
HAL Id: hal-01909354
https://hal.inria.fr/hal-01909354

Submitted on 6 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A neural field model for color perception unifying
assimilation and contrast

Anna Song, Olivier Faugeras, Romain Veltz

To cite this version:
Anna Song, Olivier Faugeras, Romain Veltz. A neural field model for color perception unifying
assimilation and contrast. PLoS Computational Biology, Public Library of Science, 2019, 15 (6),
�10.1371/journal.pcbi.1007050�. �hal-01909354�

https://hal.inria.fr/hal-01909354
https://hal.archives-ouvertes.fr


IN
PR
ES
S

A neural field model for color perception
unifying assimilation and contrast

Anna Song1*, Olivier Faugeras2,3, Romain Veltz2
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Abstract

We address the question of color-space interactions in the brain, by proposing a neural
field model of color perception with spatial context for the visual area V1 of the cortex.
Our framework reconciles two opposing perceptual phenomena, known as simultaneous
contrast and chromatic assimilation. They have been previously shown to act
synergistically, so that at some point in an image, the color seems perceptually more
similar to that of adjacent neighbors, while being more dissimilar from that of remote
ones. Thus, their combined effects are enhanced in the presence of a spatial pattern,
and can be measured as larger shifts in color matching experiments. Our model
supposes a hypercolumnar structure coding for colors in V1, and relies on the notion of
color opponency introduced by Hering. The connectivity kernel of the neural field
exploits the balance between attraction and repulsion in color and physical spaces, so as
to reproduce the sign reversal in the influence of neighboring points. The color
sensation at a point, defined from a steady state of the neural activities, is then
extracted as a nonlinear percept conveyed by an assembly of neurons. It connects the
cortical and perceptual levels, because we describe the search for a color match in
asymmetric matching experiments as a mathematical projection on color sensations. We
validate our color neural field alongside this color matching framework, by performing a
multi-parameter regression to data produced by psychophysicists and ourselves. All the
results show that we are able to explain the nonlinear behavior of shifts observed along
one or two dimensions in color space, which cannot be done using a simple linear model.

Author summary

The color perception produced by an image heavily depends on the spatial distribution
of its colors. From this “color in context” phenomenon, extensively studied in
psychophysics for decades, has arisen the question in neuroscience of how color and
space interact in the brain. Visual signals are indeed processed in such a way that
neighboring pixels make the perception at some point different from its real color,
inducing a color shift. In this work, we propose to emulate perception in context by
modeling the activity of color sensitive neurons with a neural field. Our framework
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unifies two antagonistic effects, assimilation and contrast, which have been suggested to
occur simultaneously but at different scales. We use the notion of color opponency
inspired by the work of Hering, so as to express these effects as a combination of
attraction and repulsion in physical and color spaces. We introduce the concept of
“color sensation”, and show how to rigorously link the neural field model to perceptual
shifts, by considering color matching as a mathematical projection on color sensations.
The results show that our model is able to reproduce some nontrivial behaviors of the
color shifts observed in experiments.

Introduction

Color induction, which refers to a change in color appearance of a test stimulus under
the influence of spatially neighboring stimuli in the field of view [1], has been
extensively studied in psychophysics [2]. This effect has been observed for uniform
inducing surrounds [3–7] and geometrically more complex ones as well [8–15]. The
geometry of spatial context, and especially the frequency of chromatic modulation, have
been shown to play an important role in color induction. Many works on this subject
have been devoted to the study of two induction effects in particular, known as
chromatic assimilation and simultaneous contrast (see Fig 1). Chromatic assimilation is
the fact that the chromatic appearance of a test stimulus changes towards the
chromaticity of inducing stimuli. Conversely, simultaneous contrast corresponds to the
test chromatic appearance changing away from the chromaticity of inducing stimuli.
Contrast is interesting in that it involves the notion of color opponency : the change is
often made towards an opponent or complementary color [5, 7, 16]. These increased
perceptual similarity or dissimilarity can be viewed as the results of attractive or
repulsive effects respectively in color space.

Fig 1. Assimilation and contrast in action (in the style of [17] Fig 1). Up, left.
Simultaneous contrast: the small patches on the left and the right are identical, but they tend
to appear darker inside the yellow surround, lighter inside the dark surround. Up, right.
Chromatic assimilation: the same grayish background tends to be blue or green depending on
the color and spatial frequency of the grid covering it. Down. Synergy of both phenomena: the
two central rings are identical, but are perceived as pink or orange when surrounded by
concentric annuli with a purple/lime or lime/purple pattern.

While assimilation and contrast had previously been thought to occur
separately, [15, 17,18] suggested that they act simultaneously in a synergistic manner.
The idea that effects induced by context result from a balance between assimilation and
contrast was also proposed in cognition [19]. The experimental settings used by [18] to
demonstrate the synergy relied on asymmetric color matching. In psychophysics, this is
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a classical procedure to objectively measure the amount of color induction caused by
spatial context. A human observer views two still color images side by side, a test image
J test whose pattern influences the perception of a test color ctest, and a comparison
image Jcomp[ccomp] with a modifiable comparison color ccomp (see Fig 2). In most
experiments, the two images have the same geometric patterns and are composed of
elementary shapes, such as rectangular, round or concentric patches, uniformly filled
with different colors [3, 7, 20]. The patches to be compared are filled with ctest and
ccomp. The observer is asked to change ccomp until color appearance between the test
and comparison patches are the same, leading to a perceptual match. The perceptual
shift is then the difference between the final color cmatch and the test color ctest. In Fig
3, we illustrate this experiment with simple square patterns.

Jcomp[ctest]

shift−−−→
cmatch−ctest

Jcomp[cmatch]

match←−−−→

J test

Fig 2. Color matching measures the influence of context over color perception.
The green color ctest is tested against a yellow surround in the test image Jtest. The observer
changes the comparison color ccomp inside Jcomp until a match occurs at cmatch between the
two central patches. Color induction is measured as the obtained shift.

y y y

Fig 3. A typical color matching experiment. Upper row, left to right. For each of the
three pairs of (gray, yellow) large squares, the central patches have identical colors. Their HSL
coordinates are (120◦, 55%, 46%), (120◦, 85%, 71%), (60◦, 57%, 56%), respectively. The HSL
color space is extensively used in computer graphics and defined in [21]. Lower row, left to
right. One of the authors (A.S.) has modified the HSL coordinates of the left central patch, in
order to obtain perceptually equal patches (as much as possible). This is called matching. We
can see how far the “perceived” HSL are from reality: (138◦, 55%, 39%), (140◦, 41%, 59%),
(66◦, 29%, 54%). The reader probably does not perceive the two patches as perceptually equal,
because matching is subject-dependent.

In [18], color shifts were measured for patterns with concentric annuli as in Fig 1
(Down), whose colors were distinguished by the stimulation of S cones only. The
matching surround was a neutral gray. Stimuli were expressed in the cone-based
chromaticity space proposed by [22] and specified by three coordinates s, l, Y , where s
and l are defined as the ratios S

L+M and L
L+M respectively, and Y stands for luminance.

The definition of the S,M,L signals is recalled below. Their results showed that the
largest color shifts in s chromaticity were induced by patterns alternating between two
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distinct colors, such as purple and lime. In particular, shifts induced by uniform
backgrounds or patterns alternating between white and purple or lime were smaller.

