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Abstract

This study proposes a two-species amensalism model with a cover to protect the first species from
the second species, with the assumption that the growth of the second species is governed by
nonlinear harvesting. Analytical and numerical analyses have both been done on this suggested
ecological model. Boundedness and positivity of the solutions of the model are examined. The ex-
istence of feasible equilibrium points and their local stability have been discussed. In addition, the
parametric conditions under which the proposed system is globally stable have been determined. It
has also been shown, using the Sotomayor theorem, that under certain parametric conditions, the
suggested model exhibits a saddle-node bifurcation. The parametric conditions for the existence
of the bionomic equilibrium point have been obtained. The optimal harvesting strategy has been
investigated utilising the Pontryagins Maximum Principle. The potential phase portrait diagrams
have been provided to corroborate the acquired findings.

Keywords: Amensalism model; Stability; Harvesting; Saddle-node bifurcation; Phase portrait;
Bionomic equilibrium; Pontryagins Maximum Principle
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2 M.K. Singh and Poonam

1. Introduction

Species interactions are common in the natural system. From an ecological and biological point
of view, these interations have been found to be one of the most complex and challenging phe-
nomenon. These interactions take several forms, one of which is amensalism. It refers to a species-
to-species relationship in which one species does damage to another without gaining any benefits
or costs. Some examples of amensalism relations between the species are discussed in Rambabu
et al. (2012). In this paper, they proposed and analyzed a harvested amensalism model having two
species. In 2016, Wu et al. proposed a two-species amensalism model employing the Holling II
type functional response. To protect the first species from the second species, a cover was also
considered. They found that both the species can coexist whenever the cover is sufficient to ac-
cumulate the first species. Xie et al. (2016) developed and analyzed the local stability as well as
global stability for a two-species amensalism model in the presence of a cover to save the first
species. R. Wu (2018) studied the local and global stability of a nonlinear amensalism model. In
2019, Guan and Chen proposed and analyzed a two species amensalism model that incorporate
Beddington DeAngelis functional response. They also considered that the growth of the second
species is governed by the Allee effect. Zhao et al. (2020) proposed and studied an amensalism
system in which Allee effect governs the growth rate of the first species, while Wei et al. (2020)
proposed and investigated the dynamical behavior of an amensalism model in which the growth of
the second species is influenced by the weak Allee effect.

The harvesting of species plays a vital role, which is required for the optimum utilization of
the renewable biological resources for the survival of the human population. The first ecolog-
ical model incorporating harvesting was proposed in Clark (1976). In general, three kinds of
harvesting exist in mathematical ecology, known as, constant harvesting (Huange et al. (2013);
Hu and Cao (2005)), linear harvesting (Liu et al. (2018); Zhang et al. (2011)), and nonlinear har-
vesting (Gupta and Chandra (2013); Hu and Cao (2017); Yu et al. (2019)). The nonlinear har-
vesting is biologically and economically more realistic (Gupta and Chandra (2015)). A number
of scholars (Das et al. (2009); Kar et al. (2012); Gupta and Chandra (2013); Hu and Cao (2017);
Singh and Bhadauria (2020)) have analyzed the impact of nonlinear harvesting on various predator-
prey systems and found some very important outcomes to protect the ecological systems. Hu and
Cao (2017) investigated the dynamical complexity for a predator-prey model including nonlinear
predator harvesting.

Recently, researchers have started to investigate the influence of harvesting on the amensalism
system. Chen (2018) studied a non-selective harvesting amensalism model incorporating partial
closure for the populations is proposed and studied in this paper. They investigated the local and
global stability of the feasible equilibria and concluded that harvesting enhances the dynamic be-
haviors of the system. Liu et al. (2018) formulated a amensalism ecological system that incorpo-
rates a cover for the first species. They assumed that the growth of the first species is subjected to
non-linear harvesting. In this paper, they discussed the local stability, saddle-node bifurcation, and
transcritical bifurcation.

