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Abstract.
In this paper we consider instabilities of localised solutions in planar neural field

firing rate models of Wilson-Cowan or Amari type. Importantly we show that angular
perturbations can destabilise spatially localised solutions. For a scalar model with
Heaviside firing rate function we calculate symmetric one-bump and ring solutions
explicitly and use an Evans function approach to predict the point of instability and the
shapes of the dominant growing modes. Our predictions are shown to be in excellent
agreement with direct numerical simulations. Moreover, beyond the instability our
simulations demonstrate the emergence of multi-bump and labyrinthine patterns.

With the addition of spike-frequency adaptation, numerical simulations of the
resulting vector model show that it is possible for structures without rotational
symmetry, and in particular multi-bumps, to undergo an instability to a rotating wave.
We use a general argument, valid for smooth firing rate functions, to establish the
conditions necessary to generate such a rotational instability. Numerical continuation
of the rotating wave is used to quantify the emergent angular velocity as a bifurcation
parameter is varied. Wave stability is found via the numerical evaluation of an
associated eigenvalue problem.
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1. Introduction

The mammalian cortex is often regarded as a two dimensional sheet of densely

interconnected neurons, with interactions between neurons mediated by chemical

synapses. Much of the activity in developing and studying continuum models of such

synaptically interacting networks can be traced back to the seminal work of Wilson and

Cowan [35, 36] and Amari [1, 2]. The non-local nature of neuronal interactions (arising

from long-range axonal connections) means that the natural framework for developing

such models has relied upon integral or integro-differential equations. Moreover,

by neglecting any spatial heterogeneity, such non-local interactions have often been

described using the notion of a spatial convolution of the macroscopic state variable with

a kernel chosen to mimic known anatomy. This macroscopic state variable is typically

interpreted as a mean firing rate, which is itself some sigmoidal function of synaptic

activity. For a recent review of the dynamics of neural field models, particularly in

one dimension see [6]. Of particular interest have been single population models with

local excitation and distal inhibition, mimicking the behaviour of interacting excitatory

and inhibitory neural sub-populations. This so-called Mexican hat connectivity is now

known to underly the generation of both spatially periodic [10, 30, 4] and spatially

localised structures [18, 21]. Interestingly spatially localized bumps of persistent activity

have been linked to working memory (the temporary storage of information within the

brain) [5, 14, 32]. In many models of working memory, transient stimuli are encoded

by feature-selective persistent neural activity. Such stimuli are imagined to induce the

formation of a spatially localized bump of persistent activity (which coexists with a

stable uniform state).

In comparison to the studies of one dimensional networks, far less is known

about behaviour of spatially localised solutions in two dimensions. Relatively recently,

however, Laing and Troy [20] have developed PDE methods to study neural field

equations in two spatial dimensions. This has shed a great deal of light on the conditions

for the existence and stability of rotationally symmetric solutions, and in particular

bump and ring structures. The challenge is open to develop alternative techniques that

can address identical issues for models in the more general integral equation framework.

In this paper we take a step in this direction. For a specific choice of Heaviside firing

rate function, with threshold h, we construct explicit examples of previously classified

ring and bump solutions [31, 34]. Moreover, we show how to treat stability to angular

perturbations using a powerful Evans function approach [8]. Importantly this flags up

how an extra spatial dimension can lead to fundamentally new solution instabilities. In

particular we show that bump solutions may split into multiple spots under variation

of the threshold parameter h. Moreover, single and multiple rings are typically found

to be unstable. By direct numerical simulations of the full nonlinear integral model we

show that our Evans function approach correctly predicts the number of resulting spots

found beyond an instability. In the presence of linear adaptation such non-rotationally

symmetric states have previously been observed to undergo bifurcations to rotating
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waves‡. We show that the underlying mechanism for this bifurcation can be traced to a

second real eigenvalue of the linearisation crossing through zero (the first one persisting

because of an underlying rotational symmetry of the full model). In fact we use this

degeneracy of eigenvalues to define the bifurcation condition for a rotational instability.

Assuming the existence of a non-rotationally symmetric solution we show that, for an

arbitrary firing rate function, all such solutions undergo a rotational instability at the

same point in parameter space (irrespective of their detailed shape). Once again the

predictions of our analysis are shown to be in excellent agreement with the results of

direct numerical simulations. Moreover, numerical continuation of the rotating wave

is used to quantify the emergent angular velocity as a bifurcation parameter is varied.

Wave stability is found via the numerical evaluation of an associated eigenvalue problem.

In section 2 we introduce the two-dimensional scalar neural field model that we will

study throughout this paper. We focus on the construction of rotationally symmetric

(bump and ring) solutions in section 3, and show how explicit solutions can be easily

constructed when the firing rate function is chosen to be a Heaviside. Furthermore, this

restriction allows us to make precise statements about solution stability using an Evans

function approach. This same machinery for predicting the onset of an instability is also

used to predict the type of state that will emerge beyond bifurcation (by considering

the shape of the most unstable eigenmode). In section 4 we quantify the change in

state as the system evolves from one unstable localised solution to another stable one

by computing an appropriate Lyapunov functional. Next, in section 5 we consider a

commonly adopted description of neural adaptation, resulting in a vector model, and

show that this may cause a non-rotationally symmetric solution to go unstable in favour

of a stable rotating wave. Finally, in section 6 we discuss natural extensions of the work

presented in this paper.