Such large shifts could not be induced by optical factors (spread light or chromatic
aberration) only, but implied some neural processing of the stimuli [23]. To explain
this, [18] suggested that stest was shifted towards the adjacent ring thanks to
assimilation, while it was also repelled away from the second ring by contrast, resulting
in the matching value smatch. They proposed a S+/S- center-surround receptive field
model to predict the shifts: at a point x in the test ring,

shift at x := smatch − stest = DOG ∗ (J test − Jcomp[stest])(x),

where J test and Jcomp, in s coordinates, are convolved with a Gaussian kernel
beforehand to account for retinal blurring; the Difference of Gaussians DOG stands for
the receptive field. Color appearance would then be the combined contributions of
chromaticity at the point of interest and influence of the surround filtered by the S+/S-
receptive field.

After tuning the parameters, this simple linear model was capable of explaining data
in the specific experimental setting of [18], where the chromaticity s of the test ring was
fixed while that of the surround was changed. However, it was unable to explain the
dependency of shifts upon stest reported in a later paper [17] where, conversely, stest

was varied while the surround was left unchanged. Indeed, in the above equality, the
central ring of the difference image J test − Jcomp[stest] has chromaticity s = 0, after
cancellation of the test and comparison chromaticities. The model is also conceptually
difficult to justify, because it treats the central ring and the surround as fundamentally
different spatial components, while handling single chromaticities and spatial
integrations at the same conceptual level. This prevents their computational framework
from being extended to various patterns and other matching experiments.

Here, we build a framework dedicated to general color matching experiments. It is
able, in particular, to explain the nonlinear behavior of color shifts found by [17, 18]. As
a starting point, we reformulate their fundamental observation into a Principle of
Synergy which relies on the notion of color opponency introduced by Hering [16]:

1. Adjacent neighbors surrounding a spatial point x in an image I tend to
perceptually attract towards their color, in the sense that they contribute to make
the color appearance at x more similar to theirs.

2. Remote neighbors tend to repel towards their respective opponent color. They are
not immediately adjacent to x, but at some short distance.

3. Far neighbors are too far from x to have any substantial influence on the color
perception at x.

This viewpoint implies an appropriate change of vocabulary : in the sequel, chromatic
assimilation and simultaneous contrast refer to local interactions, which may act at the
same time but at two different local scales. The global effect observed is then the
integration of infinitesimal influences induced by spatially neighboring points.
Perception can in particular result in attraction (assimilation wins over contrast),
repulsion (contrast wins over assimilation), or none of them. Thus assimilation and
contrast, which seem to be contradictory effects, can be described as concomitant local
phenomena.

Beyond giving a merely computational model, we aim at designing a framework
consistent with the physiological and anatomical observations currently available. Light
entering the eye stimulates L, M and S cones of the retina proportionally to quantal
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absorption rate [24], in a “wavelength-blind” fashion according to the principle of
univariance [25]. At a point x of the retina R, the stimulus Lx of L cones can be
approximated at first order as [26,27]

Lx :=

∫

λ∈Λ

Cx(λ)SxL(λ) dλ = 〈Cx,SxL〉L2(Λ), (1)

where C is the spectral distribution of the light over the visible spectrum Λ, and the
spectral sensitivity SxL of L cones located at x depends on their local density.

L,M,S signals are then relayed by the Lateral Geniculate Nucleus (LGN) and
transmitted to the primary visual cortex (V1) through axonal projections. It has been
established that chromatic input to the visual cortex from the LGN is encoded in an
opponent fashion as Hering postulated [16] and as was later confirmed by
neurophysiologists [28–30]. This justifies the use of a color-opponent framework here.
LGN cells have been found to respond to linear combinations of L,M,S stimuli [23, 30].
L−M and S − (L+M) signals are transmitted to single-opponent cells in layers (4Cβ)
and (2/3 and 4A) of the visual cortex respectively [2, 23]. In contrast to them, cells
clustered inside or around Cytochrome Oxydase (CO) blobs in layer 2/3 of V1 are
sensitive to a continuum of colors instead of three cardinal axes, nonlinearly with
respect to cones [23,31,32]. As such, they may have a prominent function in encoding
color in the cortex, as proposed in [33,34]. Most of them were found to be
double-opponent cells [2, 35, 36]. Single- and double-opponent cells are very likely to play
a fundamental role in color processing in the brain [2, 23]. The former are important for
analyzing color in large areas while the latter are sensitive to edges and orientation,
implying that color assimilation would be due to single-opponent cells and color
contrast to double-opponent cells [2].

The visual cortex has the specificity to be organised into hypercolumns, i.e., groups
of neurons sharing the same receptive field and coding for a particular physical quantity
at this position, such as orientation, spatial frequency, and temporal
frequency [32,37–39]. These signals are mapped from the retina to V1 following an
approximately logarithmic retinotopy [40,41]. Unlike in the case of orientation, for
which the existence of such hypercolumns in V1 is now well established [32], the
anatomical and physiological bases for a functional architecture encoding color are still
debated. However, in light of the promising findings made by [31], and as discussed
in [23, 32,42], it is reasonable to assume in our work a hypercolumnar organisation
of cells tuned to a continuum of colors, having double-opponent characteristics,
and related to CO blobs in layer 2/3 of V1. Our work also supposes the presence of
long-range lateral connections between hypercolumns, in agreement with observations
of [43] where horizontal connections tend to link blobs to blobs. Note that we do not
use further assumptions about the anatomical organization of color-tuned cells with
respect to blobs (inside, around, independent), which is still unclear [2, 23].

In this context, our model relies on a neural field [44–47]. It is worth noting that
neural fields have been previously applied to simpler examples of sensory processing in
visual cortex, in order to study the spontaneous formation of population tuning curves.
Orientation tuning has been addressed in an important paper by Ben-Yishai and
colleagues [48]. Their model of a single cortical hypercolumn did not take into account
the spatial relations between these hypercolumns, which was done in the 2001 landmark
paper by Bressloff and colleagues [49]. The problem was then revisited by
Bressloff [50–52], and later by two of the authors of the present paper [53]. Spatial
frequency tuning has been addressed by Bressloff and Cowan [54,55], and by Chossat
and Faugeras [56]. The combination of orientation tuning in binocular vision giving rise
to rivalry waves has been studied in [57]. These simpler models have the benefit of
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explicit knowledge regarding feature preference maps (image orientations, image
textures) and connectivity in V1 (orientation hypercolumns and their relations with CO
blobs).

This color neural field framework allows us to study color-space interactions. In
recent years, the interactions between color, and orientation/form/space, have received
increasing attention [2]. Double-opponent cells may strongly contribute to the
relationship between color and form processing, since the shape of their receptive fields
determines their orientation tuning [23]. This supports the hypothesis that functional
architectures for color and orientation would be intermingled and realize color-form
interactions. A framework was proposed by [42] for modeling color and orientation
processing in V1. They assume that two populations of neural masses, one
color-insensitive but orientation-tuned, and the other sensitive to both, interact through
an extended version of the ring model [48]. Our work is related but complementary to
theirs, because rather than considering only two hypercolumns of each kind and using
uniform inputs, without introducing space, we study the interactions between color and
space by the means of multiple color hypercolumns and patterned inputs, without
introducing orientation. The relation between orientation and color falls outside the
scope of this work, and should be examined in the future.