The above discussion draws our attention to the fact that the dynamical behaviors of an amensal-
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ism ecological model in the presence of a cover are interesting and realistic. Human actions in
the ecosystem are increasing day by day, which affects the environment very badly. Hence, it is
important to examine the dynamical complexity of an amensalism model equipped with non-linear
harvesting. In many biological systems, there is a time delay (Xu et al. (2021b); Xu et al. (2022c);
Xu et al. (2022b); Xu et al. (2022a); Xu et al. (2021a)). In this research article, we have considered
a two-species amensalism system in the presence of a cover for the first species and non-linear
harvesting for the second species.

2. Mathematical Model

G. C. Sun (2003) proposed a mathematical model, the first effort to investigate the behavior of a
two-species amensalism system. A two-species amensalism model where the first species has a
partial cover to shield it from the second species was taken into consideration by Xie et al. (2016).{

dx
dτ

= a1x− b1x
2 − c1(1− k)xy,

dy
dτ

= a2y − b2y
2.

(1)

To ensure that the above model is ecologically well-posed, we have assumed that all parameters
a1, a2, a3, a4, c1, and k are positive. a1, b1, and c1 reflect the intrinsic growth rate, rate of drop
in density due to inadequate food, rate of fall in density due to inhibition for the first species,
respectively. Additionally, a2 and b2 indicate the intrinsic growth rate and rate of decline in density
due to inadequate food for the second species, respectively. The positive parameter k (0 < k < 1),
is a cover to protect the species x from the species y.

The above model can be rewritten as{ dx
dτ

= r1x(1− x
k1
)− c1(1− k)xy,

dy
dτ

= r2y(1− y
k2
),

(2)

where r1 = a1 and r2 = a2 denote for the maximum intrinsic growth rate of the x species and y
species, respectively; k1 = a1

b1
and k2 = a2

b2
denote for environmental carrying capacities of the x

species and y species, respectively.

Introducing the non-linear harvesting term in the y equation of system (2), it becomes{
dx
dτ

= r1x(1− x
k1
)− c1(1− k)xy,

dy
dτ

= r2y(1− y
k2
)− qEy

m1E+m2y
,

(3)

wheremi, i = 1, 2 are positive constants, andE, q are positive parameters stand for the harvesting
effort and catchability coefficient, respectively.

To make the analysis more straightforward, we adopted the following non-dimensionalization strat-
egy. Consider

ϕ : ψ̄ × R̄ → ψ ×R,

3
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4 M.K. Singh and Poonam

where

ϕ(u, v, t) =
( x
k1
,
c1(1− k)y

r1
, r1τ

)
.

Consider a = r2
r1
, b = r1

c1(1−k)k2
, h = qE(1−k)c1

m2r1r2
, c = m1E(1−k)c1

m2r1
. The system (3) transforms into a

non-dimensionalised state {
du
dt

= u(1− u− v),
dv
dt

= av(1− bv − h
c+v

),
(4)

with u(0) > 0, v(0) > 0.

3. Positivity and Boundedness of Solution

Lemma 3.1.

(a) If t ≥ 0, then every solution of the system (4) corresponding to the initial conditions is positive.
(b) If t ≥ 0, then every solution of system (4) corresponding to the initial conditions is bounded.

Proof:

(a) The prey equation of the system (4) gives

u(t) = u(0)exp
[ ∫ t

0

(
1− u(τ)− v(τ)

)
dτ

]
; (5)

similarly, the predator equation of the system (4) gives

v(t) = v(0)exp
[ ∫ t

0

a
(
1− bv(τ)− h

c+ v(τ)

)
dτ

]
. (6)

Since u(0) > 0 and v(0) > 0, therefore, u(t) > 0 and v(t) > 0. This implies that every
solution trajectory beginning at any point of the first quadrant of uv-plane remain positive for
all future time.

(b) The first equation of system (4) gives

du

dt
≤ u(1− u).

Employing the Lemma (2.2) of Lin and Ho (2006) and positivity of variable u, we get

u(t) ≤ max{1, u0} ≡ N1.

