λ2
∂µ2

∂λ1

∂µ2

∂λ2

]
= 2.0757. Thus, system (7) undergoes to Bogdanov-

Takens bifurcation. There exist bifurcation curves which divides the bifurcation plane into four
regions (Perko (1996)). The local representations of the bifurcation curves in the λ1λ2 plane are
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Saddle-node curve: SN = {(λ1, λ2) : µ1(λ1, λ2) = 0},

Hopf bifurcation curve: H = {(λ1, λ2) : µ2(λ1, λ2) = −7.31564
√
−µ1(λ1, λ2), µ2(λ1, λ2) < 0},

Homoclinic bifurcation curve:
HL = {(λ1, λ2) : µ2(λ1, λ2) = −5.22546

√
−µ1(λ1, λ2), µ2(λ1, λ2) < 0}. �

These bifurcation curves have been depicted in the figure 3a and the possible phase portrait di-
agrams in the small neighbourhood of the interior equilibrium point E are shown in Figure 3
(b,c,d,e,f).

6. Bionomic equilibria

An equilibrium point of the system (6) which is biological equilibrium point as well as economic
equilibrium point is referred to as bionomic equilibrium point of the system (6), that is, the in-
tersection point of the zero growth isoclines and zero profit line (a curve at which total revenue
obtained by selling the harvested biomass equals the total cost for the effort devoted to harvesting)
is referred to as bionomic equilibrium point.

Let p be the cost price per unit biomass of the prey species, c be the constant harvesting cost per
unit effort, then the economic rent is given by

π(N,P,E) =
( pqN

m1E +m2N
− c
)
E, (44)

where N represents the density of prey, P represents the density of predator and E represents the
effort applied to harvest. The bionomic equilibrium point (N∞, P∞, E∞) is the positive solution of
the curves dN

dT
= 0, dP

dT
= 0 and π = 0, that is, the positive solution of the system

r(1− N
K

)− mP
AP+N

− qE
m1E+m2N

= 0,

1− P
bN

= 0,

pqN
m1E+m2N

− c = 0.

(45)

The positive solutions of (45) are

(N∞, P∞, E∞) =

(
k [(Ab+ 1)(rm1P + cm2 − pq)− bmm1p]

(Ab+ 1)rm1p
, bN∞,

pq − cm2

cm1

N∞

)
, (46)

provided cm2

p
< q < (Ab+1)(rm1p+cm2)−bmm1P

(Ab+1)p
.

7. Optimal Harvesting

The objective of the harvesting agency is to find an optimal harvesting policy which maximizes
the total discount net revenue derived from exploitation of renewable resources. Using the same

21

Singh and Bhadauria: The Impact of Nonlinear Harvesting

Published by Digital Commons @PVAMU,



138 M.K. Singh and B.S. Bhadauria

procedure as give in (Gupta et al. (2012)), we find a relation between optimum prey value and
optimum harvesting effort.

The present value of continuous time stream of revenues is given by

J(N,P,E, T ) =

∫ ∞
0

π(N,P,E, T )e−δTdT, (47)

where π(N,P,E) =
(

pqN
m1E+m2N

− c
)
E and δ is the continuous annual discount rate.

Now, the problem is to

Max.(π(N,P,E))

subject to
dN

dT
=
(
r
(

1− N

k

)
− mP

AP +N
− qE

m1E +m2N

)
N,

dP

dT
= s
(

1− P

bN

)
P,

0 ≤ E(T ) ≤ Emax, (N,P ) 6= (0, 0), N(0) = N0, P (0) = P0,


by invoking Pontryagin’s maximum principle (Pontryagin et al. (1962)). Here Emax is a feasible
upper limit for the harvesting effort.

To use the Pontryagin’s maximum principle (Pontryagin et al. (1962)), we define the Hamiltonian
H for the above maximization problem as,

H =
( pqN

m1E +m2N
− c
)
Ee−δT + λ1

(
r

(
1− N

k

)
− mP

AP +N
− qE

m1E +m2N

)
N

+ λ2s

(
1− P

bN

)
P,

(48)

where λ1 and λ2 are the adjoint variables. The maximization condition of H yields

λ1e
δT = p− c(m1E +m2N)2

qm2N2
, (49)

where the term λ1e
δT is known as shadow price.