2. Two dimensional neural field model

We consider a neural field model with synaptic activity u = u(r, t), r = (r, θ) (r ∈ R+,

θ ∈ [0, 2π), t ∈ R+), governed by the integral equation

u = η ∗ w ⊗ f(u). (1)

Here, the symbol ∗ represents a temporal convolution in the sense that

(η ∗ f)(r, t) =
∫ t

0
ds η(s)f(r, t− s), (2)

and ⊗ represents a two-dimensional spatial convolution such that

(w ⊗ f)(r, t) =
∫

R2
dr′w(r− r′)f(r′, t). (3)

The function η(t) (with η(t) = 0 for t < 0) represents a synaptic filter, whilst w(r)

is a synaptic footprint describing the anatomy of network connections. The function

‡ This was first observed numerically in unpublished work of Laing and Troy, and an original example
may be found at http://www.math.pitt.edu/∼troy/
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f represents the firing rate of a single neuron. The focus of our study will be on the

existence and stability of time-independent solutions, which satisfy

q(r) =
∫

R2
dr′w(r− r′)f(q(r′)). (4)

Assuming that one can solve this nonlinear convolution equation for a spatially localised

solution, one is led naturally to the question of stability. To ascertain this we linearise

about the time-independent solution by writing u(r, t) = q(r) + u(r)eλt and expand to

first order in u(r) to obtain

u(r) = LT[η](λ)
∫

R2
dr′w(r− r′)f ′(q(r′))u(r′), (5)

where LT[η](λ) is the Laplace transform of η(t):

LT[η](λ) =
∫ ∞
0

ds η(s)e−λs. (6)

The solution of this eigenvalue problem can be used to determine the discrete spectrum

and hence whether the solution is stable (i.e. all eigenvalues reside in the left hand

complex plane). In what follows we make explicit progress in solving the integral

equations (4) and (5) by working with w(r) = w(r), where r = |r|. To begin with we

focus on rotationally symmetric solutions, and show how these may be obtained in closed

form for the special case that the firing rate function is a Heaviside function, i.e. with

f(u) = H(u− h). Here the parameter h is identified as a firing threshold and H(x) = 1

for x ≥ 0 and is zero otherwise. Moreover, we shall show that these solutions can

undergo bifurcations to non-rotationally symmetric states (typically multi-bumps) with

variation of the threshold parameter h. We note that it may also be possible to explicitly

construct non-rotationally symmetric solutions with an osculating boundary between

firing and non-firing regions if we consider piecewise constant rotationally symmetric

synaptic (top-hat) kernels [16]. However, we shall not pursue this further here, though

later in section 5 we will consider the numerical construction (and continuation) of

non-rotationally symmetric multi-bump solutions.

3. Rotationally symmetric solutions

Rotationally symmetric solutions have the property that q(r) = q(r), and are a

consequence of choosing a rotationally symmetric kernel. The stability of such solutions

can be found by constructing the associated Evans function. Evans functions were

first developed to study the stability of travelling waves in PDEs [11]. In essence the

Evans function is an analytic tool whose zeros correspond to eigenvalues of the linearised

problem obtained after considering perturbations around a localised solution. Moreover,

the order of the zero and the multiplicity of the eigenvalue match. For examples of the

use of Evans functions in systems with nonlocal interactions see [8, 28, 29].
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3.1. Bump solutions

The first rotationally symmetric solution that we consider is a so-called one-bump

solution described by the simple condition q(r) > h for r < a and q(r) < h for r > a.

Hence, from (4)

q(r) =
∫ 2π

0

∫ a

0
w(|r− r′|)r′dr′dθ. (7)

This is readily evaluated using a 2D Fourier transform (equivalent to a Hankel transform)

of w(r), which we write in the form

w(r) =
∫ ∞
0

w̃(k)J0(rk)kdk. (8)

Here Jν(x) is the Bessel function of the first kind, of order ν and

w̃(k) =
∫

R2
eik·rw(r)dr. (9)

Following [3, 12] it may then be shown that substitution of (8) into (7) gives

q(r) = 2πa
∫ ∞
0

w̃(k)J0(rk)J1(ak)dk. (10)

Using the fact that f ′(u) = δ(r − a)/|q′(a)| means that (5) reduces to

u(r, θ) =
aLT[η](λ)

|q′(a)|

∫ 2π

0
w(|r− a′|)u(a, θ′)dθ′, (11)

where a′ = (a, θ′). We look for solutions of the form u(r, θ) = um(r)eimθ, where m ∈ Z.