Similarly,

v(t) ≤ max

{
1

b
, v0

}
≡ N2.

This follows the proof. ■
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4. Existence, Stability and Bifurcation of Feasible Equilibria

The feasible equilibria of the system (4) are the nonnegative solutions of the system{
u(1− u− v) = 0,
v(1− bv − h

c+v
) = 0.

(7)

There are two types of equilibria: boundary equilibria and interior equilibria.

4.1. Boundary Equilibria

Evidently, the system (4) always confesses the boundary equilibrium points E0(0, 0) and E1(1, 0),
while other feasible boundary equilibrium points exist under certain parametric conditions.

If u = 0, v ̸= 0, then we get other boundary equilibria whose ordinates are given by

bv2 − v(1− bc) + h− c = 0.

On solving the above equation, we get

v12 =
(1− bc)−

√
∆

2b
, v13 =

(1− bc) +
√
∆

2b
,

where, ∆ = (1− bc)2 − 4b(h− c).

If ∆ > 0 and h > c, then the equilibria E12(0, v12) and E13(0, v13) both will exist, if 1 > bc.
If ∆ = 0, the two roots v12 and v13 will collide with each other and hence a unique equilibrium
point E11(0, v11) = (0, 1−bc

2b
) will materialize, if 1 > bc. If h < c, then a unique equilibrium point

E13(0, v13) will exist.

Theorem 4.1.

(i) The equilibrium point E0 is a saddle point if h > c and it is an unstable point if h < c.

(ii) The equilibrium point E1 is asymptotically stable if h > c and it is a saddle point if h < c.
(iii) The equilibrium point E12 is an unstable point if 1 > v12 and it is a saddle point if 1 < v12.
(iv) The equilibrium point E13 is a saddle point if 1 > v13 and it is a stable point if 1 < v13.

Proof:

(i) The community matrix of the system (4) evaluated at E0 is

JE0
=

[
1 0
0 a

c
(c− h)

]
.

The eigenvalues of the matrix JE0
are λ1 = 1 > 0 and λ2 = a

c
(c − h). Thus, the equilibrium

point E0 is a saddle point if h > c and it is an unstable point if h < c.

(ii) The community matrix of the system (4) evaluated at E1(1, 0) is

JE1
=

[
−1 −1
0 a

c
(c− h)

]
.

5
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6 M.K. Singh and Poonam

The eigenvalues of the matrix JE1
are λ1 = −1 < 0 and λ2 = a

c
(c− h). Thus, the equilibrium

point E1 is asymptotically stable if h > c and it is a saddle point if h < c.
(iii) The community matrix of the system (4) evaluated at E12(0, v12) is

JE12
=

[
1− v12 0

0 av12

√
∆

c+v12

]
.

The eigenvalues of the matrix JE12
are λ1 = 1 − v12 and λ2 = av12

√
∆

c+v12
. Thus, the equilibrium

point E12 is an unstable point if 1 > v12 and it is a saddle point if 1 < v12.
(iv) The community matrix of the system (4) evaluated at E13(0, v13) is

JE13
=

[
1− v13 0

0 −av13

√
∆

c+v13

]
.

The eigenvalues of the matrix JE13
are λ1 = 1− v13 and λ2 = −av13

√
∆

c+v13
. Thus, the equilibrium

point E13 is a saddle point if 1 > v12 and it is a stable point if 1 < v13. ■

4.2. Interior Equilibria

The ordinates of interior equilibria of system (4) are the positive roots of the quadratic equation

bv∗2 − v∗(1− bc) + h− c = 0, (8)

whereas, the abscissa are given by u∗ = 1− v∗, v∗ < 1.

On solving the quadratic equation (8), we get

v∗2 =
1− bc−

√
∆

2b
, v∗3 =

1− bc+
√
∆

2b
,

where ∆ = (1− bc)2 − 4b(h− c). The following three cases arise:

4.2.1. Case I: h > c

It is simple to demonstrate from algebraic theory that i) if ∆ < 0, then no interior equilibria will
exist; ii) if ∆ = 0, a unique positive equilibrium point E∗

1(u
∗
1, v

∗
1) =

(
1 − v∗1,

1−bc
2b

)
will exist, if

1 > bc; iii) if ∆ > 0, then two distinct interior equilibria E∗
2 = (u∗2, v

∗
2) and E∗

3 = (u∗3, v
∗
3) will

exist, if 1 > bc.