The goal of our work is therefore to provide a neural field model unifying assimilation
and contrast inside a color-opponent framework, consistent with psychophysical data,
and compatible with the physiology of V1. We have successfully achieved this aim.

Materials and methods

Ethics Statement

A.S. conceived and designed the experiments herself and consented to participate.

Color and opponent representation

The rigorous definition of color is thoroughly explained in S1 Appendix, where we also
present the most common representations of the color space. Here, for the sake of
simplicity, we only briefly state the minimal definitions and properties to be used in the
model.

Color is mathematically defined as an equivalence class of metameric
lights [26,58–60]. Two physical lights of spectral distributions C1, C2 ∈ L2(Λ) are
metameric if they produce exactly the same visual effect under the same viewing
conditions, and this identification strongly depends on the observer. In our framework,
metamerism can be expressed as the equality of the triplets of scalar products
characterizing C1 and C2

(L,M,S) = (〈Ci,SL〉L2(Λ), 〈Ci,SM 〉L2(Λ), 〈Ci,SS〉L2(Λ)),

with SL the spectral sensitivity of L cones (and likewise for M and S cones), see (1). We
dropped the exponent x ∈ R2 by considering for simplicity that cone density is constant
across the retina and that light is spatially uniform (although we can define
metamerism with respect to any x). Color is hence naturally identified to a
three-dimensional vector for trichromats, being specified by a triplet of cone stimuli
(L,M,S). For a light of spectral distribution C, its color is denoted [C].

Color space, denoted C, is then defined as the subset of physically realizable colors
which are visible to the eye. Since the cone signals (L,M,S) are non-negative and
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cannot reach all possible positive values [60], C can be identified to a bounded subset of
(R+)3 through a choice φLMS : C→ R3 of coordinates. In this work, we suppose that
an appropriate choice of coordinate system φopp : C→ R3 leads to an opponent
representation of the color space

Copp := φopp(C) (2)

satisfying the following important properties. First, it is a bounded and convex subset
of R3 which enjoys symmetry: if c ∈ Copp, then −c ∈ Copp. Second, the symmetry
operation c 7→ −c must pair any color to its opponent one, in the sense of Hering [16].
Hence, color regions of Copp come into opposed pairs, for example Yellow and Blue or
Red and Green regions, or likewise. Third, Copp must contain the neutral or zero color
0, opponent to itself, which would correspond to some neutral gray with no hue (for a
fourth condition, see details in S1 Appendix).

Following up on this, we consider in this work an opponent representation in the
style of Hering’s theory. Indeed, in view of the physiological results exposed in the
Introduction, it is now accepted that L,M,S signals are recombined in area V1 into
Yellow-Blue, Red-Green and Achromatic independent channels [61], although the right
choice of the opposite axes has been debated [62]. Our model does not depend in a
decisive manner upon the choice of a specific color opponent space. In fact our
particular choice of Hering’s coordinates is not very different from the cone opponency
coordinates defined in [30]. Also, we do not require that the opponent axes point
towards perceptually unique hues, unlike in the original theory of Hering. Supposing
such a simple relationship between physiology of the cells and psychology related to hue
pureness was indeed criticized [23,30,62].

Here, we rely on the (l, s, Y ) and (H,S, L) representations, and restrict ourselves to
a lower-dimensional subspace of the original color opponent space, also denoted Copp for
convenience (in this context, the letters ‘S’ and ‘L’ of HSL stand for Saturation and
Luminance respectively, not Short or Long cones, while ‘H’ stands for Hue).

In the case of the (l, s, Y ) representation, we apply our model to the one-dimensional
subspace based on the chromaticity s and defined by c := s− 1. The (l, s, Y )
representation used in [15,17,18], a variant of the one proposed by [22], is defined as





s = S
L+M

l = L
L+M

Y = L+M + S

.

We then define Copp to be the one-dimensional color subspace based on the change of
coordinates c := s− 1 ∈ Copp := [−2, 2], where the number 2 is arbitrary, but covers the
typical range of c values used in experiments (purple, lime and white correspond to
(l, s, Y ) = (0.66, 2.0, 15cd/m2), (0.66, 0.16, 15cd/m2) and (0.66, 0.98, 15cd/m2)
respectively.).

The Hue, Saturation and Luminance or (H,S, L) representation (note that the
letters ‘S’ and ‘L’ are not referring to Short or Long cones), often used in computer
graphics, maps the sRGB unit cube or gamut of a device to a cylinder whose central
axis is achromatic and perpendicular to a chromatic disk [58,63]. Standard formulas
provide the change of coordinates TsRGB→HSL [21].

We use the two-dimensional chromatic disk Copp, defined as the intersection of the
constant luminance plane L = 1/2 with the HSL cylinder, and identified to the unit
disk, so that (c1, c2) := (S cos(H), S sin(H)) ∈ Copp. The gamut corresponds in fact to a
subject- and device-dependent subspace Cdev strictly smaller than the subspace of
chromatic colors visible by the observer, since they are not all reproducible by a screen.
The gamut of standard devices however covers a large part of visible colors, hence
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justifying its use, and the HSL representation has already proven its efficiency in
computer graphics. We claim that the specific details of the display, such as gamut and
screen characteristics, do not play a major role in our methods and results, provided
that all experiments are consistently made in the same conditions.

Model

The main thrust of our model is twofold : first, we put forward an evolution equation for
the dynamics of neural activities, considered as a spatial and color neural field [44–47].
Second, we propose a theoretical framework for color matching experiments in the
context of color perception, and introduce a formal definition of color sensation.

Notations. The retina R ⊂ R2 maps onto the spatial domain of the cortex Ω ⊂ R2

through axonal projections. The scene projects onto the retina as a retinal image
J : R→ Copp, and is transmitted to the cortex as a cortical image I : Ω→ Copp. Both
images I and J take values in the opponent representation, and can be considered as
triplets of scalar images. In the following, c ∈ Copp ⊂ Rd implicitly refers to the
associated color [C] = φ−1

opp(c), where Copp is defined in Eq (2) and d depends on the
dimension of the color space being considered, i.e. 1 or 2.

Under the assumption of color-coding hypercolumns, as discussed in the
Introduction, (r, c) denotes the neural mass selective for cortical position r ∈ Ω and
color c ∈ Copp. To each hypercolumn r, we associate a neural activity a which depends
on position r ∈ Ω, color c ∈ Copp, and time t ∈ R. A summary of notations used
throughout the paper is given in Table 1 below.

Table 1. Mathematical Notations.