In this case the radial component of the eigenfunction satisfies

um(r)

um(a)
=
aLT[η](λ)

|q′(a)|

∫ 2π

0
cos(mθ)w(

√
r2 + a2 − 2ra cos θ)dθ, (12)

where we have exploited the fact that
∫ 2π
0 w(|r − a′|) sin(mθ)dθ = 0. Hence, radial

perturbations away from the border of the bump are completely determined by the

perturbation at the bump edge (where r = a). Setting r = a in (12) generates an

implicit expression for the discrete spectrum λ = λm, where λm is the solution to

Em(λ) ≡ LT[η](λ)−1 − µm = 0, (13)

with µm ∈ R given by

µm =
2a

|q′(a)|

∫ π

0
w(2a sin θ) cos(2mθ)dθ. (14)

We interpret Em(λ) as a family of Evans functions for the two dimensional one-bump.

The zeros of the Evans function determine the location of the point spectrum and can

be used to determine solution stability (the essential spectrum being confined to the

left-hand complex plane). It can be shown that i) the Evans function is only real-valued

if the eigenvalue parameter λ is real, ii) the complex number λ is an eigenvalue of (5)

if and only if E(λ) = 0, and iii) the algebraic multiplicity of an eigenvalue is exactly

equal to the order of the zero of the Evans function [8]. Also, from rotation invariance,

E1(0) = 0. The condition for stability is thus that Re (λm) < 0 for all m. Although
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it is hard to find closed form expressions for λm it is a simple matter to obtain them

numerically.

An evaluation of the bump solution (7) in closed form is typically only possible

for special choices of w(r). In fact it is easier to choose forms of w̃(k) (the 2D Fourier

transform of w(r)) that allow the use of known integral formulas involving products

of Bessel functions. From the analysis of one dimensional stationary solutions [2] we

would expect to obtain bump solutions for a rotationally symmetric kernel of the form

w(r) = e−r − e−r/2/4. Since this two dimensional Mexican hat function does not have a

simple Hankel transform we make use of the approximation

1

2π
e−r ≈ 2

3π
(K0(r)−K0(2r)) ≡ E(r), (15)

where Kν(x) is the modified Bessel function of the second kind of order ν. For

computational simplicity we now work with the explicit choice w(r) = E(r)−E(βr)/γ.

Here β < 1 and γ > 1 gives the typical Mexican hat profile. In this case
∫
R2 w(|r|)dr =

(γβ2−1)/(2πγβ2). Hence, the kernel is balanced when γ = 1/β2 so that
∫
R2 w(|r|)dr = 0.

Using the fact that the Hankel transform of K0(pr) is Hp(k) = (k2 +p2)−1 we may write

w̃(k) =
2

3π

{
H1(k)−H2(k) +

H2β(k)

γ
− Hβ(k)

γ

}
. (16)

Substitution into (10) leads to integrals of the form∫ ∞
0

J0(rk)J1(ak)

k2 + p2
dk ≡ Lp(a, r). (17)

Integrals of this type are given by [12, 33]

Lp(a, r) =


1
p
I1(pa)K0(pr) r ≥ a

1
ap2
− 1

p
I0(pr)K1(pa) r < a

, (18)

where Iν(x) is the modified Bessel function of the first kind, of order ν. Using the above

allows us to compute (10) as q(r) = q(r; a), with

q(r; a) =
4a

3

(
L1(a, r)− L2(a, r) +

L2β(a, r)

γ
− Lβ(a, r)

γ

)
. (19)

The bump radius is determined by the condition q(a) = h. In Figure 1 we plot the

bump radius as a function of firing threshold for β = 0.5 and three choices of γ so that∫
R2 w(|r|)dr is negative (γβ2 − 1 < 0), zero (γβ2 − 1 = 0), and positive (γβ2 − 1 > 0).

In each case there are two branches of solution. Moreover, on the upper branch we can

distinguish two qualitatively different shapes of solution; one with q′′(0) < 0 for h > hD
and the other with q′′(0) > 0 for h < hD. We shall refer to the latter as a dimpled

solution. Typical shapes for dimpled and non-dimpled solutions are shown in the insets

of Figure 1. Also, on the upper branch of Figure 1 we have plotted the point at which

q′′(0) = 0, defining the transition from dimpled to non-dimpled solutions at h = hD.

We now consider the possibility of instabilities on these branches of bump solutions,

with an exponential synaptic time course η(t) = αe−αtH(t). In this case LT[η](λ)−1 =

1 + λ/α. Without loss of generality, in this section we now set α = 1. The condition
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for stability is simply that λm < 0 for all m, where λm = −1 + µm. In Figure 2 we

plot λ0, λ2 and λ3 along the γ = 4 solution branch of Figure 1 (λ1 is identically zero

by rotation invariance). This shows that the lower branch a = a− is unstable even

to rotationally symmetric perturbations (m = 0), and that the upper branch a+ is

stable to such perturbations (since λ0 < 0 on a+). In addition, on a+ there is a loss of

stability as h decreases, firstly at h = hD = 0.094 to perturbations with m = 2, and

then to perturbations with m = 3. In the γ = 4 case, λ2 crosses through zero precisely

at the point h = hD on a+, signalling the fact that dimple solutions are unstable.