The adjoint equations dλ1

dT
= −∂H

∂N
, dλ2

dT
= −∂H

∂P
are

dλ1

dT
= − pqE2m1

(m1E +m2N)2
e−δT − λ1

[
− r

k
+

mP

(AP +N)2
+

qEm2

(m1E +m2N)2

]
N

− λ2s
( P 2

bN2

)
− λ1

[
r
(

1− N

k

)
− mP

AP +N
− qE

m1E +m2N

]
,

dλ2

dT
=

mN2

(AP +N)2
λ1 − s

[
1− 2P

bN

]
λ2.

(50)

Our aim is to find an equilibrium solution (N∗, P ∗) which optimize the control variable E, and
so, the optimal values of control variable E∗ and N∗, P ∗ treated as constant. Now, using equation
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(45), the adjoint equations in (50) can be written as

dλ1

dT
= − pqE∗2m1

(m1E∗ +m2N∗)2
e−δT + λ1

[( r
k
− qEm2

(m1E∗ +m2N∗)2

)
N∗ − mb

(Ab+ 1)2

]
− λ2sb, (51)

dλ2

dT
=

m

(Ab+ 1)2
λ1 + sλ2. (52)

Due to presence of e−δT in Equation (51), the steady state is not possible. We consider the following
transformation to eliminate e−δT

λi(T ) = µi(T )e−δT , i = 1, 2 (53)

where µi(T ) represents the present value of the adjoint variables λi, i = 1, 2. From equations (49),
(52) and (53), we have

dµ2

dT
− (δ + s)µ2 = −R(N∗) = − m

(Ab+ 1)2

(c(m1E
∗ +m2N

∗)2

qm2N∗
2 − p

)
. (54)

The solution of the differential equation (54) satisfying the transversality condition at infinity (i.e.
limt→∞ λi(T ) = 0, for i = 1, 2) is

µ2(T ) =
R(N∗)

δ + s
. (55)

Again from Equations (51), (52), and (53), we have

dµ1

dT
− (δ +Q1(N∗))µ = −Q2(N∗), (56)

where

Q1(N∗) =
( r
k
− qE∗m2

(m1E∗ +m2N∗)2

)
N∗ − mb

(Ab+ 1)2
, (57)

Q2(N∗) =
bsR(N∗)

δ + s
+

pqE2m1

(m1E∗ +m2N∗)2
. (58)

The solution of the differential equation (56) satisfying the transversality condition at infinity is

µ1(T ) =
Q2(N∗)

δ +Q1(N∗)
. (59)

From Equations (49), (53) and (59), we obtain

Q2(N∗)

δ +Q1(N∗)
= p− c(m1E +m2N)2

qm2N2
, (60)

which is the required path and can be written as the following cubic equation

A3N
3 + A2N

2 + A1N + A0 = 0, (61)

where

A3 = 2kqpr3(1 + Ab)4(δ + s),
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A2 = (1 + Ab)2k2qr2m1(p(−(5r − δ)(δ + s) + Ab2(δ + s)(5m + A(−5r + δ)) + b(−2A(5r −
δ)(δ + s) +m(δ + 2s)))m1 + (1 + Ab)2(δ + s)(pq − cm2)),

A1 = 2((1 +Ab)k3qr(q +Abq − (−bm+ r +Abr)m1)(p(−(rq − δ)(δ + s) +Ab2(δ + s)(2m+
A(−2r + δ)) + b(−2A(2r − δ)(δ + s) +m(δ + 2s)))m1 + (1 + Ab)2(δ + s)(pq − cm2))),

A0 = −k4q(−(−bm+r+Abr)2p(−(r−δ)(δ+s)+Ab2(δ+s)(m+A(−r+δ))+b(ms−2A(r−
δ)(δ + s)))m2

1 − (1 +Ab)(mb− (1 +Ab)r)m1(2pq(−(r − δ)(δ + s) +Ab2(δ + s)(m+A(−r +
δ)) + b(ms− 2A(r− δ)(δ+ s) + (1 +Ab)c(−bm+ r+Abr)(δ+ s)m2) + (1 +Ab)2q(−qp((−r+
δ)(δ+ s) +Ab2(δ+ s)(m+A(−r+ δ)) + b(ms− 2A(r− δ)(δ+ s))) + (Abms+ c(δ+ s)(−r+
δ + Ab(−2r + 2δ + b(m+ A(−r + δ)))))m2)).

