
Inexact Bregman iteration with an application to

Poisson data reconstruction

A. Benfenati and V. Ruggiero
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Abstract. This work deals with the solution of image restoration problems by an

iterative regularization method based on the Bregman iteration. Any iteration of this

scheme requires to exactly compute the minimizer of a function. However, in some

image reconstruction applications, it is either impossible or extremely expensive to

obtain exact solutions of these subproblems. In this paper, we propose an inexact

version of the iterative procedure, where the inexactness in the inner subproblem

solution is controlled by a criterion that preserves the convergence of the Bregman

iteration and its features in image restoration problems. In particular, the method

allows to obtain accurate reconstructions also when only an overestimation of the

regularization parameter is known. The introduction of the inexactness in the iterative

scheme allows to address image reconstruction problems from data corrupted by

Poisson noise, exploiting the recent advances about specialized algorithms for the

numerical minimization of the generalized Kullback–Leibler divergence combined with

a regularization term. The results of several numerical experiments enable to evaluate

the proposed scheme for image deblurring or denoising in presence of Poisson noise.

Keywords. Bregman iteration, Inexact Bregman iteration, Image restoration, Regular-

ization parameter, Poisson noise.

1. Introduction

This paper concerns the iterative procedure based on the use of Bregman distance,

that has gained interest as regularization method in image restoration problems.

Mathematically, image restoration is an inverse and ill-posed problem that consists

in finding an approximation of the original object x∗ ∈ Rn from a set g ∈ Rm of

detected data. We assume that the distortion due to the acquisition system is described

by a given matrix H ∈ Rm×n. In the Bayesian framework [1, 2], an approximation

of the original object x∗ is obtained by solving the following constrained nonlinear

programming problem

min
x∈C

f0(g; x) + βf1(x) (1)

where C is the nonnegative orthant or a subset that describes some physical constraint on

x (as, for example, the flux conservation) and the objective function is the combination

of two terms: the first one is a convex nonnegative functional f0(g;x) which measures

the discrepancy from the data g and has to be chosen according to the noise statistics,

while the second one is a regularization term f1(x), weighted by a positive parameter β.

f1(x) is a convex nonnegative function that enables to incorporate a priori information

about the expected solution into the reconstruction process.

To recover images with sharp edges, Total Variation (TV) functional [3] is used. This

regularization prefers piecewise constant functions and then it can produce a loss of

contrast. In order to obtain a contrast enhancement, a procedure based on the Bregman

iteration [4] is proposed by Osher et al. in [5] to recover images corrupted by Gaussian

noise and, later, by Brune et al. in [6] for dealing with Poisson data.
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We recall that the Bregman distance of a proper convex function F : Rn → R between

x and y is defined as

DpF (x, y) = F (x)− F (y)− < p, x− y > (2)

where p is a subgradient of F at y and < ·, · > denotes the canonical inner product of two

vectors of Rn. The Bregman iteration consists in solving a sequence of subproblems,

similar to (1) with f1(x) replaced by its Bregman distance at the current iterate, as

follows:

x(k+1) = argminxQk(x, p
(k)) ≡ f0(g;x) + βDp(k)f1(x, x

(k)) k = 0, 1, ... (3)

with p(k) ∈ ∂f1(x
(k)) and p(0) ≡ 0; when C ̸= Rn in (1), we can track back

to an unconstrained problem, by redefining f0(g;x) as f0(g;x) + iC(x) (or f1(x) as

f1(x) + iC(x)), where iC(x) is the indicator function of the set C.

The Bregman iterative scheme enables to address another relevant issue of the model (1),

that is the choice of the regularization parameter β. This selection is especially difficult

in the case of Poisson noise (see for example [7, 8, 9, 10]). The Bregman approach

allows to use an overestimated value of β. Under suitable assumptions, for noise–free

data g∗ ∈ Rm, the sequence of the iterates obtained by (3) converges to a minimizer

of f0(g
∗; x), which in general coincides with the original object x∗; consequently, for

noisy data, {x(k)} does not converge to x∗, but to a minimizer x̄ of f0(g; x). If an

estimate γ of the discrepancy between Hx∗ and the noisy data g is known, for value of

β moderately large, the Bregman distance of f1 between x∗ and the current iterate is

decreasing as long as f0(g;x
(k)) ≥ γ [5]. Then, for noisy data, the Bregman iteration has

the typical semi-convergence property, described, for instance, in [11]. Numerical results

show that, in general, for a raw overestimation of β, few iterations are required to obtain

a satisfying solution and, consequently, few instances of the subproblem (3) have to be

solved. Indeed, since the first step requires the solution of the original problem with a

larger influence of the regularization term, the first iterate x(1) is an over regularized

approximation of the solution. The additional information available in x(1) can be used

at the second step, when we have to minimize the same data fidelity function combined

with the Bregman distance of f1 at x
(1), that can be interpreted as the residual between

the regularization term and its approximation around x(1). In this way, we obtain an

enhanced approximation x(2) and so on [12, 13]. Looking back at the statistical model

in [2], the Bregman distance of f1 in the iterative procedure can be interpreted as a

refinement of the a–priori probability, motivating the observed contrast enhancement.

The convergence and the properties of the Bregman iteration hold when these

subproblems are exactly solved while in many applications a closed formula for the

minimizer may be unavailable. On the other hand, in recent years the variational

model (1) has been deeply investigated in order to design efficient iterative algorithms

specifically tailored for different noise statistics and different regularization terms.

The aim of this work is to propose a strategy to deal with the inexact solution of

the inner subproblems, devising how we can preserve the convergence of the iterative

procedure. The analysis is proposed in a discrete setting, since, in real applications, it
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may be necessary to use iterative minimization algorithms for solving inner subproblems.

As remarked in [14], the Bregman method can be viewed as a generalization of the

well-known proximal point algorithm, where the Euclidean distance is replaced by the

Bregman distance of a strictly convex and differentiable function (Bregman nonlinear

proximal point algorithm). Indeed, when the regularization term is the quadratic

penalization 1
2
∥x∥22, the Bregman procedure is exactly the proximal point method

with a constant parameter. In recent years, there has been a growing interest in

inexact implementations of proximal point algorithms, starting from the seminal work

of Rockafellar [15] (for a survey see [16] and reference therein). Inexact schemes are

recently proposed also for the Alternating Direction Methods [17]. In this paper, the

approach is similar to that in [18] where the notion of ϵ-subgradient is introduced to deal

with inexact Bregman schemes; in our work, a criterion to monitoring the inexactness

of the current iterate is devised; the updating rule for the subgradient of the function f1
is eliminated and the subgradient or the ϵ-subgradient of f1 (required in the subsequent

subproblem) is obtained by the inner iterative solver used for the current subproblem.

Furthermore, in this analysis, f1(x) is a proper lower semicontinuous convex function,

not necessarily differentiable and, analogously, f0(g; x), so that the convergence of the

method holds also for general image restoration problems (for example, for impulsive

noise [19]). For the effectiveness of the scheme, the crucial issue becomes to devise an

efficient algorithm for approximately solving the inner subproblems.

The introduction of the inexactness in the Bregman iteration allows to address image

reconstruction problems with Poisson data (deblurring and denoising), exploiting

the recent advances in devising efficient specialized algorithms for the Kullback

Leibler divergence combined with a regularization term for the solution of the inner

minimization subproblems (see for example [20, 21, 22, 23, 24, 25, 26, 27] and references

therein). A further contribution of this paper is to carry out an experimental analysis,

showing that the proposed scheme can be an effective tool for image restoration in

presence of Poisson noise, when only an overestimation of the regularization parameter

is known.

The paper is organized as follows. In section 2, in a discrete setting we recall the it-

erative method based on Bregman iteration and its convergence and we describe the

proposed inexact version of the method, devising an inner stopping criterion that as-

sures the convergence of the scheme. In section 3, we introduce the inexact Bregman

method for image denoising and deblurring from data corrupted by Poisson noise and

we discuss some methods for solving the inner subproblems. Finally in section 4 we

describe the results of a set of numerical experiments concerning the proposed approach

in the case of Poisson data.
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2. The iterative procedure, based on the Bregman iteration

In this section we recall the iterative Bregman method, its convergence properties and

the features of the procedure in the framework of image restoration problems. Then we

introduce the inexact version and the assumptions for the convergence.

2.1. The problem and the iterative general scheme

The original problem considered by Bregman in [4] can be formulated as follows:

min
x

f1(x) subject to Hx = f (4)

where f1 is a proper, closed, convex and nonnegative function defined overRn,H ∈ Rm×n

is a given matrix and f ∈ Rm. We assume that the active set {x ∈ domf1|Hx = f} is

not empty. Using the classical penalty approach, we can replace the problem (4) with

a sequence of unconstrained problems

min
x

qk(x) ≡ f1(x) +
1

βk

f0(x) (5)

where βk is a positive constant and f0(x) is a penalty function, that is f0(x) ≥ 0 for any

x and f0(x) = 0 if and only if Hx = f . It is well known that, when the subproblems

qk(x) have a solution x(k) and {βk} is a decreasing sequence tending to 0 for k → ∞,

any limit point of {x(k)} is a solution of (4) (see [28, p.402]). Nevertheless a small value

for βk can make (5) extremely difficult to be solved numerically.

In the procedure based on the Bregman iteration [4], the value of βk is kept constant,

βk ≡ β, and f1(x) is replaced by its Bregman distance at the current iterate.