However, changes in stability do not coincide with the transition to dimple bumps when∫
R2 w(|r|)dr 6= 0 (e.g. for γ = 3 and γ = 5, as illustrated in Figure 1).

0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

h

a

γ = 3

γ = 4
γ = 5

a
+

a
−

Figure 1. Bump radius a as a function of threshold h, for weight kernels w(r) =
E(r) − E(βr)/γ with β = 0.5 and γ = 3, 4, 5 (for which

∫
R2 w(|r|)dr is positive, zero,

and negative respectively). In each case narrow and wide bumps may coexist, but
the narrow (lower) branch is always unstable (dotted lines). As h decreases along the
wide (upper) branches the stable bump (solid lines) loses stability with dominant mode
m = 2 (solid circles), then m = 3 (triangles), then m = 4 (squares), etc. Note that for
h < hD the bump solution on the branch a+ has a dimple. The point where h = hD

on the upper branch is indicated by the open circle, and coincides with the change of
stability when γ = 4.

From the shape of the eigenfunction u2(r) cos 2θ, plotted in Figure 3, we would

expect the bump to go unstable in favor of a double bump solution as h is decreased

through hD. Indeed direct numerical simulations confirm this prediction, and Figure 3

shows the emergent state at h just less than hD, when a one-bump solution is perturbed

with a linear combination of the modes u2(r) cos 2θ and u3(r) cos 3θ (showing that m = 2

modes are amplified and m = 3 modes are suppressed at bifurcation). Calculations of

the Evans function for γ = 3 also indicate such instabilities, but as indicated in Figure 1,

mode 2 instabilities develop even for non-dimpled bumps. In this case direct numerical

simulations show an initial single bump splitting in two, and then splitting twice more

to yield eight bumps (see Figure 4).



Bumps and rings in a two-dimensional neural field 8

0 0.05 0.1 0.15 0.2
−0.8

−0.4

0

0.4

0.8

a
−

a
+

a
+

a
−

h
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3

Figure 2. A plot of λ0 (solid line), λ2 (dashed line) and λ3 (dot-dashed line) along
the existence curve for bumps with γ = 4 (see Figure 1). We note that λ1 = 0 for all
points on the curve a = a(h). Hence, although solutions on a+ are stable to rotationally
symmetric perturbations (λ0 < 0), at h = hD solutions lose stability to perturbations
of the form u2(r) cos(2θ), and for smaller h mode 3 perturbations become dominant
(solid triangle, corresponding to the similarly marked point on the γ = 4 branch of
Figure 1).

Simulation for the balanced kernel (with β = 0.5 and γ = 4) when the dominant

mode is predicted to be m = 3, leads, as expected, to theemergence of a pattern with

three-fold rotational symmetry (Figure 5). In addition, the solution continues to develop

a complex labyrinthine pattern throughout the domain.

3.2. Ring solutions

In a similar fashion as for one-bump solutions we may construct ring solutions which

satisfy q(r) ≥ h only for r ∈ D ⊆ (0,∞). Assuming q(∞) < h we can write a one-ring

solution in the form

q(r) = q(r; r2)− q(r; r1), (20)

with r2 > r1 > 0. The description of the ring is completed with the simultaneous

solution of the equations q(r1) = h = q(r2).

To calculate the Evans function for ring solutions we proceed in exactly the same

fashion as in section 3.1. It is straight forward to show that the radial component of

the eigenfunction satisfies

um(r)

LT[η](λ)
=

2∑
j=1

Aj(r,m, λ)uj, (21)

where

Ai(r,m, λ) =
ri

|q′(ri)|

∫ 2π

0
cos(mφ)w(

√
r2 + r2

i − 2rri cosφ)dφ. (22)
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Figure 3. Top: A plot of the one-bump solution and its evolution following a
perturbation with a linear combination of m = 2 and m = 3 modes, with h = 0.09 <
hD = 0.094. Bottom: The shape of the eigenfunction u2(r) cos(2θ) on the branch a+

when h = hD = 0.094, and the corresponding deviation of the solution (for h = 0.09)
from the unstable stationary bump (u(r, t) − q(r)), which should reflect the shape of
the eigenfunction. For h < hD a one-bump solution is predicted to be unstable with
mode m = 2, and the simulations agree with this prediction. The other parameters
are a = 3.867, β = 0.5, γ = 4.

Hence, radial perturbations are completely determined by the perturbation at the points

(r1, r2). Demanding that the perturbations at rj be non-trivial generates a family of

Evans functions

Em(λ) =
∣∣∣LT[η](λ)−1I2 −Am(λ)

∣∣∣ , (23)

where I2 is the 2 × 2 identity matrix and Am(λ) is a 2 × 2 matrix with components

[Am(λ)]ij = Aj(ri,m, λ), i, j = 1, 2.