Physical space
R ⊂ R2 spatial domain of the retina
Ω ⊂ R2 spatial domain of color hypercolumns
x ∈ R a retinal point
r ∈ Ω a cortical point or hypercolumn

Color space
C spectral distribution of a light
C color space: the set of human-visible colors

c ∈ C a color
CLMS ⊂ R3 LMS standard representation
Copp ⊂ R3 an opponent representation of C

(Lx,M x, Sx) ∈ CLMS L,M,S signals received at x ∈ R
Dynamic entities

J(x, t) retinal image
I(r, t) cortical image
a(r, c, t) neural activity of neural mass (r, c) at time t

Color neural field. We now describe our neural field model. We assume that, on a
time interval I ⊂ R containing 0, the neural activity a : Ω × Copp × I → [0, 1] is
solution to an integrodifferential equation of Wilson-Cowan type [64]:

τ
da

dt
= −a(t) + F (ω ? a(t) +H) a(t) ∈ L∞(Ω× Copp) (3)

where at each instant a(t) takes values in [0, 1] and represents a firing rate, or any
physical activity.
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– The typical speed of the dynamics τ is here of less importance than other
parameters, so that it can be taken as τ = 1 up to rescaling of the time axis;

– the activation function F is a sigmoid converging to 0 and 1 at ±∞:

F (x) :=
1

1 + e−γx
, (4)

parameterized by γ, which is proportional to the highest slope of the sigmoid
F ′(0) = γ

4 ;

– H stands for the color input relayed by single-opponent cells in the LGN
(alternatively, by those in layers (4Cβ) and (2/3 and 4A), see Introduction) to the
neural masses (r, c)

H(r, c, t) := h(c− I(r, t)), h(c) := µhe
− ||c||

2

2σ2
h , (5)

where the cortical image I(r, t) is in opponent coordinates. Thus, the strongest
input is given to neural masses sensitive to colors closest to the actual viewed
color I(r, t), as expected for color-tuned cells. The euclidean metric of R3 ⊃ Copp
serves to compare them through h.

The connectivity kernel ω is the central part of our model and is designed so as to
encode the antagonistic actions of contrast and assimilation. It acts on a according to

ω ? a(t) =

∫

Ω

∫

Copp

g(r − r′)f(c, c′)a(r′, c′, t) dr′dc′, (6)

where the ? operation depends on the opponent representation Copp, and the different
functions are such that (see Fig 4)

– g is a classical difference of gaussians or “Mexican hat”, parameterized by weights
µ,ν and variances α,β:

g(r) := µe−
||r||2

2α2 − νe−
||r||2

2β2 . (7)

To have local excitation, we suppose g(0) > 0, i.e., µ > ν. The kernel g weights
the influence of spatially neighboring hypercolumns;

– f(c, c′) is a function of two variables in Copp, parameterized by µc, νc, αc, βc:

f(c, c′) := µce
− ||c−c

′||2

2α2
c − νce

− ||c+c
′||2

2β2c . (8)

Formulated as such, f is symmetric in c and c′. For any fixed c, f(c, ·) is a
difference of gaussians, one which is centered at c, the other one at its opponent
−c. By introducing the gaussian kernels

f1(c) := µce
− ||c||

2

2α2
c f2(c) := νce

− ||c||
2

2β2c ,

it reformulates as

f(c, c′) := f1(c− c′)− f2(c+ c′) = f1(c′ − c)− f2(c′ − (−c)).

f(c, c′) hence measures the influence of c′ over c, depending on the position of c′

relative to the opponent pair (c,−c). Here, the minus sign in −c is essential and
expresses color opponency.
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Given these definitions, a solution to (3) exists and is unique in L∞(Ω× Copp,R).
Because −a < ȧ < 1− a, an elementary proof shows that it remains bounded by 0 and
1, provided that 0 < a(0) < 1. In the sequel we write

ω(r, c, r′, c′) := g(r − r′)f(c, c′)

for the connectivity kernel. The neural field dynamics (3) can then be reformulated as

da

dt
(r, c, t) = − a(r, c, t) + F



∫∫

Ω×Copp

ω(r, c, r′, c′)a(r′, c′, t) dr′dc′ +H(r, c, t)


 .

Because we only consider static and not dynamic images here, the color input
H(r, c, t) = H(r, c) is kept constant.

c

-c

c1'

c2'

The function f(c, ·) for fixed c. c′1 and c′2
are resp. close to c or its opponent −c′.

r

r2'

r1'

The function g(r−·) for fixed r. r′1 and r′2
are resp. adjacent and remote neighbors.

Fig 4. f and g functions, displayed on a 1D axis for illustration purpose. The influence of
c′ and r′ over c and r, respectively, depends on their position relative to (c,−c) and r. In color
space, it is positive when c′ is closer to c, negative when it is closer to −c; in physical space, it
is positive when r′ is an adjacent neighbor of r, and negative when it is a remote one.

Interpretation of the connectivity kernel. The connectivity kernel ω is the most
important item in the neural field model, because it both expresses the antagonism
between contrast and assimilation, and reflects properties reminiscent of
center-surround double-opponent cells. The lateral connection from (r′, c′) to (r, c) is
excitatory or inhibitory if ω(r, c, r′, c′) is positive or negative, respectively, and with a
strength proportional to the absolute value. The level of activity a(r′, c′, t) > 0 of
neighboring masses (r′, c′) is weighted by ω(r, c, r′, c′), whose sign depends on the
relative positions of r′ and r, c′ and ±c. Four situations are possible, according to the
respective signs of g(r − r′) and f(c, c′), summarized in Table 2:

Table 2. Sign of the connectivity kernel ω

g(r − r′)f(c, c′) c′ close to c c′ close to −c
r′ close to r > 0 < 0
r′ far from r < 0 > 0

Hence, configurations in which (r′, c′) excites (r, c) correspond to situations where r′

is adjacent to r, i.e., g(r − r′) > 0, and c′ is close to c; or where r′ is a remote neighbor,
i.e., g(r − r′) < 0, and c′ is close to the opponent color −c (see Fig 4). Otherwise, the
connection is inhibitory. This behavior typically models the synergy principle of
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assimilation and contrast. Interestingly, this seems to suggest a behavior compatible
with that of double-opponent cells. Qualitatively, the activity of (r, c) is likely to
increase or decrease for a center-surround ON/OFF pattern, while reaching less extreme
values for uniform inputs because of compensation. In the Results section, we illustrate
the roles of the connectivity kernel ω and the cortical input H.

Convolution form. Using that

ω(r, c, r′, c′) = g(r − r′)[f1(c− c′)− f2(−c− c′)],

the double integral can be rewritten into a convolution-like form:

ω ? a = g ∗
Ω

[
f1 ∗

Copp
a− Sym · [f2 ∗

Copp
a]

]
,

where convolutions are computed in their respective spaces, and the symmetry in color
space Sym = − IdC induces a representation (Sym · a)(r, c) := a(r,−c) on the space of
cortical activities. Note that Sym · [f2 ∗

Copp
a] = f2 ∗

Copp
(Sym · a) thanks to symmetry of

f2 and Copp.

Color sensation and color matching experiments

The Color Neural Field equation (3) describing (at least, theoretically) how the visual
cortex reacts to a color image, we now link our model to psychophysical data. This
subsection introduces the central notion produced by our model, i.e., that of color
sensation. Basically, it corresponds to some feeling produced in the brain when
observing a still image. We define it to be a steady state of the neural field dynamics of
Eq (3), then restricted to the hypercolumn in correspondance to the test point. This
concept allows us to propose a mathematical description of color matching experiments
(see Introduction), where matching is considered as the projection of the test color
sensation onto a family of color sensations elicited by comparison images. Such a
“matching as a projection” framework allows the model to predict color shifts. It could
be generally applied to other dynamics than Eq (3), as well as other definitions of
sensation relatively to these dynamics.