Furthermore we can choose f0(x) as a coercive and convex function, so that any

subproblem admits a solution. For example, in the image restoration framework, f0(x) is

a data fidelity function. Then the Bregman iteration modifies (5) by iteratively solving

a sequence of subproblems according to the following scheme:

• given x(0) such that p(0) ≡ 0 ∈ ∂f1(x
(0))

• for k = 0, 1, 2, ...

x(k+1) = argminxQk(x, p
(k)) ≡ Dp(k)f1(x, x

(k)) +
1

β
f0(x) =

= f1(x)− f1(x
(k))− < p(k), (x− x(k)) > +

1

β
f0(x) (6)

with p(k) ∈ ∂f1(x
(k))

As observed in [14], the method can be described also as a generalization of the proximal

point algorithm by the rule:

x(k+1) = (∂f1 +
1

β
∂f0)

−1(∂f1(x
(k))

In the following proposition, we resume some features of the iterative method based on

the Bregman iteration, already described in [5] for f0(x) =
1
2
∥Hx − f∥2. These results
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hold for more general f0 and f1. For the sake of completeness, we report the proof in

Appendix A.

Proposition 1 Let f0(x) and f1(x) be nonnegative, proper, closed and convex functions,

with dom(f0) ⊆ dom(f1) and the relative interiors of f0 and f1 have at least a point in

common. We assume that, for any k, there exists a minimizer x(k+1) of the subproblem

(6); then, the following conditions hold:

(a) there exist p(k+1) ∈ ∂f1(x
(k+1)) and q(k+1) ∈ ∂f0(x

(k+1)) such that

p(k+1) = p(k) − 1

β
q(k+1) (7)

(b) the sequence f0(x
(k)) is monotonically non increasing and we have

f0(x
(k)) ≤ f0(x

(k)) + βDp(k−1)

f1(x
(k), x(k−1)) ≤ f0(x

(k−1)) (8)

(c) if there exists x such that f1(x) < ∞, we have

β
(
Dp(k)f1(x, x

(k)) +Dp(k−1)

f1(x
(k), x(k−1))

)
+ f0(x

(k)) ≤

≤ f0(x) + βDp(k−1)

f1(x, x
(k−1)) (9)

(d) if x̂ is a minimizer of f0(x) such that f1(x̂) < ∞, we have that

Dp(k)f1(x̂, x
(k)) ≤ Dp(k−1)

f1(x̂, x
(k−1)) (10)

and

f0(x
(k)) ≤ f0(x̂) + β

f1(x̂)− f1(x
(0))

k
(11)

Moreover, if the level subsets of f0 are bounded, a limit point of the sequence {x(k)} is

a minimizer of f0(x); if x̂ is the unique minimizer of f0(x), then x(k) → x̂ as k → ∞.

Under suitable hypothesis, the above proposition guarantees the convergence of the

minimizers of the subproblems (6) to a solution of f0(x) = 0 (or Hx = f) while the

sequence {Dp(k)f1(x̂, x
(k))} is decreasing.

A crucial property to obtain these convergence results is the decreasing behavior of the

sequence {f0(x(k))}, that follows from the nonnegativity of the Bregman distance of f1 at

the current iterate. From the numerical point of view, this requires that the updating

rule (7) gives an exact subgradient at the current iterate. If this does not happen

(for example, if x(k) is a rough approximation of the Qk−1’s minimizer, Qk(x, p
(k)) can

assume negative values and Qk(x
(k+1), p(k)) can be less than f0(x

(k+1)) with the result

that the sequence {f0(x(k))} may have a non monotone behavior. Consequently, in the

implementation of the method, the minimizer has to be obtained by a closed formula

or by an iterative method with a very high accuracy.

As mentioned before, f0 is a penalty function for the constraint Hx = f , that is

f0(x) = 0 if and only if Hx = f ; several examples of functions satisfying this property
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are the standard least squares 1
2
∥Hx − f∥22, the l1 norm ∥Hx − f∥1 or, under suitable

assumptions, the generalized Kullback Leibler divergence
∑

i fi log
fi

(Hx)i
+ (Hx)i − fi.

We remark that, setting y = Hx, we can consider f0 as a function of a variable y.

Then q(k+1) ∈ H∗∂yf0(Hx(k+1)) and we can write q(k+1) = H∗u(k+1), with u(k+1) ∈
∂yf0(Hx(k+1)), k ≥ 0. Since p(0) = 0, if we put v(0) = 0, it is immediate to verify from

(7) that, for k ≥ 0, the following rule holds:

p(k+1) = H∗v(k+1) = H∗(v(k) − 1

β
u(k+1)) (12)

Then the rule (7) can be substituted by

v(k+1) = v(k) − 1

β
u(k+1) (13)

and the definition of x(k+1) in (6) can be restated as

x(k+1) = argminx

(
f1(x)− < v(k), Hx > +

1

β
f0(x)

)
(14)

Using (14), in the following proposition we can prove that a solution xk̄ of f0(x) = 0

obtained through (14)-(13) is indeed a solution of the original constrained problem (4)

or its variant

min
x

f1(x) subject to f0(x) = 0 (15)

The proposition is a generalization of Theorem 2.2 in [29].

Proposition 2 Let f0(x) be a convex function such that f0(x) = 0 if and only if

Hx = f . Suppose that some iterate xk̄ of the Bregman procedure satisfies f0(x
k̄) = 0.

Then xk̄ is a solution of the constrained problem (4) (or (15)).

Proof. Let xk̄ be such that f0(x
k̄) = 0 and

xk̄ = argminxf1(x)− < vk̄, Hx > +
1

β
f0(x) (16)

for a suitable vk̄. Let x̂ be a solution of the problem (4). Then f0(x̂) = 0 and, for the

hypothesis on f0,

Hx̂ = f = Hxk̄ (17)

Since xk̄ satisfies (16), we have

f1(x
k̄)− < vk̄, Hxk̄ > +

1

β
f0(x

k̄) ≤ f1(x̂)− < vk̄, Hx̂ > +
1

β
f0(x̂) (18)

Using (17) in (18) and taking into account that f0(x
k̄) = f0(x̂) = 0, we have that

f1(x
k̄) ≤ f1(x̂)

Because x̂ is a solution of the original optimization problem, this last inequality is an

equality, showing that xk̄ solves (4). �
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2.2. The iterative procedure for image restoration problems

When we solve an image restoration problem formulated as (1) by Bregman iteration,

the data fidelity term f0(g; x) plays the role of penalty function for (4) or (15), with

f = g; the array g is the detected noisy data and H ∈ Rm×n is the imaging matrix.

Then, thanks to Proposition 1, we can affirm that a limit point of {x(k)} is a solution x̄

of f0(g; x) = 0, while we are interested to a solution x∗ of f0(g
∗;x) = 0 (here f = g∗),

where g∗ is the noise–free data. For this application, the Bregman iteration has the

typical semi-convergence behavior of the iterative methods for the solution of inverse

problems, as described for example in [11]; the sequence {x(k)} first approaches the

required solution x∗ and then it goes away, converging toward x̄ [5]. Indeed, if an

estimate γ for the noise level is known, that is f0(g;x
∗) ≤ γ, following the same argument

used in [5], we can observe from (9) with x = x∗, that, while f0(g; x
(k)) ≥ γ, we have

that the Bregman distance of the iterates from the object x∗ decreases:

Dp(k)f1(x
∗, x(k)) ≤ Dp(k−1)

f1(x
∗, x(k−1)) (19)

Thank to (8), a stopping criterion for the iterative procedure is to terminate at the

iteration k∗ such that

k∗ = max{k|f0(g; x(k)) ≥ γ} (20)

In the case of Gaussian noise, the Morozov discrepancy principle can be a reasonable

stopping criterion. In the case of Poisson noise, it makes sense to stop the Bregman

iteration if the Kullback Leibler divergence of Hx(k) and the detected data g reaches

the noise level. For an estimate of this noise level, see the discrepancy criterion in [7].

2.3. The inexact iterative procedure

When a closed formula for the solution of inner minimization subproblem (6) is

unavailable, at any step we can obtain an approximate solution by using an iterative

solver with a severe stopping criterion. As a consequence, also for efficient methods,

a huge number of iterations may be required. In this section we propose a strategy

to deal with inexact solutions of the inner subproblems that preserve the convergence

property of the iterative procedure. The crucial point of the proposed scheme is devising

a suitable stopping criterion for the inner solver of subproblems (6).

To explain this novel scheme, we recall the basic definition and some results about the

ϵ-subgradient of a proper convex function.

Definition 1 [30, §23]. Let F be a proper convex function on Rn. The ϵ-subdifferential

of F at x ∈ dom(F ), defined for ϵ ∈ R, ϵ ≥ 0, is the set

∂ϵF (x) = {p ∈ Rn : F (z) ≥ F (x) + ⟨p, z − x⟩ − ϵ, ∀z ∈ Rn}

A vector p ∈ ∂ϵF (x) is an ϵ-subgradient of F at x.
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For ϵ = 0 the definition of subdifferential is recovered while for ϵ > 0 we have a larger

set; furthermore, for ϵ1 > ϵ2 > 0, we have ∂ϵ1F (x) ⊇ ∂ϵ2F (x) ⊇ ∂F (x).

Definition 2 [30, §12]. The conjugate of a convex function F is the function F ∗ defined

by

F ∗(y) = sup
x
(⟨x, y⟩ − F (x))

If F is lower semicontinuous and proper, then F ∗ is lower semicontinuous and F ∗∗ = F .

Proposition 3 [27]. Let F (x) be a proper lower semicontinuous convex function.

Then, for every x ∈ dom(F ) and p ∈ dom(F ∗) we have p ∈ ∂ϵF (x), with ϵ =

F (x)− (⟨p, x⟩ − F ∗(p)).

We observe that ϵ = 0 (that is p ∈ ∂F (x)) if and only if F (x) = ⟨p, x⟩ − F ∗(p).

The computation of the Bregman distance of the function F between z and x requires

a subgradient of F at x. When p is an ϵ-subgradient of F at x, we can introduce an

inexact Bregman distance given by

∆p
ϵF (z, x) = F (z)− F (x)− < p, z − x > +ϵ (21)

We have that, for any z ∈ Rn, ∆p
ϵF (z, x) ≥ 0. When ϵ = 0 (that is p ∈ ∂F (x)), the

definition of the Bregman distance is recovered and ∆p
0F (z, x) = DpF (z, x).