As for the one-bump we find that there are regions of parameter space where two

ring solutions can co-exist. Figure 6 shows the existence of ring solutions as h varies for

β = 0.5 and four values of γ in the weight kernel w(r) = E(r)−E(βr)/γ. Examples of co-

existing ring solutions are plotted (in profile) in the figure. A direct examination of the

eigenspectrum (by tracing the zeros of the Evans function) shows that the lower branch

of rings is always unstable to mode 0 perturbations. The upper branch is always stable

to such rotationally symmetric perturbations, but for γ < 4 a sequence of instabilities

has the fastest growing mode number increasing as h decreases. In Figure 7 we show

an example where we plot the zero contours of Re Em(λ) and Im Em(λ), in the (ν, ω)

plane, where we decompose λ = ν+ iω. The points at which the two curves cross define
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Figure 4. Repeated splitting of a bump solution. For these parameters (h = 0.0149,
a = 3.1, β = 0.5, γ = 3) analysis of the Evans function predicts an instability with
fastest growing mode m = 2.
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Figure 5. A mode three instability of a bump solution leads to a labyrinthine
pattern throughout the domain. The parameters were h = 0.05, β = 0.5, and γ = 4
(corresponding to a bump radius of a = 6.4). Analysis of the Evans function predicts
an instability with fastest growing mode m = 3.
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Figure 6. Existence and stability of ring solutions as h varies. Each curve shows
the inner ring radius r1 for the indicated value of γ, where the weight kernel is
w(r) = E(r)− E(βr)/γ with β = 0.5. In each case small and large rings may coexist,
but calculations of the Evans function show that the small (lower) branch is always
unstable (dotted lines). As h decreases along the larger (upper) branches the stable ring
(solid lines) loses stability with dominant mode=2 (solid circles), then 3 (triangles),
then 4 (squares), etc. Note that the ring solution develops a “dimple” (i.e. q′′(0) < 0)
at the points indicated by an open circle, but this does not necessarily coincide with
the change of stability.

a zero of Em(λ) and hence an eigenvalue. This plot shows that (for the given threshold)

there is an instability with a fastest growing mode of m = 5.

In Figure 8 we show a two dimensional plot of an unstable ring solution, and the

emergent structure of five bumps seen beyond instability. To explore the dependence of

mode selection on the choice of threshold we plot in Figure 9 the values of the dominant

eigenvalues of modes m = 0, . . . , 8, with different choices of threshold value. It can be

seen that as h decreases the dominant mode increases from 4 to 7. Figure 10 shows the

mode 7 pattern that emerges from the ring with h = 0.0534, as predicted by our stability

analysis. We note that results similar to those presented in Figures 8-10 were previously

presented in [20], though in this work stability was found by numerical integration of

the linearised equation, and did not utilise an Evans function approach.

It is also interesting to note that instabilities of axisymmetric ring solutions and

their destabilisation into spots has also been observed in the two dimensional Gray-Scott

model. Here a method to determine the number of resulting spots (multi-bumps) has

also been developed, though this requires the solution of a nonlocal eigenvalue problem

[24].

4. Lyapunov function

As observed in previous work of Laing and Troy [20], instabilities of localised structures

can ultimately lead to the generation of multi-bump solutions where a finite number of
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contours cross. The value of λ above each subplot shows the value of the dominant
eigenvalue for the mth mode. Clearly mode m = 5 is dominant.
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Figure 8. A plot of the emergent structure seen in direct numerical solutions after
perturbing a ring solution with a linear combination of modes 0, 1, 2, . . . 8. The
parameters correspond to Figure 7, and mode 5 is dominant, as expected: h = 0.0549,
r1 = 7.0, r2 = 8.63, β = 0.5, γ = 3.
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w(r) = E(r)− E(βr)/γ.
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Figure 10. A series of plots showing the instability of a ring solution. Initial conditions
are the ring plus a linear combination of modes m = 0, . . . , 8. Mode 7 is predicted
to be dominant, and the ring does evolve to a concentric set of 7 spots. h = 0.0534,
r1 = 10.4, r2 = 12.1, β = 0.5, γ = 3.
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bumps self-organise, sometimes into regular symmetric structures (such as in Figures 8

and 10). We now show that this self-organisation is directly linked to the minimisation

of a Lyapunov function. For simplicity let us again consider an exponential synapse

η(t) = αe−αtH(t) so that we may re-write (1) in the integro-differential form

1

α

∂u(r, t)

∂t
= −u(r, t) +

∫
dr′w(|r− r′|)f(u(r′, t)). (24)

The natural generalisation of the Hopfield Lyapunov function [17] for discrete networks

to continuous networks can be written [13]

E[u] = −1

2

∫
dr
∫

dr′w(|r− r′|)f(u(r, t))f(u(r′, t)) (25)

+
∫

dr
∫ u(r,t)

0
dsf ′(s)s. (26)

For the choice of a Heaviside firing rate function f(u) = H(u− h) this reduces to

E[u] = −1

2

∫
dr
∫

dr′w(|r− r′|)H(u(r, t)− h)H(u(r′, t)− h)

+ h
∫

drH(u(r, t)− h). (27)