Theorem 4.2.

The interior equilibrium point E∗
2(u

∗
2, v

∗
2) is always a saddle point, while the interior equilibrium

point E∗
3(u

∗
3, v

∗
3) is always an asymptotically stable point.

6
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Proof:

The community matrix of the system (4) evaluated at the interior equilibria E∗
i (u

∗
i , v

∗
i ), i = 2, 3 is

JE∗
i
=

[
−u∗i −u∗i
0 av∗i (−b+ h

(c+v∗
i )

2

]
.

The determinant of the matrix JE∗
i

at E∗
i (u

∗
i , v

∗
i ) is det JE∗

i
= au∗i v

∗
i

(
b− h

(c+v∗
i )

2

)
and the trace of

the matrix JE∗
i

at E∗
i (u

∗
i , v

∗
i ) is tr JE∗

i
= −

(
av∗i

(
b− h

(c+v∗
i )

2

)
+ u∗i

)
.

Now, det JE∗
2
= −au∗

2v
∗
2

√
∆

c+v∗
2

< 0. This implies that the point E∗
2 is a saddle point. Further, we have

det JE∗
3
= au∗

3v
∗
3

√
∆

c+v∗
3

> 0 and tr JE∗
3
= −

(
u∗3 +

av∗
3

√
∆

c+v∗
3

)
< 0. Thus, the point E∗

3 is always an
asymptotically stable point. ■

It is easy to check that determinant of the community matrix calculated at the point E∗
1 is zero.

This implies that point E∗
1 is a non-hyperbolic point. As a result, a bifurcation may occur at this

point. It has been stated that when ∆ > 0, the model (4) has two distinct feasible interior equilibria
E∗

2 and E∗
3 and when ∆ = 0, these two equilibria meet with each other and materialize a unique

interior equilibrium E∗
1 . Further, whenever ∆ < 0 there exist no interior equilibria. This change

in the number of feasible interior equilibria of the system (4) maybe because of the occurrence of
saddle-node bifurcation. We shall apply the Sotomayor’s theorem (Perko (2001)) to ascertain the
occurrence of the bifurcation.

Theorem 4.3.

The system (4) exhibits a saddle-node bifurcation at the equilibrium point E∗
1 = (u∗1, v

∗
1) with

respect to the parameter h = h[sn] = (1−bc)2+4bc
4b

.

Proof:

The community matrix for the system (4) at the interior equilibrium point E∗
1 , is

JE∗
1
=

[
−u∗1 −u∗1
0 0

]
.

Evidently, one eigenvalue of the community matrix JE∗
1

is zero and other is non zero. Let X and
Y be the eigenvectors for the zero eigenvalue for the matrices JE∗

1
and JT

E∗
1
, respectively. A simple

computation implies

X =

[
1
−1

]
, Y =

[
0
1

]
.

Consider

f(u, v, h) =

(
1− u− v

1− bv − h
(c+v)

)
. (9)

7
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8 M.K. Singh and Poonam

Thus, fh
(
E∗

1 , h
[sn]

)
=

[
0

− 1
(c+v∗

1 )

]
, D2f

(
E∗

1 , h
[sn]

)
(X,X) =

(
0

− 2h
(c+v∗

1 )
3

)
.

Now

Y T .fh

(
E∗

1 , h
[sn]

)
= − 1

(c+ v∗1)
< 0,

Y T .D2f
(
E∗

1 , h
[sn]

)
(X,X) = − 2h

(c+ v∗1)
3
< 0.