Color sensation and not perceived color. In our attempt to build the most
general mathematical framework defining color matching experiments, test and
comparison images J test, Jcomp ∈ CR are not supposed to have a simple or identical
geometry. Formally, Jcomp = Jcomp[c] is an image parameterized by some color c, which
the observer can adjust in the experiment, until reaching a perceptual match for the
value c = cmatch between J test and Jcomp at the points of interest xtest and xcomp.
During the search process, the observer explores the family of possible comparison
images {Jcomp[c]}c∈C. Matching is relative to the specific pair of points (xtest, xcomp),
because there is no reason for the final comparison image Jcomp[ccomp] to be everywhere
perceptually equivalent to the test image (see Fig 2).

We believe that it probably does not make sense to define “the” perceived color,
which would be an element of C. As an illustration of this difficulty, one would say that
“the” perceived color in J test of Fig 2 is some green cmatch. But if the comparison
surround had been replaced by a lighter or darker gray, the resulting matching colors
would be different from the previous one, for they depend on the comparison
background. Yet, the perception of a test color should not depend on the comparison
image. Instead, we find more appropriate to talk about a color sensation elicited by an
image J at some point x.
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Definition (Color sensation). Let J be a fixed image inducing the cortical image
I(r) := J(x) with r = χ(x) where χ is the retinotopic mapping. Suppose that there
exists a unique stationary solution to which the dynamics of Eq (3) converges, denoted
aJ(·, ·,∞) := lim

t→∞
aJ(·, ·, t). Then the color sensation generated by J and perceived at

a cortical point r0 is the following element of L∞(Copp):

aJ(r0, ·,∞) : Copp → [0, 1].

Under some conditions, there exists a unique stationary state, which is linearly
stable (see S3 Appendix). It is however possible that there exist several stationary
solutions: in this case, we should use a more sophisticated definition of color sensation,
which is outside the scope of this paper. Color sensation at r0 is thus a function on Copp
which represents how the hypercolumn responds to any color. This concept can be
extended to a group of hypercolumns by considering a collection of color sensations.
Our representation is much richer than defining “the” perceived color, since we have
instead a whole function attached to each hypercolumn, as an echo of the complexity of
color perception with spatial context.

Color matching as a mathematical projection. We propose that matching can
be mathematically described as a projection. This process corresponds to matching two
brain states, whatever the perception being matched, such as color, texture, touch, pitch,
timbre, or any other feeling. Such a formal description implies that color sensations can
be compared in a quite objective manner though matching experiments; and more
generally, perception is likely to be a relative concept that can be assessed through
comparisons as objective as possible, instead of an absolute one.

In the following, the cortical points where matching takes place are denoted by rtest

and rcomp, and the corresponding color sensations elicited by J test and Jcomp[c] are
denoted by atest and acomp[c] respectively.

Proposition (Matching as a projection). A color matching experiment consists in
choosing cmatch ∈ C so that acomp[cmatch] is closest to atest, i.e.,

cmatch := arg min
c

dist(atest, acomp[c]) (9)

where dist is a perceptual similarity criterion.

For example, one can take dist(atest, acomp[c]) = ‖atest − acomp[c]‖L∞(Copp). In S3
Appendix, we show that under appropriate conditions, we can smoothly parameterize
color sensations acomp[c] with respect to c. Hence, color matching is formally the
projection of atest onto a nonlinear manifold whose elements are {acomp[c]}c∈C.

Data

Reference data. We used the data in the figures of [18] and [17]. Usage of the data
was kindly approved by the authors. In order to apply our model to this dataset, we
suppose that color-tuned cells in the hypercolumns are of three types, each tuned to one
particular 1D color axis, and that color matching is made independently on each axis.
Because the data mainly involved s chromaticity, we applied the model only along the s
axis independently of l and Y axes.

Personal data. Throughout the experiments, we used two particular test and
comparison backgrounds filled with Yellow (HSL = (60◦, 50%, 50%) and Gray
HSL = (0◦, 0%, 50%) respectively. A.S. performed color matching experiments as in Fig
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3 (in a spirit similar to [3] who worked with achromatic colors). Experiments used a
standard computer screen, in a dark room. Squares were presented against a black
background. Asymmetric color matching was repeated for several colors tested with the
Yellow surround, at regularly spaced locations in the three-dimensional HSL color space.
We obtained a vector field of color shifts in the HSL space associated to the pairs
(ctest, cmatch), as seen in Fig 5 (note that representing shifts as a vector field is not
new [9]). Our final data was obtained by averaging the shifts along the Luminance
coordinate, and lived in the chromatic disk only (see the Results section), as we are
mainly interested in chromatic shifts. The treatment of luminance seems to be more
complex, and has to be separate from that of chromaticity.

To apply our model to this dataset of 2D shifts, we suppose that color-tuned cells in
the hypercolumns are of two types, one tuned to 2D HSL chromaticity, and the other to
1D Luminance. As before, color matching is supposed to take place independently
within each subspace, and we only considered what happened in the chromatic disk.

Coucou :)

Fig 5. Yellow pushes towards blue. Using fixed Yellow test and Gray comparison
surrounds (symbolized as squares in the figure) similarly to Fig 3, we obtain a vector field of
shifts (ctest, cmatch) in the HSL space (symbolized as spheres and arrows). There is clearly a
“yellow pushes towards blue” phenomenon, where contrast wins.

Results

To validate our model and compare it to experimental data, we regressed the scalar
parameters

q := (µc, νc, αc, βc, µ, ν, α, β, µh, σh, γ)

involved in the Gaussians and the activation function (see Eqs (4), (5), (7) and (8)), to
the psychophysical data described above. The regression consists in minimizing some
energy E(q) that is the sum of the squared errors between the predicted matching color
cpredq and the actual matching color cmatch found in the experiments. Details of this
difficult numerical task are provided in S2 Appendix, where we state three algorithms
for reproducing the Color Neural Field dynamics, simulating a color matching
experiment, and performing the regression. The latter two algorithms can be used for
fitting general neural fields to general matching data. Here is a summary of our results.

– We illustrate the role of the connectivity kernel ω and of the cortical input H
(Figs 6 and 7).
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– We simulate the dynamics of Eq (3) in the case of a purple/lime patterned
cortical image I shown in Fig B in S2 Appendix (Fig 8).

– Our model is able to predict the data from observers ‘MC’ and ‘AZ’ of [18]
respectively, after regression (Fig 9).

– The regressed functions f and g corresponding to observer ‘MC’ are displayed,
and we illustrate the concept of color sensation (Figs 10 and 11).

– We regress the model to the data of [17] and succeed in explaining the nonlinear
behavior of the shifts along the s chromaticity of the test color (Fig 12). This
constitutes an important result in the present work, since it initially motivated the
latter.

– Even when the model is regressed to observer ‘AZ’ [18] in a setting where the s
chromaticity is not changed, it is still able to predict a nonlinear behavior similar
to that observed when s is changed such as in [17] (Fig 13).

– We are also able to explain the vector field of shifts (“yellow pushes towards blue”
phenomenon of Fig 5) in the chromatic disk, for our data (Fig 14).