Clearly A3 > 0. Therefore, equation (61) has at least one positive real root for N∗ whenever
A0 < 0.

On substituting the value of N∗ in equation (45), we obtain P ∗ and E∗. Thus, the required singular
equilibrium solution

(N∗, P ∗, E∗) =
(
N∗, bN∗,

N∗((N∗ − k)r − b(N∗Ar + k(m− Ar)))m2

(1 + Ab)kq + ((−k +N∗)r + b(km− Akr + AN∗r)m1

)
.

Thus, the maximum J(N,P,E, T ) is

J(N∗, P ∗, E∗, T ) =

∫ ∞
0

( pqN∗

m1E∗ +m2N∗
− c
)
E∗e−δTdT.

On integrating above, we get

J(N∗, P ∗, E∗, T ) =
E∗

δ

( pqN∗

m1E∗ +m2N∗
− c
)

=
eδT

δ
H(N∗, P ∗, E∗, 0).

8. Numerical Simulation

1) If α = 0.9, β = 0.7, h = 0.1, c = 0.01. Then, the system (7) has two interior equilibrium
points E∗1(x∗1, y

∗
1) = (0.2627, 0.1839), E∗2(x∗2, y

∗
2) = (0.3567, 0.2497). The threshold value of

ρ is ρ[hf ] = 0.1807 and the first Lyapunov number σ = 656.371π > 0, and hence, an unstable
limit cycle is created around E∗2 and the other equilibrium point E∗1 is a saddle point, see figure
4a. If ρ = 0.2 > ρ[hf ], the equilibrium point E∗2 is a stable point and the equilibrium point E∗1
is a saddle point, see figure 4b. If ρ = 0.15 < ρ[hf ], the equilibrium point E∗2 is an unstable
point and the equilibrium point E∗1 is a saddle point, see figure 4c. If ρ = 0.2117091, then the
limit cycle collide with the saddle point E∗1 , and hence, a homoclinic loop is created around
E∗2 , this cyclic loop is unstable because of σ = 480.543π > 0, see figure 4d. Thus, interior
equilibrium point E∗2(x∗2, y

∗
2) losses its stability as the bifurcation parameter ρ passes through

the threshold value ρ[hf ] from right to left.

2) If α = 0.6, β = 0.5, ρ = 0.6, c = 0.1, then we obtain h = h[SN ] = 0.202499. If
h = 0.16 < h[SN ], then there exits two interior equilibrium points in which one is a sad-
dle point while the other is a stable, see figures 1a and 5a. If h = 0.202499, then these two
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interior equilibrium points coincide to each other and a unique instantaneous equilibrium point
is obtained which is stable from right side of the separatrix and unstable from left side of the
separatix, see figures 1b and 5b. Figures 5c and 5d are the saddle-node bifurcation diagram.
When h > 0.202499, then no interior equilibrium point exist, see figure 1c.

3 If α = 0.7, β = 0.6, c = 0.5, h = 0.36875. Then, the system (7) has a unique interior equi-
librium point E∗(x∗, y∗) = (0.2375, 0.1425), and the threshold value of ρ is ρ[hf ] = 0.145966.
Thus, a stable limit cycle is created around the equilibrium point E∗, see figure 6a as the first
Lyapunov number is σ = −236.907π < 0. If ρ = 0.2, then the unique equilibrium point E∗ is
a stable point, see figure 6b.

4 If r = 5, k = 500, A = 1,m = 1, p = 4, s = 2, b = 3,m1 = 1,m2 = 2, c = 1, the bionomic
equilibrium is (275, 825, 1650).