In Figure 11 we track the above Lyapunov function during the repeated splitting of

a bump, previously illustrated in Figure 4. Each splitting event is accompanied by

a rapid decrease in the Lyapunov function, which decreases as expected throughout

this evolution. Figure 12 illustrates the decrease in the Lyapunov function associated
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Figure 11. A plot of the Lyapunov function, E[u], given by equation (27), during
the repeated bump splitting illustrated in Figure 4—snapshots of that simulation are
reproduced here for ease of reference. Each splitting is accompanied by a significant
decrease in E[u].

with an instability of a ring solution that gives rise to a pattern of 7 spots. We have

also checked that this Lyapunov function decreases in a similar manner for all our

simulations, including the development of labyrinthine patterns (previously illustrated

in Figure 5).
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Figure 12. A plot of the Lyapunov function, E[u], given by equation (27), during the
splitting of an unstable ring into 7 spots, illustrated in Figure 10—the snapshots are
reproduced here for ease of reference.

Figure 12, amongst others, shows how a rotationally symmetric state may

destabilise in favour of a non-rotationally symmetric solution. The natural question

arises as to whether such structures can undergo further instabilities. In the next section

we show that the addition of a linear feedback term can destabilise such solutions in

favour of rotating waves.

5. A model with spike frequency adaptation

In real neuronal tissue there are an abundance of metabolic processes whose combined

effect may be modelled in terms of local feedback mechanisms that modulate synaptic

currents. Here we consider a vector model with simple linear feedback dynamics, often

invoked as a description of so-called spike frequency adaptation (SFA) [22]. An additional

phenomenological current is included on the right hand side of the scalar model (24),

so that
1

α
∂tu(r, t) = −u(r, t) +

∫
R2

drw(|r− r′|)f(u(r′, t))− ga(r, t), (28)

∂ta(r, t) = −a(r, t) + u(r, t). (29)

This model is a special case of the original Wilson-Cowan model [35, 36], and has been

extensively studied in one dimension with regards to travelling wave solutions [27, 7, 8],

and in two-dimensions with regards to rotationally symmetric localised solutions [12]

and spiral waves [19]. Here, however, we study the effect of such linear adaptation on

the stability of non-rotationally symmetric states. This is motivated by unpublished

numerical observations of Troy and Laing which have shown bifurcations to rotating

waves. Using a general argument, based on work of Moskalenko et. al. [25] for the

rotational bifurcation of localised states in a three-component reaction-diffusion system

(with one activator and two inhibitors), we show, regardless of connectivity pattern or
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choice of firing rate function, that as long as a non-rotationally symmetric solution exists

then it will destabilise to a rotating wave as g is increased through gc = 1/α.

5.1. Rotational Bifurcation

We begin by writing time-independent solutions of (28)-(29) as u(r, t) = q(r), where

q(r) =
1

1 + g

∫
R2

drw(|r− r′|)f(q(r′)). (30)

Note that there is a one-to-one correspondence between steady states of the scalar model

(1) and the vector model (28)-(29) (up to a rescaling by 1 + g).

Linearising about (30) gives

∂tψ(r, t) = L[ψ]ψ, ψ =

(
u(r, t)

a(r, t)

)
, ψ =

(
q(r)

q(r)

)
, (31)

where

L[ψ] = M + αw ⊗ f ′(q)
(

1 0

0 0

)
, M =

(
−α −αg
1 −1

)
. (32)

From invariance of the full system (under rotation and translation) there exists a

Goldstone mode ψ0 = ∂θψ such that

Lψ0 = 0. (33)

One of the possible destabilisations of ψ occurs when one of the other modes exactly

coincides with ψ0 under parameter variation. Because of this parameter degeneracy a

generalised eigenfunction ψ1 of L appears:

Lψ1 = ψ0. (34)

The solvability condition for this equation leads to an equation defining the bifurcation

point in the form

〈ψ†0 | ψ0〉 = 0, (35)

where 〈· | ·〉 denotes inner product and ψ†0 is the eigenfunction of the operator L† with

zero eigenvalue. Here, L† is adjoint to, and has the same symmetry properties as, L. In

the Appendix we show that ψ†0 can be written in closed form as a linear transformation

of ψ0. Because of this relationship the inner product in equation (35) can be easily

calculated, giving

0 = (αg − 1)
〈
f ′(q)(∂θq)

2
〉
. (36)

Hence, provided a non-rotationally symmetric solution of (28)-(29) exists, it will lose

stability as g increases through gc = 1/α. Although we have not proven the existence

of non-rotationally symmetric solutions, this can be inferred from the numerical

simulations in Section 3.2 (see Figures 8 and 10). In fact the analysis above holds

for both rotational and translational (drift) instabilities, and the dynamics beyond the

bifurcation point is determined by both translational and rotational modes as well as

their interaction.
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5.2. Numerical example

We consider the model (28)-(29) with

w(r) =
∫ ∞
0

sJ0(rs)

0.1 + (s2 − 1)2
ds, (37)

where f(u) = 0.4H(u − 0.25) exp [−0.1/(u− 0.25)2]. The coupling function (37) is

plotted in Figure 13a. The reason for using a coupling function of this form is that (37)

has a Hankel transform with a rational structure, namely w̃(k) = 1/(0.1 + (k2 − 1)2).