Before going further, let us point out some important facts.

1. We do not claim that the regressed parameter value is indeed a global minimizer
of the energy E(q) (see S2 Appendix), but only that it is sufficient for the
algorithms to approximately mimic the experimental data in a satisfying way.

2. For each regressed parameter, and for one typical image input (purple/lime
pattern), we empirically checked that the activity a∞, to which our Algorithm 1
with dt = 1 (S2 Appendix) converges, is indeed a stable stationary solution of Eq
(3) to which any solution converges in time. Furthermore, we numerically checked
that this stable steady state is unique, so that we can call its restriction to the
hypercolumn r0 a color sensation.

3. Before undertaking any solid interpretation of the regressed parameter values,
edge effects due to the finite size of the spatial domains in the numerical
implementations still have to be carefully considered, which is outside the scope of
this article.

Note that for all figures except Fig 14, we consider the settings of [18] and [17], in
which the color space is one-dimensional (see Materials and Methods section). In Figs 6
and 7, the connectivity values, the cortical input H and the neural activities a∞ are
illustrated as 3D heatmaps defined on Ω× Copp. The 3D space is the product of the 2D
physical space by the 1D color space, parameterized by x, y and c respectively. In Figs
6, 7, 8, 10, and 11, the dynamics, inputs and connectivity values are parameterized by
the value q = qMC optimized on observer ‘MC’ of [18] (see Fig 9).

Connectivity kernel and cortical input

In Fig 6, we set W (·, ·) := ω(r0, c0, ·, ·), and display it for two values of (r0, c0). The
two configurations of Table 2 (excitatory or inhibitory connections) can be clearly seen
in the figure. In fact, most of the neural masses have negligible influence on (r0, c0).
This occurs when c′ is neither close to c0 nor to −c0, or when r′ is too far from r0 (not
shown on the figure, because the outer variance of the DOG g has a great value
compared to the extent of Ω). The properties of the connectivity values are analogous
to double-opponent cells’ center-surround behavior.
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In Fig 7, we show the cortical input H(r, c) = h(c− I(r))), where the purple/lime
patterned image I is as in Fig B in S2 Appendix and corresponds to the cortical
counterpart of one typical test pattern of [18]. We also show the color sensations a∞
after convergence. The input H is obtained by “lifting” the image I inside Ω× Copp.
Altitudes of maximal values hence alternate between lime (c ' −1), purple (c ' 1), and
white (c ' 0). The shape of H heavily determines that of the final activities a∞, since it
has the role of cortical input. It can be noticed that a∞ reaches values lower than 1/2
in the bottom part of the heatmap.
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Fig 6. Connectivity kernel in 3D physical and color space. Left. W1 defined with
r0 = 0 and c0 = 1. Right. W2 defined with r0 = 0 and c0 = .5. The color bar extends between
−1 and 1, going from dark green (negative values, strong inhibition) to dark orange (positive
values, strong excitation). We provide an interactive 3D animation of the connectivity kernels
ω(r0, c0, ·, ·) for all values of c0 ∈ Copp in S1 File. For varying r0, the kernel is just spatially
translated along r0. However, for varying c0, the positive and negative gaussian kernels in f
follow c0 and −c0, collide when c0 goes through zero, then exchange of position when |c0|
grows again.
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Fig 7. Cortical input and color sensations in 3D physical and color space. Left.
Cortical input H. Right. Color sensations a∞. In both subfigures, the color bar extends
between 0 and 1, and is set so that small variations are easily seen. We provide an interactive
3D animation of the evolving activities a(·, ·, t) along the iterations of the fixed point algorithm
in S2 File. The convergence is quite fast and 15 iterations are sufficient.
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Simulation and regression results

In order to emulate a color matching experiment, the first building block of our
algorithm is to simulate the Color Neural Field dynamics in Eq (3), as shown in Fig 8,
and accordingly to Algo 1 in S2 Appendix (with dt = 1). Once again, the cortical image
is given by Fig B in S2 Appendix.
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Fig 8. Dynamics of the Color Neural Field equation (3). The neural activities are
plotted after a. one, b. two, c. thirty iterations, and convergence is reached after fifteen
iterations. The red curve indicates the activity atest

q (r0, ·) of hypercolumn r0 corresponding to
the test stripe. Other blue curves correspond to spatial points ri located on surrounding
stripes. Notice that only four and not eight different curves are seen, because of the axial
symmetry artificially introduced to facilitate numerical computations, as explained in S2
Appendix. A video of the dynamics is provided in S1 Video.

Color matching can then be emulated by applying Algo 2 in S2 Appendix. The
parameters have to be regressed to the experimental data in order to reproduce the
color shifts. Fig 9 shows that our model is able to explain the shifts measured for the
observers called ‘MC’ and ‘AZ’ in [18], by using the regressed values
qMC = (0.60, 0.69, 0.30, 0.40, 4.42, 1.82, 0.58, 8.35, 0.47, 0.30, 1.80) and
qAZ = (0.60, 0.69, 0.31, 0.40, 4.42, 1.81, 0.60, 8.35, 0.47, 0.30, 1.80), respectively. The
slight difference observed between the parameter values could partly account for subject
differences.

We compare in Fig 10 (left) the color sensations atestq , acompq [cmatch], and

acompq [cpredq ] (refer to S2 Appendix for the notations), taken at the point of interest
r0 = (0, 0), and with q = qMC . They are generated by the purple/lime test image (as
before), the comparison image filled with the experimental value cmatch, or with the
predicted matching value cpredq , respectively. After regression, cpredq becomes close to the

experimental value cmatch, so that the two corresponding curves nearly coincide.
Among all curves {acompq [c]}c, acompq [cmatch] should be the nearest one to atest with

respect to the L∞ norm, and we illustrate this in Fig 11. The qualitative difference
between the test and comparison curves mainly comes from the difference of complexity
of their respective inputs: the test image has a complicated pattern, while the
comparison images are simpler.

We confront our model to the nonlinear shifts observed by [17] in Fig 12. We find
that it is able to reproduce the data after regression, with the fitting parameter value
qnonlin = (0.42, 0.71, 0.63, 1.16, 4.43, 1.72, 0.56, 6.35, 0.47, 0.30, 1.80). This non-trivial
result, alongside the results in Fig 9, provides a strong justification to our framework.
In Fig 13, instead of qnonlin, we used the value qAZ that explained the data on Fig 9
(right) observed by [18]. Let us recall that in the experimental settings of [18] and Fig 9,
stest was fixed while the surround varied, unlike in the settings of [17] and Fig 12, where
conversely for some fixed test patterns stest was changed. The predictions in Fig 13 are
hence not close to the ground truth data, especially at the endpoints where the orange
and blue curves are crossing. Shifts are also smaller in magnitude. However, it is
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remarkable that the model predicts a similar trend with respect to stest. Crossings are
also quite expected at stest of magnitude great enough, for which a reversing of the shift
direction is plausible. For too great magnitudes, the shifts are likely to become
negligible. We obtain similar results by using qMC .