5 If r = 4, k = 500, A = 1,m = 0.3, p = 5, s = 2, b = 1,m1 = 0.1,m2 = 0.2, c = 1. The
solution of the cubic equation in the following three cases has been shown in figure 7.

Case I: h− c+hβ− cβ+ cαβ > 0. In this case the system (6) has only one optimum solution
for every discount rate δ which is shown in Table 2 for q = 2.

Table 2. Optimum solution for different discount rate δ with q = 2

δ N1 N2 N3 E1 E2 E3

0.00 240.915 −1769.77 −2243.02 51.2468 −32001.6 54494.1
0.02 239.715 −1769.85 −2242.94 51.2734 −32014.4 54509.3
0.04 238.513 −1769.93 −2242.86 51.2975 −32027.3 54524.6
0.06 237.311 −1770.01 −2242.79 51.3190 −32040.2 54539.9
0.08 236.108 −1770.09 −2242.71 51.3380 −32053.2 54555.2
0.10 234.904 −1770.18 −2242.63 51.3545 −32066.1 54570.6

Case II: h−c+hβ−cβ+cαβ < 0. In this case the system (6) has only one optimum solution
for every discount rate δ which is shown in Table 3 for q = 0.1.

Table 3. Optimum solution for different discount rate δ with q = 0.1

δ N1 N2 N3 E1 E2 E3

0.00 436.878 complex complex 480.860 complex complex
0.02 436.869 complex complex 480.998 complex complex
0.04 436.860 complex complex 481.175 complex complex
0.06 436.851 complex complex 481.851 complex complex
0.08 436.843 complex complex 481.404 complex complex
0.10 436.835 complex complex 481.537 complex complex

Case III: h − c + hβ − cβ + cαβ = 0. In this case the system (6) has only one optimum
solution for every discount rate δ which is shown in Table 4 for q = 0.385.
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Table 4. Optimum solution for different discount rate δ with q = 0.385

δ N1 N2 N3 E1 E2 E3

0.00 265.625 complex complex 431.250 complex complex
0.02 264.834 complex complex 432.831 complex complex
0.04 264.048 complex complex 434.404 complex complex
0.06 263.266 complex complex 435.968 complex complex
0.08 262.489 complex complex 437.523 complex complex
0.10 261.715 complex complex 439.069 complex complex

The predators are computed by the following relation

P ∗k = AbN∗k , k = 1, 2, 3.

It is observed from Tables 2, 3 and 4 that in either case, for every discount rate δ there exists at
least one optimum equilibrium point (N∗k , P

∗
k , E

∗
k) such that the density of the prey is inversely

proportional to the effort applied to harvest.

9. Conclusion

In this paper, the authors have analyzed a Holling-Tanner predator-prey model with ratio-dependent
functional response and Michaelis-Menten type prey harvesting. The qualitative analysis of the
proposed system shows that the harvesting rate h significantly affects the system. It is shown that
the origin is a non-hyperbolic equilibrium point and its stability has been discussed by blow up
transformation. It is clear from Figures 2 and 3c that in the absence of the interior equilibrium
points, the trivial equilibrium point is globally asymptotically stable. The stability of other equilib-
rium points have been discussed by linearization technique. The proposed system shows bistability
under certain parametric conditions which concludes that the solutions are highly sensitive for ini-
tial values.

It is shown that the proposed system undergoes Hopf bifurcation. The stability of the limit cycle
have been discussed by computing the first Lyapunov number. By using Sotomayor’s theorem, it is
shown that the system undergoes saddle-node bifurcation where the harvesting parameter h is taken
as the bifurcation parameter. This bifurcation gives the maximum sustainable yield (maximum
harvesting compatibility with survival), see Clark (1976). The existence of the homoclinic loop
has been shown and also by calculating the first Lyapunov number, which shows that homoclinic
loop is unstable. The system (reffinalmod) is reduced to the normal form of the Bogdanov-Takens
bifurcation by means of a series of transformations. This ensures that the predator and prey coexist
in the form of a positive equilibrium or a periodic orbit for different initial values, respectively.