Taking the 2D spatial Fourier transform of equation (28) (which we denote with the

symbol FT) and rearranging gives

[(k2 − 1)2 + 0.1]FT[u+ ga+ α−1∂tu] = FT[f(u)]. (38)

After performing the inverse Fourier transform we have the equivalent PDE model

[∇4 + 2∇2 + 1.1](u+ ga+ α−1∂tu) = f(u). (39)

Stationary solutions of (28)-(29) then satisfy

(1 + g)[∇4 + 2∇2 + 1.1]u = f(u), a = u. (40)

To study uniformly rotating solutions of (28)-(29), one replaces ∂/∂t by −ω × ∂/∂θ,

where ω is the angular velocity. Rotating solutions then satisfy

[∇4 + 2∇2 + 1.1]

1− ω

α

∂

∂θ
+ g

(
1− ω ∂

∂θ

)−1
u = f(u), (41)

a =

(
1− ω ∂

∂θ

)−1

u. (42)

The stability of a stationary solution, (û, â), is determined by the rightmost few

eigenvalues of the Jacobian

J1(û) =

(
−α + αK−1f ′(û) −gα

1 −1

)
, (43)

where K = ∇4 + 2∇2 + 1.1. Similarly, the stability of a rotating solution, (ū, ā), is

determined by the rightmost few eigenvalues of the Jacobian

J2(ū) =

(
−α + ω ∂

∂θ
+ αK−1f ′(ū) −gα
1 ω ∂

∂θ
− 1

)
. (44)

Solutions of (40) and (41) are found numerically by discretising the domain using polar

coordinates and then integrating (28)-(29) to either a steady state or rotating solution.

We then use pseudo-arclength continuation to follow solutions as parameters are varied.

See [21, 20, 19] for more details on this approach.

In Figure 13b we show a plot of a stationary non-rotationally symmetric three-

bump solution, calculated as described above for g = 0. As predicted, the solution

in Figure 13b begins to rotate as g is increased through gc. Since our instability

analysis predicts that the rotational instability is degenerate with a translational mode

simulations are done on a circular domain with Neumann boundary conditions, so as to
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Figure 13. (a) The coupling function w(r), given by (37). (b) A stationary three-
bump solution of (28)-(29). The domain has radius 25.

favour seeing a rotation (as opposed to a drift). Our results from numerical continuation

are shown in Figure 14. The top panel shows the maximum of u over the whole domain

as a function of g for a stationary three-bump solution. We have chosen two different

values of α (α = 5 and α = 6) and computed the branches of rotating waves that

bifurcate from the stationary solution. These branches are also shown in the top panel

of Figure 14. Note that the rotating waves undergo saddle-node bifurcations as g is

increased; we do not follow the branches much beyond these bifurcations. We can see

from this panel that (for the parameter values used) if α was smaller than about 4.5

we would not see a transition from stationary to rotating three-bump solution as g was

increased, since the stationary solution would be destroyed in a saddle-node bifurcation

before g reached gc.

The middle panel shows the real part of the rightmost few eigenvalues of the

Jacobian J1(û) for both values of α chosen, as a fuction of g. A single real eigenvalue

passes through zero as g increases through gc (= 1/α). We have also checked that

this occurs for several other values of α (not shown). Note that there is always a zero

eigenvalue as expected, due to the rotational invariance of the system. The eigenfunction

corresponding to the eigenvalue that passes through zero (not shown) is proportional to

∂û/∂θ, as expected.

The bottom panel of Figure 14 shows ω as a function of g for the two branches of

rotating solutions shown in the top panel. Evaluation of the eigenvalues of J2(ū) along

these branches shows that they are stable until the saddle-node bifurcations at high g

(not shown). Finally, Figure 15 shows a series of snapshots showing the evolution of an

unstable three-bump solution which rotates and translates on a large domain, before

it ultimately reaches the boundary of the domain and induces the spread of a regular

global pattern.

6. Discussion

In this paper we have shown the importance of considering angular perturbations in two-

dimensional neural field models. In the simplest case of a bump solution and a Heaviside

firing rate function, in one space dimension the upper branch of bump solutions is always

stable, yet in two space dimensions we find, using the theory of Evans functions, that
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Figure 14. Rotational instability of a three-bump solution. Top: the branch
of stationary solutions, and two representative branches of rotating solutions that
bifurcate from it when α = 5 and when α = 6. Middle: real part of the rightmost few
eigenvalues of the Jacobian for α = 5 (circles) and α = 6 (crosses). Bottom: angular
velocity as a function of g for the rotating waves that appear when α = 5 (solid) and
when α = 6 (dashed). Both branches are stable at their creation. Note the different
horizontal scales for the three panels.