The inexact scheme can be stated as follows. Starting from p̃(0) = 0 ∈ ∂f1(x̃
(0)), at any

step k ≥ 0, we consider the subproblem

min
x

Q̃k(x, p̃
(k), ϵk) ≡

1

β
f0(x) + ∆p̃(k)

ϵk
f1(x, x̃

(k)) =

=
1

β
f0(x) + f1(x)− f1(x̃

(k))− < p̃(k), x− x(k) > +ϵk (22)

where p̃(k) ∈ ∂ϵkf1(x̃
(k)) (ϵ0 = 0).

Algorithm - Inexact Bregman

Choose x̃(0) such that p̃(0) = 0 ∈ ∂f1(x̃
(0)), ϵ0 = 0, β > 0; choose sequences {µk} and

{νk} such that
∑

i µi < ∞ and
∑

i iνi < ∞
For k = 0, 1, 2, ... do the following steps:

Step 1. Determine by an iterative solver an approximate solution x̃(k+1) of the

subproblem minx Q̃k(x, p̃
(k), ϵk) and the related q̃(k+1) ∈ ∂f0(x̃

(k+1)) and

p̃(k+1) ∈ ∂ϵk+1
f1(x̃

(k+1)) so that

∥η(k+1)∥ ≤ µk+1 and ϵk+1 ≤ νk+1

with η(k+1) = 1
β
q̃(k+1) + p̃(k+1) − p̃(k)

Step 2. Terminate if a stopping criterion is satisfied

End
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We suppose that the k–th inner subproblem is solved by an iterative algorithm,

which enables us to compute an approximate solution x̃(k+1), a suitable subgradient

q(k+1) ∈ ∂f0(x
(k+1)) and an ϵk+1-subgradient p̃

(k+1) of f1 at x̃(k+1), k ≥ 0.

If f1 is a differentiable function, we assume that the inner solver generates sequences

{xk
l } and {qkl } convergent to a minimizer x̄k of Q̃k and a subgradient q̄k ∈ ∂f0(x̄

k)

respectively as l → ∞. As a consequence, given µk+1 > 0, there exists an index l̄ such

that ∥ηk
l̄
∥ ≤ µk+1, with ηkl = 1

β
qkl +∇f1(x

k
l )− p̃(k); then, we set as approximate solution

of the Q̃k subproblem x̃(k+1) = xk
l̄
, with p̃(k+1) = ∇f1(x̃

(k+1)), ϵk+1 = 0 and q(k+1) = qk
l̄
.

When f1 is a non differentiable function, we can consider the primal–dual formulation

of (22), given by

min
x

max
y

Φk(x, y) ≡
1

β
f0(x)+ < y, x > −f∗

1 (y)− f1(x̃
(k))− < p̃(k), x− x(k) > +ϵk (23)

and we can apply a suitable primal–dual method generating sequences {xk
l }, {ykl }

convergent to a saddle point (x̄k, ȳk) of the convex–concave proper function Φk(x, y).

We recall that (x̄k, ȳk) is a saddle point of Φk(x, y) if there exist q̄k ∈ ∂f0(x̄
k) and

w̄k ∈ ∂f ∗
1 (ȳ

k) such that the following conditions hold:

1

β
q̄k + ȳk − p̃(k) = 0

x̄k = w̄k

Then, if we assume that the inner solver generates sequences {xk
l }, {ykl }, {qkl } which

converge to x̄k, ȳk and q̄k respectively as l → ∞, then the sequence of the dual

iterates enables to compute an ϵ-subgradient of f1 at the current x-iterate. Indeed,

since ykl ∈ domf ∗
1 , by Proposition 3, we have that ykl ∈ ∂ϵlf1(x

k
l ), with ϵkl = f1(x

k
l )− <

ykl , x
k
l > +f ∗

1 (y
k
l ) and the sequence {ϵkl } converges to 0 as l → ∞. Consequently,

given µk+1 > 0 and νk+1 > 0, there exists an index l̄ such that ∥ηk
l̄
∥ ≤ µk+1, with

ηkl = 1
β
qkl + ykl − p̃(k) and ϵk

l̄
≤ νk+1; then, we set as approximate solution of the Q̃k

subproblem x̃(k+1) = xk
l̄
, with p̃(k+1) = yk

l̄
, ϵk+1 = ϵk

l̄
and q(k+1) = qk

l̄
.

In section 3 we show that, in image restoration problems, when f1 is the discrete Total

Variation function, the Alternating Extragradient Method (AEM) [26] enables to obtain

an approximate solution x̃(k+1) of (22) and its ϵk+1-subgradient p̃(k+1); other schemes

such as the primal–dual methods in [31] can be used as inner solvers.

From q(k+1) ∈ ∂f0(x̃
(k+1)) and p̃(k+1) ∈ ∂ϵk+1

f1(x̃
(k+1)) we can compute an ϵ-subgradient

of Q̃k(x, p̃
(k), ϵk) at x̃

(k+1), as stated by the following Lemma.

Lemma 1 Let f0(x) and f1(x) be nonnegative, proper, lower semicontinuous and convex

functions, with dom(f0) ⊂ dom(f1) and the relative interiors of f0 and f1 have at least a

point in common. If q(k+1) ∈ ∂f0(x̃
(k+1)) and p̃(k+1) ∈ ∂ϵk+1

f1(x̃
(k+1)), then the following

vector

η(k+1) =
1

β
q(k+1) + p̃(k+1) − p̃(k) (24)

is an ϵk+1-subgradient of Q̃k at x̃(k+1), that is η(k+1) ∈ ∂ϵk+1
Q̃k(x̃

(k+1), p̃(k), ϵk).
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Proof. For the convexity of f0(x) and the definition of p̃(k+1) as ϵk+1-subgradient of f1
at x̃(k+1), for any x ∈ Rn we have

Q̃k(x̃
(k+1), p̃(k), ϵk)+ < η(k+1), x− x̃(k+1) >=

=
1

β
f0(x̃

(k+1)) + f1(x̃
(k+1))− f1(x̃

(k))− < p̃(k), x̃(k+1) − x̃(k) > +ϵk +

+ <
1

β
q(k+1) + p̃(k+1) − p̃(k), x− x̃(k+1) >≤

≤ 1

β
f0(x) + f1(x) + ϵk+1 − f1(x̃

(k))− < p̃(k), x− x̃(k) > +ϵk =

= Q̃k(x, p̃
(k), ϵk) + ϵk+1

Then η(k+1) ∈ ∂ϵk+1
Q̃k(x̃

(k+1), p̃(k), ϵk). �

For the sequence {f0(x̃(k+1))} generated by the inexact scheme, the monotonicity

property does not hold, but it is replaced by

1

β
f0(x̃

(k+1)) ≤ Q̃k(x̃
(k+1), p̃(k), ϵk) =

=
1

β
f0(x̃

(k+1)) + ∆p̃(k)

ϵk
f1(x̃

(k+1), x̃(k)) ≤ 1

β
f0(x̃

(k)) + ϵk (25)

where the first inequality follows from the nonnegativity of ∆p̃(k)

ϵk
f1(x̃

(k+1), x̃(k)).

Obviously, when f1 is differentiable, ϵk = 0 and the monotonicity property is preserved.

From the last inequality in (25), we have

−ϵk ≤ ∆p̃(k)

ϵk
f1(x̃

(k+1), x̃(k))− ϵk ≤
1

β
(f0(x̃

(k))− f0(x̃
(k+1)))

for any k ≥ 0. Multiplying this last inequality by k and summing for i = 1, ..., k − 1, it

follows:

−
k−1∑
i=1

iϵi ≤
1

β

k−1∑
i=1

f0(x̃
(i))− k − 1

β
f0(x̃

(k)) (26)

Furthermore, in view of (24), we obtain that (9) can be restated as follows:

∆p̃(k)

ϵk
f1(x, x̃

(k)) + ∆p̃(k−1)

ϵk−1
f1(x̃

(k), x̃(k−1)) +
1

β
f0(x̃

(k)) ≤

≤ 1

β
f0(x) + ∆p̃(k−1)

ϵk−1
f1(x, x̃

(k−1)) +

+ < η(k), x̃(k) − x > +ϵk (27)

for any x such that f1(x) < ∞. This inequality enables us to prove the convergence

of the inexact iterative procedure, when a suitable stopping criterion is used to obtain

approximate solutions of the inner subproblems.

Proposition 4 Let f0(x) and f1(x) be nonnegative, proper, lower semicontinuous and

convex functions, with dom(f0) ⊂ dom(f1) and the relative interiors of f0 and f1 have
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at least a point in common. We assume that, for any k, there exists a minimizer of the

subproblem (22) and that x̂ is a minimizer of f0(x) such that f1(x̂) < ∞. If for any k ≥ 0

the inner solver determines x̃(k+1) , q(k+1) ∈ ∂f0(x̃
(k+1)) and p̃(k+1) ∈ ∂ϵk+1

f1(x̃
(k+1)) so

that the following condition on η(k+1) = 1
β
q(k+1) + p̃(k+1) − p̃(k) and ϵk+1 holds

∥η(k+1)∥ ≤ µk+1 and ϵk+1 ≤ νk+1 (28)

with
∑∞

i=1 µi < ∞ and
∑∞

i=1 iνi < ∞, then we have that

∆p̃(k)

ϵk
f1(x̂, x̃

(k)) ≤ ∆p̃(k−1)

ϵk−1
f1(x̂, x̃

(k−1))+ < η(k), x̃(k) − x̂ > +ϵk (29)

and

f0(x̃
(k)) ≤ f0(x̂) +

β

k

(
f1(x̂)− f1(x̃

(0)) +
k∑

i=1

< η(i), x̃(i) − x̂ > +
k∑

i=1

(i+ 1)ϵi

)
(30)

Moreover, if the level subsets of f0 are bounded, a limit point of the sequence {x̃(k)} is a

minimizer of f0(x); if x̂ is the unique minimizer of f0(x), then x̃(k) → x̂ as k → ∞.