The above two conditions (“the transversality condition for saddle-node bifurcation”) ascertain the
occurrence of saddle-node bifurcation for the proposed system (4). ■

4.2.2. Case II: h < c.

In this case, the system (4) has only one feasible interior equilibrium point E∗ = (u∗, v∗), where
u∗ = 1− v∗ and v∗ = 1−bc+

√
∆

2b
.

Theorem 4.4.

The feasible point E∗ is always an asymptotically stable point.

Proof:

The community matrix of the model (4) evaluated at the interior equilibrium point E∗ is

JE∗ =

[
−u∗ −u∗

0 av∗
(
− b+ h

(c+v∗)2

)] .
The eigenvalues of the matrix JE∗ are λ1 = −u∗ and λ2 = −av∗

(
b− h

(c+v∗)2

)
= −av∗

√
∆

c+v∗ < 0.
Thus, the point E∗ is always an asymptotically stable point. ■

Theorem 4.5.

The feasible point E∗ is globally asymptotically stable if it is locally asymptotically stable and
4a(b− h

(c+v)(c+v∗)
) > 1.

Proof:

Consider a Lyapunov function

G(u, v) = (u− u∗)− u∗ log
( u
u∗

)
+ (v − v∗)− v∗ log

( v
v∗

)
.

Evidently, the function G is positive for all values of u, v except at equilibrium point E∗. The time
derivative of the function G along the trajectories of model (4) is
dG

dt
=

(u− u∗

u

)du
dt

+
(v − v∗

v

)dv
dt

= (u−u∗)[1−u− v]+a
[(
v− v∗)(1− bv− h

c+ v

)]
. (10)

8
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We have equilibrium equations

1− u∗ − v∗ = 0, (11)

and

1− bv∗ − h

c+ v∗
= 0, (12)

corresponding to the steady state E∗(u∗, v∗). From Equations (10), (11) and (12), we can write

dG

dt
= (u− u∗)[1− u− v − 1 + u∗ + v∗] + a(v − v∗)

[
1− bv − h

c+ v
− 1 + bv∗ +

h

c+ v∗

]
= −[(u− u∗)2 + (u− u∗)(v − v∗) + (v − v∗)2a(b− h

(c+ v)(c+ v∗)
)].

Thus, dG
dt

can be written as a quadratic form in the variables (u−u∗) and (v−v∗) which is negative
definite if the matrix [

1 1
2

1
2

a
(
b− h

(c+v)(c+v∗)

)]
is positive definite.

Evidently, dG
dt
< 0 if 4a

(
b− h

(c+v)(c+v∗)

)
> 1. Hence, the result follows. ■

4.2.3. Case III: h = c.

In this case, the system (4) has only one feasible interior equilibrium point E∗ = (u∗, v∗), where
u∗ = (1− v∗) and v∗ = 1−bc

b
, if 1 > bc and v∗ < 1.

Theorem 4.6.

The feasible point E∗ is always an asymptotically stable point.

Proof:

The community matrix of the model (4) evaluated at the interior equilibrium point E∗ is

JE∗ =

[
−u∗ −u∗
0 av∗

(
− b+ h

(c+v∗)2

)] .
The eigenvalues of the matrix JE∗ are λ1 = −u∗ and λ2 = −av∗

(
b− h

(c+v∗)2

)
=

−abv∗ (1− bc) < 0. Thus, the point E∗ is always an asymptotically stable point. ■

Theorem 4.7.

The equilibrium point E∗ is globally asymptotically stable if 4ab
(
1− h

c+v

)
> 1.

9
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10 M.K. Singh and Poonam

Proof:

The proof is analogous to the proof of Theorem (4.5). ■

5. Bionomic Equilibrium Point

A point of the model (3) which is economic equilibrium point as well as biological equilibrium
point, is referred to as the bionomic equilibrium point of the proposed model (3). Geometrically, it
is an intersection point of the zero growth isoclines and zero profit line.