Finally, as a further important validation, we show in Fig 14 that our framework is
also efficient in explaining the vector field of shifts in the chromatic disk (Fig 5). The
convergence towards the opposite blue is made obvious, with the regressed parameter
value qHSL = (0.73, 0.15, 0.52, 0.68, 4.41, 1.84, 0.51, 8.35, 0.47, 0.30, 1.80). As a remark,
the sampling resolution of the 2D color space is quite low for computational reasons, so
that the meaningfulness of parameter values has to be carefully considered. We also
obtain a smoother result than in the experimental data, as a SoftMin method is used to
search for optimally matching colors (see associated code).
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Fig 9. Our tuned model predicts color shifts from [18]. Left. Observer ‘MC’. Right.
Observer ‘AZ’. Red dots indicate experimental data, while blue crosses stand for predicted
matching comparison colors. The data has been averaged over three sets of experiments, as
detailed in the original article. The ordinate corresponds to the color shift, expressed in Copp

coordinates with c = s− 1. The abscissa i = 0, ..., 7 refers to the test pattern: p/p, l/l, p/w,
l/w, w/p, w/l, p/l, l/p, where p stands for purple, l for lime, w for white.
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Fig 11. Color matching is a projection. Blue and green curves are as in Fig 10 and
correspond to atest

q and acomp
q [cmatch]. After regression, the green one should be the nearest to

the blue one with respect to the L∞ norm, among all the curves {acomp
q [c]}c generated by the

family of comparison images {Jcomp[c]}c∈Copp (shown in gray).
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Fig 12. Our tuned model is able to reproduce nonlinear data from [17] Fig 3. The
blue and orange curves correspond to our predicted shifts along the tested chromaticity given
by the absicssa. The data above and below the zero line correspond to a fixed purple/lime or
lime/purple pattern, respectively. Red crosses indicate the means of shifts across four subjects
for seven tested values, and stand as groundtruth (refer to [17] for details).
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Fig 13. Our model reproduces nonlinearity even when tuned to other data. We
use the parameter value qAZ corresponding to Fig 9 (right) while emulating the experiments of
Fig 12.
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Fig 14. The Color Neural Field model reproduces nonlinear shifts in the
chromatic disk. Left. 36 pairs of experimental data points (test and matching colors) in the
HSL chromatic disk at constant luminance, resulting from averaging the shifts (refer to Data
section and Fig 5). Right. Predicted results.

Discussion

This work constitutes a first attempt at building a neural field framework for color
perception which explains psychophysical data in a consistent manner. Our model
addresses the important problem of color-space interactions (see Introduction), while
unifying chromatic contrast and assimilation. It relies on the hypothesis that color-tuned
cells in layers 2/3 of V1 are physiologically structured in hypercolumns, sharing spatially
similar receptive field positions and tuned to a continuum of colors. We have tested this
model on psychophysical data from two kinds of experimental settings (that of Monnier
and Shevell [17, 18] and ours), by supposing that cells separately encode three 1D color
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axes or a 2D chromatic plane alongside a 1D achromatic axis, respectively, and that
color matching takes place independently within each subspace (see Data section).
These two assumptions, although very different, have both led to promising results.

Our model provides a Color Neural Field as well as a color matching framework,
which is in fact suitable to general dynamics and independent of the particular
equations we have used in this work (3) (see S2 Appendix). The notion of color
sensation connects these cortical and perceptual levels, and is a nonlinear object
extracted as a percept from an assembly of neurons. It is compatible with the
nonlinearity of the responses of V1 neurons with respect to cone signals, which has been
shown to constitute a distinctive feature compared to neurons in the LGN and the
retina [2, 23]. Furthermore, color sensation takes into account a whole distribution of
activities, in contrast to single-neuron concepts. This idea had already been suggested
in the context of population coding [65–67], but with different perspectives (where
preferred stimuli are integrated over several neurons to deduce the preferred stimulus of
the whole population, while here dynamic activities elicited by one stimulus are
spatially integrated to produce sensation, which still contains information about each
neuron). Finally, note that considering matching as a projection is an idea quite close to
that of inversion in the corresponding-pair procedure proposed in [68], which predicts
colors that produce the same sensation in dichromat and trichromat viewers. This
concept of inversion corresponds to the particular case when the brain state or percept
(such as color sensation in our sense) is in fact at zero distance from the set on which it
is projected (which in our case does not happen in practice).

Distinction from color constancy problems

The present work has to be distinguished from those dealing with color constancy
problems. Color constancy is the ability of humans to guess the reflectance of objects
despite very different illumination conditions [69]. Reflectance is a property
characterizing matter, defined as the proportion of luminous energy reflected by its
surface. In Eq (1), it is linked to the spectral power distribution P of the incident
illuminant (daylight, lamp) through the relation

Cx(λ) := Px(λ)Rx(λ),

where reflectance and illuminant power are taken at the point of the scene which sends
light to x in the retina. The phenomenon of color constancy, first studied by E. Land
who proposed the Retinex algorithm [70,71], has since been the subject of much
research. Given cone inputs (L,M,S), how does the brain retrieve the spectral
reflectance R of an object? By contrast, we are not interested in how color is linked to
reflectance, but rather in how identical stimulation of the cones can lead to different
sensations because of spatial context.

Three meanings of “color”

In view of the previous discussion, to the naive question “What is the color of this
object?”, we see that at least three types of answers are theoretically possible. First,
identify the colored material likely to produce such a visual effect, i.e., guess its
reflectance R; second, report the color [C] produced by cone stimulation; and third,
describe the color sensation, as introduced in this work. In practice, none of these tasks
is trivial, even regarding color naming, since thought and language related to color
involve complex cognition [72].
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Summarizing the previous ideas, the three punctual relationships

Rx1
1 = Rx2

2

[Cx11 ] = [Cx22 ]

Sx1
1 = Sx2

2

are independent, because there are situations where any of them can hold or not. The
reader can be convinced by simple examples. For instance, the same object seen in
daylight or under shadow has different colors because [Cdaylight] 6= [Cshadow], but we can
easily recognize it and guess that R = Rdaylight = Rshadow. On the reverse, two objects
having the same color can be guessed as being made of different materials, if their
surroundings are not the same, that is, [C1] = [C2] but R1 6= R2. Another example is
given by color induction, as largely discussed here. Because of the surrounding context,
two colors [C1] = [C2] deriving from identical L,M,S cones stimulation can be perceived
as different color sensations S1 6= S2. The reverse situation can occur, where different
colors are perceived as similar with different contexts.

However, if the whole retinal space is taken into account, then the sets

{Rx}x∈R (10)

{[Cx]}x∈R (11)

{Sx}x∈R (12)

are linked to one another. While papers on color constancy are devoted to the link
between Eqs (10) and (11) [69,73], ours focuses on the relationship between Eqs (11)
and (12). Our framework supposes that {Sx}x∈R depends on the sole knowledge of
{[Cx]}x∈R.