Proof. In view of (27) with x = x̂, since for any k ≥ 0 we have that ∆p̃(k)

ϵk
f1(x̃

(k+1), x̃(k)) ≥
0 and f0(x̃

(k))− f0(x̂) ≥ 0, the inequality (29) holds.

Summing up the inequalities (27) computed at x̂ related to the first k steps, we have:

∆p̃(k)

ϵk
f1(x̂, x̃

(k)) +
k∑

i=1

∆p̃(i−1)

ϵi−1
f1(x̃

(i), x̃(i−1)) +
1

β

k∑
i=1

f0(x̃
(i)) ≤

≤ k

β
f0(x̂) + (f1(x̂)− f1(x̃

(0))) +
k∑

i=1

< η(i), x̃(i) − x̂ > +
k∑

i=1

ϵi (31)

Combining (26) with (31), we obtain

β

k

(
∆p̃(k)

ϵk
f1(x̂, x̃

(k)) +
k∑

i=1

∆p̃(i−1)

ϵi−1
f1(x̃

(i), x̃(i−1))

)
+

+f0(x̃
(k)) ≤ f0(x̂) +

β

k

(
f1(x̂)− f1(x̃

(0)) +

k∑
i=1

< η(i), x̃(i) − x̂ > +
k−1∑
i=1

(i+ 1)ϵi + ϵk

)
(32)

Since ∆p̃(i−1)

ϵi−1
f1(x̃

(i), x̃(i−1)) ≥ 0 for any i and ∆p̃(k)

ϵk
f1(x̂, x̃

(k)) ≥ 0, we have that (30)

follows. Furthermore, if we denote by D the diameter of the level set {x|f0(x) ≤
f0(x̃

(0))}, by applying the Cauchy–Schwarz inequality and condition (28) to inequality

(30), we obtain

f0(x̃
(k)) ≤ f0(x̂) + β

f1(x̂)− f1(x̃
(0))

k
+

β

k

(
D

k∑
i=1

µi +
k∑

i=1

(i+ 1)νi

)
(33)

Since the sequence {x̃(k)} is bounded, there exists a subsequence of {x̃(k)} convergent to

a limit point x̃. Since D
∞∑
i=1

µi+
∞∑
i=1

(i+1)νi < ∞, in view of (33), we have f0(x̃) ≤ f0(x̂)
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for k → ∞. Then, x̃ is a minimizer of f0(x). If x̂ is the unique minimizer of f0(x), then

x̃(k) → x̂ as k → ∞. �

Corollary 1 Let f1 be a differentiable function. Under the same hypotheses of the

previous proposition, if for any k ≥ 0 the inner solver determines x̃(k+1), q(k+1) ∈
∂f0(x̃

(k+1)) and p̃(k+1) = ∇f1(x̃
(k+1)) so that the following condition on η(k+1) =

1
β
q(k+1) + p̃(k+1) − p̃(k) holds

∥η(k+1)∥ ≤ µk+1 (34)

with
∑∞

i=1 µi < ∞, then we have that

Dp̃(k)f1(x̂, x̃
(k)) ≤ Dp̃(k−1)

f1(x̂, x̃
(k−1))+ < η(k), x̃(k) − x̂ > (35)

and

f0(x̃
(k)) ≤ f0(x̂) +

β

k

(
f1(x̂)− f1(x̃

(0)) +
k∑

i=1

< η(i), x̃(i) − x̂ >

)
(36)

Moreover, if the level subsets of f0 are bounded, a limit point of the sequence {x̃(k)} is a

minimizer of f0(x); if x̂ is the unique minimizer of f0(x), then x̃(k) → x̂ as k → ∞.

Remark. From the numerical point of view, an easily implementable choice for the

tolerance in the criterion (28) (or (34)) is

∥η(k+1)∥ ≤ c

(k + 1)α
(37)

ϵk+1 ≤ d

(k + 1)ϑ
(38)

for k ≥ 0, where c, d, α and ϑ are positive constants, with α > 1 and ϑ > 2. In this way,

at the first iteration the tolerances are equal to the parameters c and d respectively and,

in the subsequent iterations, the stopping rule is gradually more severe; the parameters

α and ϑ control the increase of the inner accuracy. A practical rule to choose the values

of c and d is to use a standard stopping criterion with a moderate tolerance in the inner

solver at the first outer iteration; then set c = ∥η(1)∥, d = ϵ1, ϑ = 2.1; in this way, the

only input parameter is α. In the section 4, we implement this rule.

For this inexact scheme, we can repeat the considerations concerning the image

restoration problems, where the discrepancy f0(g;x) from the detected data g plays

the role of penalty function and f1(x) is the regularization term. We are interested to

a solution x∗ of f0(f ;x) = 0, where f is the noisy-free data, rather than f0(g;x) = 0.

We assume that an estimate of a noise level γ is known, that is f0(g; x
∗) ≤ γ. Then, as

long as f0(g;x
(k)) ≥ γ, from (27) with x = x∗, the Cauchy–Schwarz inequality and the
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boundedness of the level set of f0(g; x), we have

−νk − µkD +∆p̃(k)

ϵk
f1(x

∗, x̃(k)) + ∆p̃(k−1)

ϵk−1
f1(x̃

(k), x̃(k−1)) +
1

β
f0(g; x̃

(k)) ≤ (39)

≤ γ

β
+∆p̃(k−1)

ϵk−1
f1(x

∗, x̃(k−1)) (40)

Then a sufficient condition to assure a decreasing behavior for the inexact Bregman

distance ∆p(k−1)

ϵk−1
f1(x

∗, x̃(k−1)) is that, while f0(g; x
(k)) ≥ γ the following inequality holds:

1

β
(f0(g; x̃

(k))−γ)+∆p̃(k−1)

ϵk−1
f1(x̃

(k), x̃(k−1)) = Q̃k−1(x̃
(k), p̃(k−1), ϵk−1)−

γ

β
≥ µkD+νk(41)

This condition depends on the exactness level required to the inner minimizer: the

numerical experience shows that the term −µkD − νk is a pessimistic lower bound of

< η(k), x∗−x̃(k) > −ϵk. Indeed in the numerical experiments of Section 4 we observe that,

when f1 is a differentiable function, ∆p(k)

ϵk
f1(x

∗, x̃(k)) ≡ Dp(k)f1(x
∗, x̃(k)) is a decreasing

sequence until the relative reconstruction error decreases and sometimes ever later.

When f1 is a non differentiable function, ∆p̃(k)

ϵk
f1(x

∗, x̃(k)) is a decreasing sequence with

a behavior very similar to a Bregman distance. In Appendix B we report the behavior

of the exact and the inexact Bregman iteration on a simple example concerning a 1D

test problem for which the true analytic solution is known.

As for the exact Bregman method, a discrepancy criterion can provide a reasonable

stopping criterion. Nevertheless, the numerical experience shows that in general in

few iterations we observe a semi-convergence behavior; then a practical criterion is to

visually control the obtained approximation at any iteration.

3. Image restoration for Poisson data

In recent years, the image restoration from data corrupted by Poisson noise has received

a considerable attention. Poisson noise occurs in all imaging processes where images are

obtained by means of the count of particles, in general photons, arriving in the image

domain (see [32] for a review). For data corrupted by Poisson noise, the problem (1)

can be formulated as follows:

min
x∈RN

∑
i

(
gi log

gi
(Hx+ b)i

+ (Hx+ b)i − gi

)
+ iC(x) + βf1(x) (42)

where the data fidelity function f0 is the sum of the generalized Kullback-Leibler

(KL) divergence and the indicator function iC(x) of the nonnegative orthant C; the

regularization term f1(x) can be selected according to the features of the application.

Here b is a nonnegative constant background term. When H = I we have a denoising

problem, while, in the other cases, we deal with a deblurring problem. We assume that

the imaging matrix H has nonnegative entries and it satisfies a normalization condition

HT e = e, where e is an array with all components equal to 1.

In the following we state the conditions for the convergence of the inexact iterative

procedure for the KL function combined with different regularization terms.



Inexact Bregman iteration 15

First of all, we assume to consider proper, lower semicontinuous and convex functions

as regularization term, as the quadratic penalization

f1(x) = ∥x∥2 (43)

where ∥ · ∥ is the usual Euclidean norm of a vector, the quadratic discrete gradient ∇

f1(x) = ∥∇x∥2 (44)

and, in the edge–preserving regularization framework, the discrete Total Variation (TV)

functional [3]

f1(x) =
∑
i

∥∥∥(∇x)i

∥∥∥ (45)

or its smoothed version, known also as hypersurface (HS) potential [33]

f1(x) =
∑
i

∥∥∥( (∇x)i
δ

)∥∥∥ (46)

Since the KL function is proper, convex and lower semicontinuous on the nonnegative

orthant, the subproblems (22) are proper, convex and lower semicontinuous.

Furthermore, under the previous assumption on the imaging matrix H, f0(x) is a

coercive function (see [25, 7]). As a consequence, the level sets of f0(x) are bounded.

Proposition 5 a

(a) For f1(x) = ∥x∥2, the solution of any subproblem (22) exists and is unique.

(b) For f1(x) given by (44) or by HS potential (46), if H has nonnegative entries and

HT e = e, the solution of any subproblem (22) exists and is unique.

(c) For f1(x) given by the discrete TV (45), if H has nonnegative entries and HT e = e,

the solution of any subproblem (22) exists; the uniqueness of the solution is

guaranteed if null(H) = 0 and the component of g are positive.

Proof.

(a) For any β > 0, the Hessian matrix of any subproblem (22) is positive definite on

the domain. Then (22) is strictly convex and coercive.

(b) The proof is based on the observation that the intersection of the space of the

constant images with the null space of H is just the zero vector. Furthermore the

Hessian matrix of any subproblem (22) is positive definite on the domain (see [34]).

(c) See [25, Prop. 3].