Let p and C, respectively, be the constant price per unit biomass of the second species and the
harvesting cost per unit effort. Consequently, the net profit is represented by

π(x, y, E) =
( pqy

m1E +m2y
− C

)
E,

where x stands for the first species, y stands for the second species and E stands for the effort
applied to harvest. The bionomic equilibrium point (x∞, y∞, E∞) is the real solution of the curves
dx
dτ

= 0, dy
dτ

= 0 and π(x, y, E) = 0, that is, the real solution of the following system
dx
dτ

= r1(1− x
k1
)− c(1− k)y = 0,

dy
dτ

= r2(1− y
k2
)− qE

m1E+m2y
= 0,

pqy
m1E+m2y

− C = 0.

(13)

The real solution of system (13) is

(x∞, y∞, E∞) =

(
r1k1 − c(1− k)k1y∞

r1
,
k2r2m1p+ ck2m2 − pqk2

r2m1p
,
(pq − cm2)y∞

cm1

)
,

provided, cm2

p
< q < k2r2m1p+ck2m2

p
and r1 > c(1− k).

6. Optimal Harvesting

The objective of this section is to maximize the current value of continuous time stream of revenues
which is given by

J(x, y, E, τ) =

∫ ∞

0

π(x, y, E, t)e−ητdτ, (14)

where ζ represents the instantaneous annual discount rate. Using Pontryagin’s maximum principle,
the problem reduces to

Maximize J
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subject to 
dx
dτ

=
(
r1(1− x

k1
)− c(1− k)y

)
x = 0,

dy
dτ

=
(
r2(1− y

k2
)− qE

m1E+m2y

)
y = 0,

0 ≤ E ≤ Emax.

(15)

The Hamiltonian associated to the problem is

H =
( pqy

m1E +m2y

)
Ee−ητ + λ1

((
r1(1−

x

k1
)− c(1− k)y

)
x
)

+ λ2

((
r2(1−

y

k2
)− qE

m1E +m2y

)
y
)
,

(16)

where λ1(τ) and λ2(τ) are known as adjoint variables. The maximization condition of H yields

λ2e
ητ = p− C(m1E +m2y)

2

qm2y2
, (17)

where λ2eητ is the usual shadow price.

The adjoint equations dλ1

dτ
= −∂H

∂x
, dλ2

dτ
= −∂H

∂y
are

dλ1
dτ

= λ1

( r1
k1

)
, (18)

and
dλ2
dτ

= −
( pqm1E

2

(m1E +m2y)2

)
e−ηt + λ1

(
c(1− k)

)
x+ λ2

( r2
k2

− qEm2

(m1E +m2y)2

)
y, (19)

respectively.

The appearance of e−ητ in the above equation confirms that steady state is not possible for the this
system. Consider the transformation

λi(τ) = µi(τ)e
−ητ , i = 1, 2, (20)

where µi represents the present value of the adjoint variable λi. From Equations (17), (18) and
(20), we have

dµ1

dτ
− ηµ1 = −R(y), (21)

where, R(y) = r1
k1

(
C(m1E+m2y)2

qm2y2 − p
)
. The shadow prices µ1 = λ1 and µ2 = λ2 do not vary over

time in singular equilibrium to satisfy the transversality conditions at ∞ (i.e., limt→∞ λi(τ) = 0,
for i = 1, 2). Hence, we get the solution of differential equation (21) as

µ1 =
R(y)

η
.

Employing this value of µ1, Equation (19) can be expressed in term of µ2 as follows:

dµ2

dτ
− (η + S1(y))µ2 = −S2(y), (22)

11
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where S1(y) = ( r2
k2

− qEm2

(m1E+m2y)2
)y and S2(y) = pqm1E2

(m1E+m2y)2
− c(1−k)xR(y)

η
. The solution of the

differential equation (22), which is satisfying the transversality condition at ∞, is

µ2 =
S2(y)

η + S1(y)
. (23)

From Equations (17) and (23), we have

C(mE +m2y)
2

qm2y2
+

S2

η + S1

= p. (24)

Equation (24) gives the desired solution.

7. Numerical Simulations

In this section, numerical simulations are carried out to validate analytical conclusions. The dia-
grams have been sketched by MATHEMATICA 7.0 software.

