133 research outputs found

    Split Bregman Iteration Algorithm for Image Deblurring Using Fourth-Order Total Bounded Variation Regularization Model

    Get PDF
    We propose a fourth-order total bounded variation regularization model which could reduce undesirable effects effectively. Based on this model, we introduce an improved split Bregman iteration algorithm to obtain the optimum solution. The convergence property of our algorithm is provided. Numerical experiments show the more excellent visual quality of the proposed model compared with the second-order total bounded variation model which is proposed by Liu and Huang (2010)

    A combined first and second order variational approach for image reconstruction

    Full text link
    In this paper we study a variational problem in the space of functions of bounded Hessian. Our model constitutes a straightforward higher-order extension of the well known ROF functional (total variation minimisation) to which we add a non-smooth second order regulariser. It combines convex functions of the total variation and the total variation of the first derivatives. In what follows, we prove existence and uniqueness of minimisers of the combined model and present the numerical solution of the corresponding discretised problem by employing the split Bregman method. The paper is furnished with applications of our model to image denoising, deblurring as well as image inpainting. The obtained numerical results are compared with results obtained from total generalised variation (TGV), infimal convolution and Euler's elastica, three other state of the art higher-order models. The numerical discussion confirms that the proposed higher-order model competes with models of its kind in avoiding the creation of undesirable artifacts and blocky-like structures in the reconstructed images -- a known disadvantage of the ROF model -- while being simple and efficiently numerically solvable.Comment: 34 pages, 89 figure

    Inexact Bregman iteration with an application to Poisson data reconstruction

    Get PDF
    This work deals with the solution of image restoration problems by an iterative regularization method based on the Bregman iteration. Any iteration of this scheme requires to exactly compute the minimizer of a function. However, in some image reconstruction applications, it is either impossible or extremely expensive to obtain exact solutions of these subproblems. In this paper, we propose an inexact version of the iterative procedure, where the inexactness in the inner subproblem solution is controlled by a criterion that preserves the convergence of the Bregman iteration and its features in image restoration problems. In particular, the method allows to obtain accurate reconstructions also when only an overestimation of the regularization parameter is known. The introduction of the inexactness in the iterative scheme allows to address image reconstruction problems from data corrupted by Poisson noise, exploiting the recent advances about specialized algorithms for the numerical minimization of the generalized Kullback–Leibler divergence combined with a regularization term. The results of several numerical experiments enable to evaluat

    An algorithm for hybrid regularizers based image restoration with Poisson noise

    Get PDF
    summary:In this paper, a hybrid regularizers model for Poissonian image restoration is introduced. We study existence and uniqueness of minimizer for this model. To solve the resulting minimization problem, we employ the alternating minimization method with rigorous convergence guarantee. Numerical results demonstrate the efficiency and stability of the proposed method for suppressing Poisson noise

    A Total Fractional-Order Variation Model for Image Restoration with Non-homogeneous Boundary Conditions and its Numerical Solution

    Get PDF
    To overcome the weakness of a total variation based model for image restoration, various high order (typically second order) regularization models have been proposed and studied recently. In this paper we analyze and test a fractional-order derivative based total α\alpha-order variation model, which can outperform the currently popular high order regularization models. There exist several previous works using total α\alpha-order variations for image restoration; however first no analysis is done yet and second all tested formulations, differing from each other, utilize the zero Dirichlet boundary conditions which are not realistic (while non-zero boundary conditions violate definitions of fractional-order derivatives). This paper first reviews some results of fractional-order derivatives and then analyzes the theoretical properties of the proposed total α\alpha-order variational model rigorously. It then develops four algorithms for solving the variational problem, one based on the variational Split-Bregman idea and three based on direct solution of the discretise-optimization problem. Numerical experiments show that, in terms of restoration quality and solution efficiency, the proposed model can produce highly competitive results, for smooth images, to two established high order models: the mean curvature and the total generalized variation.Comment: 26 page

    Image reconstruction under non-Gaussian noise

    Get PDF
    • 

    corecore