�

When f1(x) is differentiable, the approximate solution x̃(k+1) of the subproblem (22) can

be obtained by efficient differentiable optimization methods. In the class of first order

methods requiring only function and gradient evaluations, the scaled gradient projection

(SGP) method is very efficient for image restoration from Poisson data [20, 35]. This

projected gradient-type method is based on a modification of the gradient direction
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by a suitable positive definite and diagonal scaling matrix and an accurate strategy

of steplength selection, based on an adaptive alternation of the Barzilai–Borwein rules

[36, 37]. The main computational cost of each SGP iteration depends essentially on

two matrix–vector products, required in the computation of the objective function and

its gradient. The updating of the scaling matrix and the steplength parameter, as well

as the projection onto the nonnegative orthant and the monotone line-search along the

projected direction require only linear operations. For details, see [20, 35].

For image restoration by TV regularization from Poisson data, several solvers have been

recently proposed (see for example [25, 24, 23, 26, 27]). A suitable choice for the solver

of subproblems (22) is the alternating extragradient method (AEM), since it does not

involve the solution of an inner ROF model nor requires the solution of a system and it

can be used both for denoising and deblurring problems. The global convergence of the

scheme and an estimate of its convergence rate require only local Lipschitz continuity of

the gradient of the primal-dual formulation of the objective function. Indeed, AEM is

a first order scheme for the primal-dual formulation of the model KL-TV or its variant

such as (23), that requires only matrix-vector products. In particular, AEM is an

especially tailored extragradient–type method, based on three successive alternating (or

Gauss-Seidel) projections, whose stepsize parameter αl is adaptively computed, without

requiring the knowledge of a Lipschitz constant. Then, given the primal-dual iterate

(xl, yl), the (l + 1)-th iteration of AEM is given by the following step:

ỹl = argminy∈domf1
∗
1

2
∥y − (yl + αl∇xl)∥2

xl+1 = argminx∈domf0∩domf1

1

2
∥x− (xl + αl∇T ỹl)∥2

yl+1 = argminy∈domf1
∗
1

2
∥y − (yl + αl∇xl+1)∥2 (47)

From Proposition 3, since yl+1 ∈ domf ∗
1 , ∇Tyl+1 is an ϵl+1-subgradient of f1 ◦∇ at xl+1,

with ϵl+1 = (f1 ◦ ∇)(xl+1)− < yl+1,∇xl+1 >. In this case, f ∗
1 is the indicator function

of the domain of the dual variable. Then, at the (k + 1)-th outer iteration, if l̄ is the

iteration for which the conditions in (28) (or (37)-(38)) are satisfied, the outer iterate

x̃(k+1) is set equal to xl̄, ∇Tyl̄ = p̃(k+1) is its ϵk+1-subgradient and q(k+1) = ∇f0(x
(k+1)).

For details on AEM, see [26].

4. Numerical experiments

This section is devoted to numerically evaluate the effectiveness of the inexact procedure

based on Bregman iteration for recovering images corrupted by Poisson noise. The

numerical experiments described in this section have been performed in MATLAB

environment, on a server with a dual Intel Xeon QuadCore E5620 processor at 2,40

GHz, 12 Mb cache and 18 Gb of RAM. In the experiments we consider a set of test

problems, where the simulated data are obtained by convolving the image with a Point

Spread Function (PSF) and then by perturbing with Poisson noise; the Poisson noise
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has been simulated by the imnoise function in the Matlab Image Processing Toolbox.

The considered test problems are described in the following.

Deblurring test problems

• micro: the original image is a phantom of size 128×128 described in [38]; its values

are in the range [1, 69] and the total flux is 2.9461 105; the background term b is

set to zero; to obtain the simulated data, a Gaussian PSF is used with standard

deviation equal to
√
5 pixels in vertical and horizontal directions; the original and

the simulated images are in figure 1 (a).

• spacecraft : the original image is a 256×256 image with sharp details, whose values

are in the range [0, 255] and the background term b is set to 1; following [9], the

PSF used simulates that taken by a ground-based telescope and is downloaded from

http://www.mathcs.emory.edu/nagy/RestoreTools/index.html ; this test problem is

denoted with L-spacecraft ; a second test problem, named H-spacecraft, is generated

by multiplying the object and the background by 100; then the image is convolved

with the same PSF and perturbed with Poisson noise (see figure 1 (b));

• NGB 7027 : the 256 × 256 original image is an example of a diffuse astronomical

object; as for H-spacecraft, its values are in the range [0, 25500] and the background

term b is set to 100; the simulated data are obtained with the same PSF of H-

spacecraft and then perturbed with Poisson noise (see figure 1 (c)).

Denoising test problem

• LCR phantom: the original image is obtained from the phantom described in [39];

it is an array 256 × 256, consisting in concentric circles of intensities 14, 27, 40,

enclosed by a square frame of intensity 2, all on a background of intensity 1. The

relative difference in Euclidean norm between the noisy image and the original one

is 0.21273.

4.1. Efficiency of the inexact versus the exact procedure

In this section, we report some numerical tests, showing that the inexact version of the

iterative procedure appears promising from the point of view of the efficiency. For sake

of brevity, we report the results obtained in the case of L-spacecraft, but similar results

have been obtained for the other deblurring test-problems.

In order to restore L-spacecraft, we consider the minimization of the KL function

combined with the HS regularization (KL-HS model) and with the TV regularization

(KL-TV model). The value of the regularization parameter related to the minimum

relative reconstruction error with respect to the original image x∗ is obtained

experimentally by several run for both models and it is set as βopt = 1.63 · 10−3. When

the KL-HS model is solved with βopt by SGP (δ = 0.1), after 497 iterations we obtain

a relative reconstruction error in Euclidean norm equal to 0.36572; in this case SGP

is stopped when the relative difference between two consecutive values of the objective
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(a) micro (b) H-spacecraft (c) NGB 7027

Figure 1. Deblurring problems: the original images are in the upper panels,

while the blurred images are in the lower panels. All the images are shown in

reverse gray scale.

function is less than tolSGP = 10−7 and the mean of this difference over the last 10

iterations is less than 10 · tolSGP . For the KL-TV model with βopt, AEM enables to

obtain a relative reconstruction error in Euclidean norm equal to 0.36967 after 2042

iterations. AEM is stopped when the relative difference in Euclidean norm between two

successive iterates is less than tolAEM = 4 · 10−5.

In the first numerical experiment, the KL-HS and KL-TV models are solved by the

exact and inexact iterative procedure, using β = 10βopt as regularization parameter

and x(0) =
∑

i gi
m

− b as starting point; for the KL-HS model, the inner solver is SGP

in both versions of the procedure, while for the model KL-TV, AEM is used. The

Matlab codes of SGP and AEM are adapted versions of those downloadable from

http://www.unife.it/prin/software. For the exact version, the inner subproblems Qk

in (6) have to be solved accurately enough to make sure that the update rule (7)

gives p(k+1) ∈ ∂f1(x
(k+1)). If this condition is not satisfied, the nonnegativity of

Dp(k+1)
f1(x, x

(k+1)) is not assured and the inequality (8) may not apply. Then, for

the exact iterative procedure, the previous described standard stopping criteria of SGP

and AEM are used with a severe tolerance, given by tolSGP = 10−10 and tolAEM = 10−5

respectively.

For the inexact version, in the case of the KL-HS model the SGP inner solver uses

(37) as stopping rule while for the KL-TV model AEM is stopped by (37)-(38). For the

setting of the parameters c and d, following the Remark in section 2.3, in both cases, the

first subproblem is solved by the standard stopping rules of SGP or AEM respectively

(with moderate tolerance, i.e. tolSGP = 10−7 and tolAEM = 5 · 10−4) and, then, we set



Inexact Bregman iteration 19

Table 1. L-spacecraft deblurring test problem: exact and inexact iterative

methods for the KL-HS model (δ = 0.0134), using SGP as inner solver. In the

exact version tolSGP = 10−10; in the inexact version, in the first outer iteration

tolSGP = 10−7 while in the subsequent iterations (37) is used as stopping rule

with c = 5.38 and α = 1.5. time denotes the execution time in seconds at the

end of the current outer iteration.

Exact iterative procedure-SGP Inexact iterative procedure-SGP

k ρk it time ρk it time

1 0.4880 4716 157.7 0.5001 1061 35.8

2 0.4012 7500 408.2 0.4265 4713 201.0

3 0.3801 2969 506.9 0.3936 3420 322.1

4 0.3647 7015 744.3 0.3779 3304 440.1

5 0.3644 2609 831.1 0.3697 3763 572.3

6 0.3655 3073 933.9 0.3681 2452 660.1

7 0.3696 3888 1064.4 0.3691 3153 771.9

8 0.3746 2907 1160.2 0.3735 2714 868.0

Table 2. L-spacecraft deblurring test problem: exact and inexact iterative

methods for the KL-TV model, using AEM as inner solver. In the exact

version tolAEM = 10−5; in the inexact version, in the first outer iteration

tolAEM = 5 · 10−4 while in the subsequent iterations (37)-(38) are used as

stopping rules with c = 19.1, d = 65.4, ϑ = 2.1 and α = 1.5. time denotes the

execution time in seconds at the end of the current outer iteration.

Exact iterative procedure-AEM Inexact iterative procedure-AEM

k ρk it time ρk it time

1 0.47727 5373 206.4 0.54087 245 12.2

2 0.40557 5409 425.6 0.42557 1022 54.4

3 0.37766 4775 611.9 0.37946 2708 162.7

4 0.36610 4157 777.8 0.3682 2933 279.2

5 0.36414 3363 910.9 0.36682 2971 397.8

6 0.36518 2392 1003.3 0.36916 2828 511.9

7 0.36869 2625 1105.6 0.37127 2995 629.2

8 0.37258 1991 1184.6 0.37483 2631 736.0

9 0.37783 2118 1268.6 0.37997 3234 865.1

c = ∥η(1)∥ and d = ϵ1; furthermore we set ϑ = 2.1.