The condition under which bionomic equilibrium exists, has been derived. An optimal harvesting
problem has been solved by using Pontryagin’s maximum principle. It is clear from figure 8 that
at very low prey population the profit is very low. As population of prey increases the profit starts
increasing in all the three cases. The increase is the fastest in first case but become constant after
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a stage while in the third case the profit increases gradually. Hence, we conclude that; i)for very
low prey population, no harvesting should occur; ii) once the prey population starts increasing, the
first case gives maximum profit; iii) for large prey population the third case gives maximum profit.
In the last, it is shown that the number of optimal prey is inversely proportional to the optimal
harvesting effort.
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Figure 1. These diagrams shows the number of interior equilibrium points of the system (7) when the parameter h
varies through critical value h[SN ] and all other parameters are fixed. α = 0.6, β = 0.5, c = 0.1, ρ =
0.6 (a)h = 0.16 (b)h = 0.2025 (c)h = 0.21.
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Figure 2. The phase portrait diagram of the system (7). (a) α = 0.6, β = 0.3, h = 0.2, c = 0.02, ρ = 0.2
satisfies the conditions of the theorem 4.1 a. It shows that E0 is globally stable. (b) α = 0.4, β = 0.3, h =
0.12, ρ = 0.2, c = 0.13 satisfies the conditions of the theorem 4.1 b.The equilibrium points E0 and E∗

2 are
locally asymptotically stable points. (c) α = 0.7, β = 0.4, c = 0.1, ρ = 0.1, h = 0.096 satisfies the
conditions of the theorem 4.1 c. It shows that E0 and E∗

2 are locally asymptotically stable. The red trajectory
is a separatrix.
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Figure 3. (a) The blue curve is saddle-node bifurcation curve, red curve is hopf bifurcation curve and green curve is ho-
moclinic bifurcation curve. (b) When λ1 = λ2 = 0, the unique equilibrium point E is a cusp of codimention
2. (c) When λ1 = 0.001, λ2 = 0.001 lies in the region I , then the system (7) has no interior equilibrium point
and the origin is globally asymptotically stable. (d) When λ1 = −0.001, λ2 = −0.1 lies in the region II , then
the system (7) has two interior equilibrium point. One point is unstable and other is a saddle point. (e) When
λ1 = −0.001, λ2 = −0.09 lies in the region III , then the system (7) has two interior equilibrium point. One
point is enclosed by an unstable limit cycle and other is a saddle point. (d) When λ1 = −0.001, λ2 = −0.07
lies in the region IV , then the system (7) has two interior equilibrium point. One point is asymptotically stable
and other is a saddle point. α = 0.9, β = 0.5, h = 0.16, c = 0.1, ρ = 0.4.
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Figure 4. The phase portrait diagram of the system (7) E∗
1 is always a saddle point. α = 0.9, β = 0.7, h = 0.1, c =

0.01. (a) ρ = 0.18071, an unstable limit cycle bifurcates around the interior point E∗
2 (b) ρ = 0.2, E∗

2 is a
stable point. (c) ρ = 0.15, E∗

2 is an unstable point. (d) ρ = 0.2117091, homoclinic loop is created around the
interior point E∗
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the separatrix. (c) and (d) are the saddle-node bifurcation diagrams.
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Figure 6. The phase portrait diagram of the system (7) for α = 0.7, β = 0.6, c = 0.5, h = 0.36875, the
red trajectory is the separatrix. (a) ρ = 0.14597, a stable limit cycle is created around the unique interior
equilibrium point. (b) ρ = 0.2, the unique interior point is stable.
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Figure 7. These diagrams shows the optimum path in case I, case II, and case III, respectively. The positive real root are

the optimum value of prey species. r = 4, k = 500, A = 1,m = 0.3, p = 5, s = 2, b = 1,m1 = 0.1,m2 =
0.2, c = 1, δ = 0.01, for case I q = 2, for case II q = 0.1 and for case III q = 0.385.
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Figure 8. This diagram shows the profit for different values of prey species in case I, case II and case III. δ = 0.2, r =
4, k = 500, A = 1,m = 0.3, q = 0.1, p = 5, s = 2, b = 1,m1 = 0.1,m2 = 0.2, a = 1.
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