1) Consider a = 5, b = 0.615, c = 0.9 and h > c. If h = 0.98, then the system (4) has
six feasible equilibria E0 = (0, 0), E1 = (1, 0), E12 = (0, 0.34855), E13 = (0, 0.404162),
E∗

2 = (0.678145, 0.34855) and E∗
3 = (0.595838, 0.404162). The equilibria E0, E13 and E∗

2

are saddle points, the equilibrium point E12 is an unstable point, and equilibria E1 and E∗
3

are asymptotically stable points (see Figure 1(a)). If h = 0.981042, then the model (4) has
four feasible equilibria points E0 = (0, 0), E1 = (1, 0), E0,11 = (0, 0.363008) and E∗

1 =
(0.636992, 0.363008). The point E0 is saddle, point E1 is always asymptotically stable and
equilibria E11, and E∗

1 are saddle-node points (see Figure 1(b)). If h = 0.99, then the system
(4) has two axial equilibria E0(0, 0) and E1(1, 0). The equilibrium point E0 is saddle while the
equilibrium E1 is always asymptotically stable (see Figure 1(d)).

2) Consider a = 5, b = 0.615, c = 0.91, satisfying h < c if h = 0.9, then the system (4) has
four feasible equilibria points E0(0, 0), E1(1, 0), E13(0, 0.738048) and E∗ = (u∗, v∗) =
(0.261952, 0.738048). The point E0 is unstable, points E1, E13 are saddle while E∗ is asymp-
totically stable point (see Figure 2).

3) Consider a = 5, b = 0.615, c = 1.3, satisfying h = c if h = 1.3, then the system (4)
has four feasible equilibria points E0(0, 0), E1(1, 0), E13(0, 0.326016) and E∗ = (u∗, v∗) =
(0.673984, 0.326016). The point E0 is unstable and points E1, E13 are saddle point while E∗

is asymptotically stable (see Figure 3).

8. Conclusion

In this paper, a two-species amensalism model is made more realistic by introducing non-linear
harvesting in the second species. It has been observed that the behavior of the proposed model is

12
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Figure 1. a = 5, b = 0.615, c = 0.9. Phase portrait diagram of system (4) (a) h = 0.98. (b) h = 0.981042, obtained
from bifurcation diagram (c). (d) h = 0.99.
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Figure 2. a = 5, b = 0.615, c = 0.91. Phase portrait diagram of system (4) when h = 0.9.

more complicated since it has more equilibrium points, and the number of equilibrium points may
vary when the harvesting parameter changes.

It has been shown that, for certain parametric conditions the proposed system has at most six feasi-
ble equilibria including two positive interior equilibria. Moreover, a separatrix divides the feasible
area into two parts. The solutions converge to the coexisting equilibrium point if the starting values
are above this separatrix, while the solutions converge to the second species free equilibrium point
if the initial values are below the separatrix. Ecologically, the solutions are highly dependent on the
initial values. It has also been found that the number of interior equilibrium points varies from two
to zero as the bifurcation parameter crosses a certain value. Sotomayor’s theorem has been used to
show the presence of saddle-node bifurcation. Ecologically, below a certain value of the bifurcation
parameter, both species can coexist, but above that, the second species suffer extinction.
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Figure 3. a = 5, b = 0.615, c = 1.3. Phase portrait diagram of system (4) when h = 1.3

Further, it is shown that for certain parametric conditions the proposed system has at most four
feasible equilibria including a unique interior equilibrium point exist. This interior equilibrium
point is globally asymptotically stable for certain parametric conditions.

The parametric conditions under which a bionomic equilibrium point exists have been established.
We have also discussed the optimal harvesting policy in which Pontryagin’s maximum principle is
used to maximize the amount of revenues.

The mathematical study leads us to the ecological conclusion that harvesting has no adverse effects
on the first species but may result in the extinction of the second species. Additionally, since the
origin is never stable, the amensalism system will never collapse for any values of the parameter.
In light of non-linear harvesting, the amensalism model will thus be more useful and applicable in
actual circumstances.
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