In tables 1 and 2 we show the different behavior of the two versions of the iterative

procedure. For any outer iteration k, we report the number of iterations it of the inner

solver (SGP or AEM), the execution time time in seconds at the end of the current

outer iteration and the relative reconstruction error ρk = ∥z(k)−x∗∥
∥x∗∥ with respect to the

original image x∗, where z(k) is the outer k-th iterate x(k) or x̃(k) respectively.

With regard to the KL-HS model, table 1 shows that, for the exact iterative procedure,

the minimum reconstruction error is obtained with 5 outer iterations while, for the
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Figure 2. Test problem L-spacecraft : plot of the relative reconstruction error

versus the execution time in seconds for the exact iterative procedure with EM-

TV as inner solver (dashed line) or AEM (solid line with circle markers); the

solid line is relative to the inexact version with AEM as inner solver.

inexact version, 6 iterations are necessary; nevertheless the inexact method allows

to determine the restored image in a shorter time; indeed the total number of inner

iterations for 5 outer iterations of the exact version is equal to 24809 against 18713 for

6 outer iterations of the inexact scheme.

In a similar way, as regards the KL-TV model, table 2 shows that, for the exact iterative

procedure, the minimum reconstruction error is obtained with 5 outer iterations and

23077 total inner iterations; even for the inexact version, 5 outer iterations are necessary

but only 9879 inner iterations are required.

In figure 2 we show the behavior of the reconstruction error ρk with respect to the

execution time for the inexact and exact versions of the iterative procedure with AEM

as inner solver and for the exact scheme with EM-TV as inner solver [6]. We remember

that the Bregman iteration combined with EM-TV has a very complex structure since

three iterative methods are nested one inside the other. For the implementation of

EM-TV combined with Bregman iteration we refer to [6]; for any k-th outer iteration,

we execute 1500 inner iterations of EM-TV. It should be noted that, since we are

not able to find an inner stopping criterion for which the inequality (8) is verified,

we have determined experimentally a minimum prefixed number of inner iterations

assuring an approximately correct behavior for the KL and the objective function of the

subproblems. Furthermore the inner step of EM-TV solver uses the Chambolle method

[40], that is stopped when the maximum difference between two successive dual iterates

is less than 10−2.

Figure 2 shows that the inner stopping rules (37)-(38) of the inexact scheme increase

the efficiency of Bregman iteration without affecting its features.

To deepen the meaning of the stopping rules in the inexact iterative procedure, we

solve L-spacecraft with both models, using different value of α; the setting of the others



Inexact Bregman iteration 21

Table 3. L-spacecraft deblurring test problem: results obtained by the inexact

iterative method with different values of α in the inner stopping rule. For the

KL-HS model, the inner solver is SGP, while for KL-TV model, AEM is used.

α k ρk cum–it

KL-HS model

1.2 7 0.37039 20849

1.5 6 0.36809 18713

1.7 6 0.36736 22030

KL-TV model

1.5 5 0.36682 9879

3 5 0.36721 12196

4 4 0.36665 16634

parameters is the same used for the experiments related to tables 1 and 2 with the

inner tolerance for the first subproblem of the inexact procedure equal to tolSGP = 10−7

and tolAEM = 5 · 10−4 respectively; in the subsequent outer iterations, the stopping

rules (37)-(38) become gradually more severe. The parameter α allows to adjust how

quickly must increase the accuracy required in a inner subproblem. The results of these

numerical experiments are reported in table 3. For each value of α, we report the

iteration k corresponding to minimum reconstruction error ρk, the value of ρk and the

cumulative number of inner iterations cum–it performed in k outer iterations. As shown

in table 3, a suitable choice of α corresponds to require a not too severe accuracy after

the first 5-6 iterations and, in any case, the inexact version appears to be more efficient

than the exact one in terms of inner iterations.

4.2. Behavior of the inexact procedure with overestimated regularization parameter:

edge–preserving regularization

In this section, we describe some numerical tests for verifying the semi-convergence

property of the inexact scheme. In particular, we consider the deblurring test problems

micro and H-spacecraft ; in both cases, we consider the models KL-HS and KL-TV.

As in the previous section, the value of the regularization parameter related to the

minimum relative reconstruction error with respect to the original image x∗ is obtained

experimentally, by using SGP method for the KL-HS model and AEM for the KL-TV

model. As regards micro, when we solve the KL-HS model with δ = 10−2 by SGP,

the minimum relative reconstruction error, equal to 0.0898, is obtained for βopt = 0.09

in 1128 iterations. SGP method is stopped when the relative difference between two

consecutive values of the objective function is less than tolSGP = 10−7 and the mean

of this difference over the last 10 iterations is less than 10 · tolSGP . When we solve the

KL-TV model by AEM, the reconstruction error is equal to 0.0903 for βopt = 0.09 and

the number of iterations is 1728. The stopping criterion for AEM is that the relative

difference in Euclidean norm between two successive iterates is less than tolAEM = 10−5.
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Table 4. Inexact iterative method for deblurring problems: model KL-HS.

k Dp̃(k)f1(x
∗, x̃(k)) ρk it

micro; tolSGP = 10−5, c = 14.1, α = 2

1 2690.7 0.23227 474

2 2380.8 0.08939 1415

3 2320.5 0.08229 434

4 2292.3 0.08046 352

5 2286.0 0.08073 483

6 2283.9 0.08109 203

7 2292.2 0.08169 370

8 2312.2 0.08266 416

H-spacecraft ; tolSGP = 10−7, c = 39.6, α = 1.5

1 2288 104 0.27868 1433

2 2199 104 0.26633 1397

3 2162 104 0.26077 1518

4 2140 104 0.25898 1086

5 2125 104 0.25803 1593

6 2115 104 0.25791 1411

7 2109 104 0.25819 1494

8 2107 104 0.25911 1640

9 2109 104 0.26030 1404

As regards H-spacecraft, the solution of the model KL-HS with δ = 1 is obtained by

SGP with a miminum relative reconstruction error equal to 0.2657, for βopt = 2.977 10−5

in 1196 iterations and the same stopping criterion of the previous test problem. For the

model KL-TV, AEM allows to obtain a relative reconstruction error equal to 0.2663 with

6880 iterations (with βopt and the same stopping criterion of the previous test problem).

In order to evaluate the semi-convergence behavior of the inexact scheme, we solve micro

and H-spacecraft by the inexact procedure. The results obtained for the model KL-HS

are shown in table 4, while table 5 shows the results for the KL-TV model. As described

for the experiments in the previous section, at the first outer iteration the inner solvers

(SGP and AEM) use standard stopping criteria with a weak tolerance; in particular, for

the subsequent outer iterations, SGP uses the stopping criterium (37) with c = ∥η(1)∥
and, in the case of AEM, the stopping criteria are (37)-(38) with c = ∥η(1)∥, d = ϵ1 and

ϑ = 2.1.

The value of β is put in both cases equal to 10βopt and the starting iterate is

x̃(0) =
∑

i gi
m

− b. In table 4 and 5 we report for each test problem the behavior of the

relative reconstruction error ρk at any outer iteration of the inexact procedure and the

value of Bregman distanceDp̃(k)f1(x
∗, x̃(k)) or inexact Bregman distance ∆p̃(k)

ϵk
f1(x

∗, x̃(k)).

The symbol it denotes the number of iterations of the inner solver for each k–th outer

iteration.

Tables 4-5 provide a numerical evidence of the semi-convergence of the inexact scheme
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Table 5. Inexact iterative method for deblurring problems: model KL-TV.

k ∆p̃(k)
ϵk f1(x

∗, x̃(k)) ρk it

micro; tolAEM = 10−4, c = 0.76, d = 19.5, α = 1.2

1 3467.5 0.16845 491

2 2952.1 0.09991 796

3 2782.2 0.09495 739

4 2711.5 0.09319 994

5 2676.9 0.09358 938

6 2658.8 0.09438 1013

7 2653.6 0.09512 1200

8 2655.3 0.09565 1209

H-spacecraft ; tolAEM = 5 10−5, c = 101.9, d = 775.0, α = 1.5

1 2409 104 0.36301 2001

2 2293 104 0.32202 4394

3 2236 104 0.30739 4573

4 2192 104 0.29659 5813

5 2162 104 0.28828 6946

6 2140 104 0.28191 7555

7 2122 104 0.27719 7743

8 2107 104 0.27346 8193

9 2095 104 0.27041 8789

10 2086 104 0.26787 9545

11 2078 104 0.26571 10444

12 2072 104 0.26383 11983

13 2067 104 0.26220 15000

14 2064 104 0.26130 11300

15 2063 104 0.26057 12790

16 2062 104 0.26007 13617

17 2063 104 0.25980 15000

18 2065 104 0.25974 15000

19 2067 104 0.25990 15000

20 2070 104 0.26025 15000

when an overestimation of the regularization parameter is used. In general few itera-

tions enable us to obtain satisfactory restored images.

For test problem micro, in figure 3(a), we compare the results obtained by solving

the model KL-HS with the inexact iterative method and those obtained by SGP with

βopt; in particular we report an log-error image, computed pixel by pixel with the rule

log |xij
∗ − x̃

(k)
ij |, with log 0 = 0. We introduce this graphical representation of the ab-

solute error because the values of ρk are often similar and in the restored images the

differences are not evident; the log operator can highlight the small absolute errors.