Our model is not an image processing model

Our model should not be considered as an image processing algorithm. First, our work
involves a psychophysically and physiologically relevant neural structure, while image
processing models often lie at the conceptual level of an image. In the literature, many
algorithms are designed to make the image perceptually better (contrast enhancement,
histogram equalization, etc.) and allow for image compression, in accordance with
various perceptual criteria, an early work being [74] for example. Some of them are
computational models simulating perception, and inspired by neural mechanisms
underlying vision, as in [75], and more recently [76]. Taking an image as input, their
algorithms produce another image as output, which represents “the” perceived color
image, in order to reproduce color induction effects. In fact, the simple convolutional
receptive-field model of [18] is already a basic version in this family of algorithms. In
the more sophisticated approach of [75], the image evolves according to a Wilson-Cowan
dynamic, which is akin to descending the gradient of some energy, leading to histogram
equalization. M. Bertalmı́o also proposes a method to reproduce the lightness matching
data of [77], in particular some assimilation or contrast effects (in the usual global sense,
not at the local scale). His attempt to match psychophysical data based on neural-like
dynamics can be considered similar to ours. However, shifts are estimated through a
direct algebraic computation of the values found at different locations of the disks after
convergence. This prevents any straightforward generalization of the method to
spatially more complicated patterns, an impediment which we already mentioned in the
Introduction for the model of [18].

More importantly, a major conceptual problem in this image-based approach is that,
it seems inappropriate to simulate perception by producing an output image of the same
nature as the original one, that represents “the” perceived color image. Indeed, the
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original and final images do look different : the final image hardly represents our
perception of the original one, since it is also processed by the brain. This ambiguity
should be clearly discussed when dealing with the output image. For instance, [74]
proposes to map color images into an opponent perceptual space, where they are
processed and compared through a perceptual metric, that has a role clearly different
from the usual RGB color space of images.

The need for a universal model

It is the fate of any model to meet its own limitations. Below, we depict
non-exhaustively some questionable features or drawbacks encountered by ours.

Physiological interpretation of the model. In the Results section, we suggested
that the shape of the connectivity kernel might be related to the behavior of a
double-opponent cell, and that the cortical input to (r, c) might be relayed by
single-opponent cells in the LGN, or in layers (4Cβ) and (2/3, 4A) of V1. The
double-opponent cells of our framework would then be connected over single-opponent
cells (similarly to the color-orientation model of [42]). These analogies should not be
regarded as firm assertions, but rather as possible links between our model and current
knowledge about the physiology of V1 neurons. At least, double-opponent cells are
suspected to play a role in simultaneous contrast, and single-opponent ones in
assimilation (see Introduction). If pursuing further our analogy, both populations would
be in fact involved in these effects, and a combined action of the two is indeed
expected [2, 23,78]. However, our model has two important drawbacks regarding its
biological interpretation. First, the values found for the inner ON-center diameter of the
DOG g, after the different regressions to data of [17,18] (see Results), approximately
correspond to 2◦ of visual field and cover about 7 stripes (the test one, and three on
each side). This value is likely to be two to six times too large, because one would
rather expect a frequency selectivity in the range of 1− 3 cyc/deg [79]. It is probable
that we did not find more plausible values for the parameters in g because of the small
spatial domain we used in numerical computations. Yet, the numerical regression is
quite complex (minimizing with respect to shifts, which themselves involve the
minimization of matching) and has to satisfy numerous criteria (closeness to data,
nonlinearity, non-saturation of the activity, fast convergence in time of the dynamics,
and reasonable duration of the regression). Looking for more biologically plausible
values, using a larger spatial domain and finer discretization steps, was hence out of
reach in reasonable time for the current work. Furthermore, another defect of the model
is that it only considers concentric center-surround receptive fields for double-opponent
cells, as in early works [35,36], although anisotropic receptive fields have been found
later [2, 23,78], which account for their sensitivity to orientation.

Color-orientation and color-edge interactions. We have not explored the link
between orientation and color, contrarily to the complementary work of [42] (see
Introduction). Instead, we have addressed color-space interactions, and compared the
model to (spatially non-trivial) data. It is worth noting that, cells are supposed here to
be tuned to colors in one to three dimensions, whereas in their model, cells were tuned
to different hues (organized along the circle), with luminance and saturation being
treated as input and amplitude of the activity, respectively. Also, they introduce a
two-color external signal, which allows two different hues to have effect on the same
hypercolumn, as they suppose is the case when the brain expects to see one color but
receives another stimulus instead. This requires however to modify the input involved in
the dynamics. Unlike them, we consistently consider one color input per location, and
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define color sensation in a flexible manner which can in particular account for a
“two-color” impression.

Orientation and edges should both be integrated into the construction of a more
universal color-space model. Edges are thought to have an important role due to “visual
edge contrast” [80] in the perception of a colored surface, and to be selectively processed
in V1 [79]. In particular, they may contribute to watercolor effects [81], in which a local
feature (two thin borders of dissimilar colors) spreads into a global impression (one of
the delimited area seems to be faintly colored by the inner border). A simple
integration over the spatial domain, as made here, cannot sufficiently account for the
effect of a colored edge over the entire perception.

Further remarks. We used an ideal mathematical setting to ease the analysis, but it
is quite improbable that an opponent representation of C enjoys perfect symmetry.
Moreover the geometry and structure of C is still not entirely understood. It seems
reasonable however to talk about a nearly symmetric space, and work in the biggest
symmetrically opposable space we can define inside C.

Furthermore, we did not compare our model to data varying along the luminance
axis, because it certainly deserves a special treatment, separately from the chromatic
plane. An easy adaptation of our model would be to consider anisotropic gaussian
kernels in f and g, or use a non-separable connectivity kernel ω, which could be a finite
sum of separable kernels ωi = fi ⊗ gi. This should already allow different treatments of
the luminance and chromatic dimensions.

Finally, we insisted on using color sensations (functions on C), and not perceived
colors (an element in C), to describe the perception of a color. This would indeed lead
to confusions (input vs. perceived images), and incompatibility with the matching
experiments (see discussions above and the Materials and Methods section). However,
in our framework it is still possible to define “the” perceived color as the one cmax ∈ C
which maximizes the neural activity in hypercolumn r0, similarly to the
“winner-takes-all” law of orientation perception. The problem of this approach is that
our model would then predict positive afterimages, given that the input image is
positively added in the dynamics.

Towards color hallucinations

Just as for neural field models modeling orientation vision, we can study bifurcations of
the solutions of Eq (3) around stationary states [49,53,56,82]. Under some hypotheses
of symmetry and periodicity, we can predict, using equivariant bifurcation theory, the
emergence of visual patterns or “planforms”. In the same fashion as [49] who explained
orientation-based geometric hallucinations, a color neural field model can predict
patterned color hallucinations. Future psychophysical experiments, may confirm this
and support the relevance of this kind of model for color vision.

Conclusion

Our work addresses the question of color-space interactions, by providing a color neural
field model alongside a general framework to account for matching experiments. We
propose to consider color matching as a mathematical projection, in agreement with the
principles of psychophysics, where subjective notions are assessed by means of objective
procedures. Our neural field unifies assimilation and contrast at the cortical level, and
relies on the idea of color opponency. The notion of color sensation that we introduce
bridges the gap between these cortical and perceptual levels, and is a nonlinear percept
involving a whole distribution of neurons.
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This framework allows the study of psychophysical phenomena such as color
induction, by taking advantage of a classical computational neuroscience tool. To our
knowledge, this is the first color neural field model consistent with psychophysical data
and compatible with physiological findings. The assumption that V1 is organized into a
structure similar to color hypercolumns has still to be experimentally proved though.
We believe that the proposed framework could possibly be adapted to other perceptual
situations, such as hearing or touch.
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