rotationally symmetric bump solutions can lose stability to perturbations of the form

um(r) cos(mθ), with the dominant mode depending on the model parameters. Typically

we see an initial instability to mode two perturbations as the firing threshold h decreases

below some critical value, followed by a sequence in which the dominant mode number

increases as h decreases. In the case of a balanced weight kernel (i.e.
∫
R2 w(|r|)dr = 0)

we find that the onset of a bump instability occurs when the bump develops a central

dimple. However, the appearance of a dimple does not necessarily coincide with onset

of instability in the case of unbalanced kernels. In some cases the predicted bump

instability leads to the bump splitting in two, and the two-bump solution that emerges

splits once again, and so on. This feature is reminiscent of spot splitting in the Gray-

Scott reaction-diffusion system [26]. We also see the emergence of labyrinthine patterns

from a bump that is unstable to mode 3 perturbations (Figure 5), again a feature that

has been observed in reaction-diffusion systems [15].
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Figure 15. Instability of a stationary three-bump solution of (28)-(29) with
coupling function w(r) given by (37), and firing rate function f(u) = 0.4H(u −
0.25) exp [−0.1/(u− 0.25)2]. α = 5 and g is switched from 0.19 to 0.22 at t = 10
and a small perturbation is applied. The three bump solution starts to rotate and
translate, until it approaches the boundary and a regular pattern spreads across the
whole domain.

Rotationally symmetric ring solutions q(r) are defined in terms of two threshold

crossings, where q(r1) = q(r2) = h. The evolution of a radial perturbation of mode

m is determined by the perturbation at r1 and r2, and calculation of the associated

Evans function shows that a lower branch of ring solutions is always unstable. On

the upper branch instabilities develop with dominant unstable mode varying with h.

Direct numerical simulations agree with the predictions of the stability analysis, with the

dominant mode emerging from perturbations that combine many modes, and patterns

developing with a corresponding number of bumps arranged in a circular fashion.

Obviously it is also possible to construct other rotationally symmetric solutions, limited

only by the requirement to simultaneously solve multiple threshold crossing conditions.

It is also straightforward to generate a family of Evans functions that can be used to

ascertain stability. Such solutions can include hybrid solutions such as a single bump

with surrounding ring given by q(r) = q(r; r1) + q(r; r4) − q(r; r3), with q(r) ≥ h for

r ∈ [0, r1]
⋃

[r3, r4], and a double-ring solution q(r) = q(r; r2)−q(r; r1)+q(r; r4)−q(r; r3),
with r4 > r3 > r2 > r1 > 0 such that q(r4) = q(r3) = q(r2) = q(r1) = h.

We have also shown that the evolution of solutions of the two dimensional neural

field model (1), initiated by instabilities of rotationally symmetric bump and ring
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solutions, correspond to the decrease of an associated Lyapunov function [13]. Given

the emergence of non-rotationally symmetric solutions (e.g. 7 bumps on a circle, Figure

10), we found that such solutions could themselves become unstable to rotational and/or

translational perturbations, using a Goldstone mode analysis. This technique is valid

for arbitrary non-rotationally symmetric solutions, irrespective of their detailed shape.

A potential tool to study the evolution of intricate structures such as the labyrinthine

patterns seen here, is to formulate a description of the dynamics of the interface (where

u(r, t) = h), along the lines described for reaction diffusion equations in [15].

The techniques we have used are quite general and naturally apply to other

homogeneous neural field models. In particular recently developed models with

nonlinear adaptation [7] and nonlinear threshold accommodation [9] can be analysed.

Further analysis of the properties of localised states in such neural field models is useful

in that it may shed light on the mechanism of short term working memory [5, 21], and

suggest practical implementations of sensorimotor loops for autonomous robot systems

[23].

Appendix

Here we show how to calculate ψ†0 in terms of ψ0. Starting from the definitions in

equation (32), we proceed by diagonalising L in terms of the right eigenvectors v± of

the matrix M :

v± =

(
αg

−(α + λ±)

)
, (45)

where

λ± =
−(1 + α)±

√
(1− α)2 − 4αg

2
. (46)

Performing the transformation

ψ̃0 = P−1ψ0 P = [v+ v−], (47)

then gives the pair of equations

λ±φ± + χ±w ⊗ f ′(q)[φ+ + φ−] = 0, (48)

with ψ̃0 = [φ+, φ−] and

χ± = ∓α α + λ∓
λ+ − λ−

. (49)

Turning now to the adjoint operator L†, we use the fact that

L† = M † + αf ′(q)w ⊗
(

1 0

0 0

)
. (50)

Again we proceed by diagonalising L†, this time in terms of the right eigenvectors w±
of M †:

w± =

(
1

(α + λ±)

)
. (51)
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In a similar fashion we find

λ±φ
†
± + χ±f

′(q)w ⊗ [φ†+ + φ†−] = 0, (52)

with [φ†+, φ
†
−] = R−1ψ†0 and R = [w+ w−]. An inspection of (48) and (52) yields the

relationship φ†± = f ′(q)φ±, giving

ψ†0 = f ′(q)RP−1ψ0. (53)

Substitution of (53) into (35) gives equation (36) in Section 5.1.
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