Figure 3(a) shows the log-error images obtained by the inexact method that corresponds

to the minimum reconstruction error (k = 4, ρ4 = 0.08046) and the one obtained by

SGP (relative reconstruction error equal to 0.0898, with 1128 iterations, as reported
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Table 6. Test problem micro: minimum errors versus iterations of the inexact

iterative method with different values of β.
KL-HS model KL-TV model

β k ρk k Dp̃(k)f1(x
∗, x̃(k)) k ρk k ∆p̃(k)

ϵk f1(x
∗, x̃(k))

10βopt 4 0.08046 6 2283.9 4 0.09319 7 2653.6

15βopt 7 0.08281 9 2446.8 6 0.09372 11 2653.4

20βopt 11 0.08926 13 2639.0 9 0.09377 14 2655.3

above). In figure 3(b) analogous results for the model KL-TV are reported; we show

the error images obtained by the inexact iterative procedure with the minimum recon-

struction error (iteration k = 4, ρ4 = 0.09319) and by AEM with βopt = 0.09 (relative

reconstruction error equal to 0.09033, with 1728 iterations). For the images obtained

by the inexact method, the error on the background is more uniform and we observe an

enhancement of the edges.

To highlight the features of the obtained reconstructions, in figure 4 we show the contour

plots of the original image micro (levels 1, 20, 40, 60, 67), the restored images obtained

by solving the KL-HS model with SGP and with the inexact iterative method at the

iteration k = 4 (minimum reconstruction error). Analogous results are obtained for the

model KL-TV. We observe that the inexact procedure provides an improvement of the

contrast.

Figure 5 shows the log-error images related to H-spacecraft. For the model KL-HS,

k = 8 is the iteration of the inexact method with minimum value of Dp̃(k)(x∗, x̃(k)). For

the model KL-TV, k = 16 is the iteration of the inexact method with minimum value

of ∆p̃(k)

ϵk
(x∗, x̃(k)); in this case, from the 17-th outer iteration onwards, the prefixed max-

imum number of iterations (15000) is reached by the inner solver, but at the iteration

k = 16, ρk is less than the reconstruction error obtained by AEM with βopt (0.2663).

Also for this test problem, we observe from the log-error maps a better attenuation of

the background noise with respect to the images obtained with βopt.

Table 6 enables us to investigate how the estimation of the regularization parameter

affects the efficiency of the iterative scheme. For test problem micro, we report the

number of outer iterations at which we obtain the minimum relative reconstruction er-

ror for both models and the minimum value of Dp̃(k)f1(x
∗, x̃(k)) or of ∆p̃(k)

ϵk
f1(x

∗, x̃(k))

when the inexact method is applied with different values of β. In particular we observe

that the number of outer iterations needed to obtain the restored image increases with

decreasing the accuracy of the parameter estimate.
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Figure 3. Test problem micro: log-error images for the model KL-HS (left-

panels) and KL-TV (right-panels). In the upper panels SGP and AEM are

used with an optimal regularization parameter, while the lower panels show

the results obtained by the inexact iterative method at the iteration with the

minimum reconstruction error. The level scale is the same for all images.

4.3. Behavior of the inexact procedure with overestimated regularization parameter:

quadratic regularization

In order to evaluate the behavior of the inexact method for a different model, we consider

the deblurring problem NGB 7027, an example of a diffuse astronomical object, that

can be restored by miminizing the combination of KL with the regularization term (43).

A satisfactory reconstruction can be obtained by SGP with βopt = 9 · 10−9; the relative

reconstruction error is equal to 0.079339 with 263 iterations (tolSGP = 10−7). In table

7, we report the minimum relative reconstruction error in the first 5 iterations of the

inexact method with β = 10βopt, that, for this model, is an inexact proximal point. The

numerical results are consistent with the considerations for the previous models: few

iterations enable to obtain a sensible restored image even in the case of an overestimated

regularization parameter. The restored images obtained at the fourth ant fifth iteration

are very similar to the one obtained by SGP with βopt.
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Figure 4. Test problem micro: contour plots of the original image (upper-left

panel) and restored images for the model KL-HS obtained by SGP (upper-right

panel) and by the inexact iterative method for k = 4 (lower panel). The level

scale, given by (1, 20, 40, 60, 67), is equal for all plots.

Table 7. Inexact Bregman method for NGB 7027; the model is the combination

of KL function with (43) as regularization term. Here α = 1.5 and tolSGP =

10−4 at the first outer iteration.

k Dp̃(k)f1(x
∗, x̃(k)) ρk it

1 3959 107 0.1133 47

2 2475 107 0.08951 71

3 2001 107 0.08026 84

4 1928 107 0.07796 108

5 1996 107 0.07819 122

In table 8, we report the iterations that correspond to the minimum relative

reconstruction error ρk and the minimum Dp̃(k)f1(x
∗, x̃(k)) when the inexact iterative

method is applied with different values of β. Again, we observe the dependence of the

number of iterations required to obtain the minimum errors on the accuracy of the β

estimate.
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Figure 5. Test problem H-spacecraft : log-error images for the model KL-HS

(left-panels) and KL-TV (right-panels). In the upper panels SGP and AEM

are used with an optimal regularization parameter, while the lower panels show

the results obtained by the inexact iterative method at the iteration with the

minimum value of Dp̃(k)f1(x
∗, x̃(k)) or ∆p̃(k)

ϵk f1(x
∗, x̃(k)).

Table 8. Test problem NGB 7027: minimum errors (ρk and Dp̃(k)f1(x
∗, x̃(k)))

versus iterations of the inexact iterative method with different values of β; the

model is the combination of KL function with the quadratic regularization.

β k ρk k Dp̃(k)f1(x
∗, x̃(k))

10βopt 4 0.077963 4 1928 107

15βopt 6 0.079085 5 2042 107

20βopt 7 0.080287 6 2110 107
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4.4. Behavior of the inexact procedure with overestimated regularization parameter:

denoising

To evaluate the performance of the inexact procedure for a denoising problem, we refer

to the LCR phantom, a piecewise constant object, frequently used in other papers (see,

for example, [20]). We consider both the models KL-HS and KL-TV. The model KL-HS

can be solved by SGP with an experimentally tuned optimal regularization parameter

βopt = 0.575 [26]; in this case the relative reconstruction error is equal to 0.04231 and

the number of iterations is 1034 (δ = 10−3, tolSGP = 10−8). For the KL-TV model, we

obtain by AEM with the same value of βopt that the reconstruction error is equal to

0.04477 and the number of iterations is 2536 (tolAEM = 10−6).

In table 9 we report the results obtained by solving both models by the inexact method:

the relative reconstruction error, the exact or inexact Bregman distance and the number

of inner iterations at each k–th outer iteration. Also for this problem, in both cases, β is

equal to 10βopt. In the first outer iteration, for the KL-HS model, we set tolSGP = 10−5,

while for the KL-TV model, tolAEM = 10−4. Also for this test problem, we observe a

semi-convergence behavior of the inexact method. For the model KL-HS, the minimum

relative reconstruction error is obtained at the iteration k = 6, while for the KL-TV

model, we obtain the minimum reconstruction error at k = 5. The Bregman distance

and the inexact Bregman distance reach the minimum value at the same outer iterate

(k = 6).

In figure 6 (a), we show the superposition of the line–outs from row number 128 for the

Table 9. Inexact iterative method for the denoising problem related to LCR

phantom

KL-HS KL-TV

k Dp̃(k)f1(x
∗, x̃(k)) ρk it ∆p̃(k)

ϵk f1(x
∗, x̃(k)) ρk it

1 2685.2 0.15605 1140 2788.6 0.19737 758

2 1569.1 0.11313 2104 1691.3 0.04855 1300

3 1202.4 0.05435 3688 1285.6 0.03957 1507

4 1081.7 0.04038 2117 1167.4 0.03738 1867

5 1017.1 0.03666 1223 1102.6 0.03654 2264

6 998.5 0.03640 361 1079.5 0.03670 2657

7 1023.2 0.03791 648 1089.3 0.03848 2988

8 1124.5 0.04051 2261 1129.5 0.04122 3048

KL-HS reconstructions obtained by SGP and by the inexact method at the iteration

k = 6 (minimum reconstruction error). The solid line is the row number 128 of the

original image. Figure 6(b) shows the superposition of the line–outs from row number

128 for the KL-TV reconstructions obtained by AEM and by the inexact method at the

iteration k = 5. We observe that for both models, the reconstruction obtained by the

inexact method is able to reach the level 40 in the central pixels of the original image.

This level is underestimated when we solve the models KL-HS and KL-TV with the
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Figure 6. Test problem LCR: superposition of the line–outs from row number

128 for the KL-HS (left-panels) and KL-TV (right-panels) restored images.

In the upper panels SGP and AEM are used with an optimal regularization

parameter (dashed lines), while the lower panels show the images obtained

by inexact iterative method at the iteration with the minimum reconstruction

error (dashed lines). The solid line is the row number 128 of the original image.

optimal regularization parameter.

Figure 7 (a) shows the contour plots of the restored images for the model KL-HS obtained

by SGP and by the inexact iterative method at the iteration k = 6 while figure 7 (b)

shows the results obtained for the model KL-TV by AEM and by the inexact iterative

method at the iteration k = 5. For the images obtained by SGP and AEM, the levels are

[2, 14, 27, 38], while for the results of the inexact iterative method, they are [2, 14, 27, 40],

since in this case the level 40 is reached. Figure 7 as well as the previous figure 6

show that the inexact iterative method provides a contrast enhancement of the restored

images. Furthermore, the contour plots obtained by the inexact method show a better

reconstruction, in particular of the frame around the circles and of the highest circle.
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(a) KL-HS (b) KL-TV
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Figure 7. Test problem LCR: contour plots of the KL-HS (left-panels) and

KL-TV (right-panels) restored images. In the upper panels SGP and AEM

are used with an optimal regularization parameter (levels [2, 14, 27, 38]), while

the lower panels show the contour plots of the images obtained by inexact

iterative method at the iteration with the minimum reconstruction error (levels

[2, 14, 27, 40]).

5. Conclusions

In this paper we investigate the iterative regularization method based on the Bregman

iteration, already proposed in [5] for Gaussian data and in [6] for Poisson data. In a

discrete setting, we have resumed the convergence analysis under general hypotheses and

we have described an inexact version of the method that enables to use iterative inner

solvers, devising an inner stopping criterion that assures the convergence of the scheme.

