13 research outputs found

    Spontaneous symmetry breaking in self–organizing neural fields

    Get PDF
    We extend the theory of self-organizing neural fields in order to analyze the joint emergence of topography and feature selectivity in primary visual cortex through spontaneous symmetry breaking. We first show how a binocular one-dimensional topographic map can undergo a pattern forming instability that breaks the underlying symmetry between left and right eyes. This leads to the spatial segregation of eye specific activity bumps consistent with the emergence of ocular dominance columns. We then show how a 2-dimensional isotropic topographic map can undergo a pattern forming instability that breaks the underlying rotation symmetry. This leads to the formation of elongated activity bumps consistent with the emergence of orientation preference columns. A particularly interesting property of the latter symmetry breaking mechanism is that the linear equations describing the growth of the orientation columns exhibits a rotational shift-twist symmetry, in which there is a coupling between orientation and topography. Such coupling has been found in experimentally generated orientation preference map

    Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities

    Get PDF
    In this paper we consider instabilities of localised solutions in planar neural field firing rate models of Wilson-Cowan or Amari type. Importantly we show that angular perturbations can destabilise spatially localised solutions. For a scalar model with Heaviside firing rate function we calculate symmetric one-bump and ring solutions explicitly and use an Evans function approach to predict the point of instability and the shapes of the dominant growing modes. Our predictions are shown to be in excellent agreement with direct numerical simulations. Moreover, beyond the instability our simulations demonstrate the emergence of multi-bump and labyrinthine patterns. With the addition of spike-frequency adaptation, numerical simulations of the resulting vector model show that it is possible for structures without rotational symmetry, and in particular multi-bumps, to undergo an instability to a rotating wave. We use a general argument, valid for smooth firing rate functions, to establish the conditions necessary to generate such a rotational instability. Numerical continuation of the rotating wave is used to quantify the emergent angular velocity as a bifurcation parameter is varied. Wave stability is found via the numerical evaluation of an associated eigenvalue problem

    Stationary bumps in a piecewise smooth neural field model with synaptic depression

    Get PDF
    We analyze the existence and stability of stationary pulses or bumps in a one–dimensional piecewise smooth neural field model with synaptic depression. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Synaptic depression dynamically reduces the strength of synaptic weights in response to increases in activity. We show that in the case of a Mexican hat weight distribution, there exists a stable bump for sufficiently weak synaptic depression. However, as synaptic depression becomes stronger, the bump became unstable with respect to perturbations that shift the boundary of the bump, leading to the formation of a traveling pulse. The local stability of a bump is determined by the spectrum of a piecewise linear operator that keeps track of the sign of perturbations of the bump boundary. This results in a number of differences from previous studies of neural field models with Heaviside firing rate functions, where any discontinuities appear inside convolutions so that the resulting dynamical system is smooth. We also extend our results to the case of radially symmetric bumps in two–dimensional neural field models

    Local/global analysis of the stationary solutions of some neural field equations

    Full text link
    Neural or cortical fields are continuous assemblies of mesoscopic models, also called neural masses, of neural populations that are fundamental in the modeling of macroscopic parts of the brain. Neural fields are described by nonlinear integro-differential equations. The solutions of these equations represent the state of activity of these populations when submitted to inputs from neighbouring brain areas. Understanding the properties of these solutions is essential in advancing our understanding of the brain. In this paper we study the dependency of the stationary solutions of the neural fields equations with respect to the stiffness of the nonlinearity and the contrast of the external inputs. This is done by using degree theory and bifurcation theory in the context of functional, in particular infinite dimensional, spaces. The joint use of these two theories allows us to make new detailed predictions about the global and local behaviours of the solutions. We also provide a generic finite dimensional approximation of these equations which allows us to study in great details two models. The first model is a neural mass model of a cortical hypercolumn of orientation sensitive neurons, the ring model. The second model is a general neural field model where the spatial connectivity isdescribed by heterogeneous Gaussian-like functions.Comment: 38 pages, 9 figure

    Coverage, Continuity and Visual Cortical Architecture

    Get PDF
    The primary visual cortex of many mammals contains a continuous representation of visual space, with a roughly repetitive aperiodic map of orientation preferences superimposed. It was recently found that orientation preference maps (OPMs) obey statistical laws which are apparently invariant among species widely separated in eutherian evolution. Here, we examine whether one of the most prominent models for the optimization of cortical maps, the elastic net (EN) model, can reproduce this common design. The EN model generates representations which optimally trade of stimulus space coverage and map continuity. While this model has been used in numerous studies, no analytical results about the precise layout of the predicted OPMs have been obtained so far. We present a mathematical approach to analytically calculate the cortical representations predicted by the EN model for the joint mapping of stimulus position and orientation. We find that in all previously studied regimes, predicted OPM layouts are perfectly periodic. An unbiased search through the EN parameter space identifies a novel regime of aperiodic OPMs with pinwheel densities lower than found in experiments. In an extreme limit, aperiodic OPMs quantitatively resembling experimental observations emerge. Stabilization of these layouts results from strong nonlocal interactions rather than from a coverage-continuity-compromise. Our results demonstrate that optimization models for stimulus representations dominated by nonlocal suppressive interactions are in principle capable of correctly predicting the common OPM design. They question that visual cortical feature representations can be explained by a coverage-continuity-compromise.Comment: 100 pages, including an Appendix, 21 + 7 figure

    Two-dimensional bumps in piecewise smooth neural fields with synaptic depression

    Get PDF
    We analyze radially symmetric bumps in a two-dimensional piecewise-smooth neural field model with synaptic depression. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Synaptic depression dynamically reduces the strength of synaptic weights in response to increases in activity. We show that in the case of a Mexican hat weight distribution, sufficiently strong synaptic depression can destabilize a stationary bump solution that would be stable in the absence of depression. Numerically it is found that the resulting instability leads to the formation of a traveling spot. The local stability of a bump is determined by solutions to a system of pseudolinear equations that take into account the sign of perturbations around the circular bump boundary

    A neural field model for color perception unifying assimilation and contrast

    Get PDF
    37 pages, 17 figures, 3 ancillary filesInternational audienceWe propose a neural field model of color perception in context, for the visual area V1 in the cortex. This model reconciles into a common framework two opposing perceptual phenomena, simultaneous contrast and chromatic assimilation. Previous works showed that they act simultaneously, and can produce larger shifts in color matching when acting in synergy with a spatial pattern. At some point in an image,the color perceptually seems more similar to that of the adjacent locations, while being more dissimilar from that of remote neighbors. The influence of neighbors hence reverses its nature above some characteristic scale. Our model fully exploits the balance between attraction and repulsion in color space, combined at small or large scales in physical space. For that purpose we rely on the opponent color theory introduced by Hering, and suppose a hypercolumnar structure coding for colors. At some neural mass, the pointwise influence of neighbors is spatially integrated to obtain the final effect that we call a color sensation. Alongside this neural field model, we describe the search for a color match in asymmetric matching experiments as a mathematical projector. We validate it by fitting the parameters of the model to data from (Monnier and Shevell, 2004) and (Monnier, 2008) and our own data. All the results show that we are able to explain the nonlinear behavior of the observed shifts along one or two dimensions in color space, which cannot be done using a simple linear model
    corecore