Then we discuss the application of the inexact scheme to image reconstruction problems

from data corrupted by Poisson noise (denoising and deblurring). The numerical

experiments show that the inexact version appears promising from the point of view of

the efficiency: it allows to exploit iterative schemes specialized to minimize KL function

combined with a differentiable or a non differentiable regularization term, monitoring

how much accurately the inner solution has to be computed to preserve the convergence.

Furthermore the iterative scheme is an effective tool for image restoration when only

an overestimation of the regularization parameter is known. Obviously the number of

iterations needed to obtain the restored image increases with decreasing the accuracy of

the parameter estimate. We observe also that, above all in denoising case, the iterative

scheme seems to provide an enhancement of the restored images. Future work will
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involve the investigation of other techniques for dealing with the incorrect solution of

the inner subproblems, in order to further relax the inner accuracy and to obtain a

greater efficiency. A crucial point for future investigations is to devise a suitable outer

stopping criterion for the scheme.

Appendix A.

We report the proof of Proposition 1.

Proof.

(a) From the optimality condition for the minimizer x(k+1) of Qk(x, p
(k)) and in

according to Theorem 23.8 in [15], we have 0 ∈ ∂f1(x
(k+1)) − p(k) + 1

β
∂f0(x

(k+1)).

Then (7) follows.

(b) From Qk−1(x
(k−1), p(k−1)) = 1

β
f0(x

(k−1)) and Dp(k−1)
f1(x

(k), x(k−1)) ≥ 0, since

x(k) is a minimizer of Qk−1(x, p
(k−1)), we have 1

β
f0(x

(k)) ≤ Qk−1(x
(k), p(k−1)) ≤

Qk−1(x
(k−1), p(k−1)) and (8) holds.

(c) By direct algebra, the following identity holds:

Dp(k)f1(x, x
(k))− Dp(k−1)

f1(x, x
(k−1)) +Dp(k−1)

f1(x
(k), x(k−1)) =

= < (x(k) − x), (p(k) − p(k−1)) >

Using (7), since p(k) − p(k−1) = − 1
β
q(k) ∈ 1

β
∂f0(x

(k)), from the convexity of f0, we

have (9).

(d) If x̂ is a minimizer of f0, from (9) with x = x̂, since Dp(k−1)
f1(x

(k), x(k−1)) ≥ 0, we

obtain

Dp(k)f1(x̂, x
(k)) +

1

β
(f0(x

(k))− f0(x̂)) ≤ Dp(k−1)

f1(x
∗, x(k−1))

Since f0(x
(k))− f0(x̂) ≥ 0, the inequality (10) holds. Furthermore, summing up the

inequalities (9) computed at x̂ related to the first k steps, we have:

Dp(k)f1(x̂, x
(k)) +

k∑
i=1

[Dp(i−1)

f1(x
(i), x(i−1)) +

1

β
(f0(x

(i))− f0(x̂))] ≤

≤ f1(x̂)− f1(x
(0)) (A.1)

Since Dp(i−1)
f1(x

(i), x(i−1)) ≥ 0 for any i and Dp(k)f1(x̂, x
(k)) ≥ 0, from the

monotonicity of the sequence f0(x
(i)), we have

k
1

β
[f0(x

(k))− f0(x̂)] ≤ f1(x̂)− f1(x
(0))

and then (11) follows.

Since the sequence {x(k)} is bounded, there exists a subsequence of {x(k)} convergent
to a limit point x̃ and, from (11), we have for k → ∞ that f0(x̃) ≤ f0(x̂). Then,

x̃ is a minimizer of f0(x). If x̂ is the unique minimizer of f0(x), then x(k) → x̂ as

k → ∞.

�
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Appendix B.

To analyze the behavior of the inexact Bregman iteration with respect to the exact

scheme, we consider a 1D example where, under suitable hypothesis, a closed formula

gives the solution of the first two inner subproblems. This is the case of a denoising

problem, when it is solved by the discrete TV regularization. By Theorem 1 in [41], the

exact solution can be easily computed. For completeness, we report this theorem (in a

discrete setting).

Proposition 6 [41]. Suppose the vector f ∈ Rn is defined such that
∑n1

i=1 fi
n1

= φ1 and∑n
i=n1+1 fi

n−n1
= φ2, with φ1 > φ2 and maxi=n1+1,n fi ≤ mini=1,n1 fi. If we assume that

max
i=n1+1,n

fi ≤ φ2 +
β

n− n1

≤ φ1 −
β

n1

≤ min
i=1,n1

fi (B.1)

then the unique minimizer of the problem

min
x

1

2
∥x− f∥2 + β

n−1∑
i=1

|xi+1 − xi|

is given by

x̂i =

{
φ1 − β

n1
i = 1, ..., n1

φ2 +
β

n−n1
i = n1 + 1, ..., n

Let g∗ be a vector of Rn, defined as

gi
∗ =

{
γ1

∗ i = 1, ..., n1

γ2
∗ i = n1 + 1, ..., n

where we assume γ1
∗ > γ2

∗. We denote by n2 the difference n− n1. By perturbing the

data with Gaussian noise with standard deviation σ, we obtain a vector g, such that

g = g∗ + s, where s is the Gaussian noise. The noise is such that, if we denote by γ1
and γ2 the following values∑n1

i=1 gi
n1

= γ1

∑n
i=n1+1 gi

n2

= γ2

we have γ1 > γ2.

In figure B1 (a) we show the original vector g∗ (solid line) and the noisy vector g

(dotted line) for n = 128, n1 = n2 = 64, γ1
∗ = 1, γ2

∗ = 0, γ1 = 1.0030, γ2 = −0.0129,
1
2
∥g∗ − g∥2 = 0.5052, σ = 0.10.

In order to solve the denoising problem of recovering an estimate of the original object

g∗ from the noisy data g, we consider the following variational problem (discrete

approximation of the ROF model):

min
x

1

2
∥x− g∥2 + β

n−1∑
i=1

|xi+1 − xi| (B.2)
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(a) Original and noisy vector (b) x(2) with exact procedure (c) x̃(2) with inexact procedure

Figure B1. Test problem 1D: (a) plot of the original vector (solid line) and

noisy vector (dotted line); (b) plot of the exact iterate x(2) (dashed line) of

the Bregman procedure with respect to the original vector (solid line); (c) plot

of the iterate x̃(2) of the inexact procedure combined with AEM (dashed line)

with respect to the original vector (solid line).

where f0(x) =
1
2
∥x−g∥2, f1(x) =

∑n−1
i=1 |xi+1−xi| and β is the regularization parameter.

The exact Bregman iteration for the problem (B.2) consists in solving a sequence of

subproblems as

min
x

1

2
∥x− (g + βp(k))∥2 + β

n−1∑
i=1

|xi+1 − xi| k = 0, 1, .. (B.3)

with p(0) = 0. If the parameter β satisfies the following conditions

2max{n2( max
i=n1+1,n

gi − γ2), n1(γ1 − min
i=1,n1

gi)} ≤ β ≤ (γ1 − γ2)n1n2

n
(B.4)

the first two step of the Bregman iteration can be computed by a closed formula. At

the first iteration (the initial subproblem coincides with (B.2)), we have

xi
(1) =

{
γ1 − β

n1
i = 1, ..., n1

γ2 +
β
n2

i = n1 + 1, ..., n

pi
(1) = pi

(0) − 1

β
(xi

(0) − gi)

{
− 1

β
(γ1 − β

n1
− gi) i = 1, ..., n1

− 1
β
(γ2 +

β
n2

− gi) i = n1 + 1, ..., n

Furthermore, we have

f0(x
(1)) =

1

2

(
n1∑
i=1

(γ1 − gi)
2 +

n∑
i=n1+1

(γ2 − gi)
2 +

β2

n1

+
β2

n2

)
Dp(1)f1(g

∗, x(1)) = 0

Now, at the second iteration, since g(1) = g + βp(1) is such that∑n1

i=1 gi
(1)

n1

= γ1 +
β

n1

∑n
i=n1+1 gi

(1)

n− n1

= γ2 −
β

n2
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thanks to (B.4) and γ1 > γ2, g
(1) satisfies the assumption B.1 of Proposition 6. Then

the second exact iterate is given by

xi
(2) =

{
γ1 i = 1, ..., n1

γ2 i = n1 + 1, ..., n
(B.5)

Furthermore, we have

f0(x
(2)) =

1

2

(
n1∑
i=1

(γ1 − gi)
2 +

n∑
i=n1+1

(γ2 − gi)
2

)
(B.6)

Dp(1)f1(g
∗, x(1)) = 0

Then x(2) can be considered an approximation of the original vector.

Figure B1 (b) shows the iterate x(2). In this case a value of β satisfying (B.4) is 29

which is an overestimate of an optimal value of the regularization parameter. Table B1

shows the results obtained for this test problem in the following three cases:

• exact scheme with the closed formula

• exact scheme with an inner solver

• inexact scheme.

Here ρk =
∥x(k)−g∗∥

∥g∗∥ , it denotes the number of iterations of the inner solver for each k–th

outer iteration.

As inner solver for the subproblems (B.3), we use AEM and the primal-dual Algorithm

2 in [31], denoted by CP in table B1. For the exact version, the stopping rule of both

inner solvers is based on the standard relative difference in Euclidean norm between two

successive primal-dual iterates, that is
∥∥∥∥( xi+1

yi+1

)
−

(
xi

yi

)∥∥∥∥/∥∥∥∥( xi+1

yi+1

)∥∥∥∥ ≤ tol, where (xi, yi)

denotes the i-th primal-dual iterate of the inner solver. For the inexact version, in the

first iteration, the standard criterion is used; then in the subsequent iterations, both

the inner solvers are stopped when the conditions (37)-(38) hold, with c = ∥η(1)∥ and

d = ϵ1. We observe that when an inner iterative method is used in the exact scheme,

the computed Bregman distances can assume negative values, since the update rule

determines an approximate subgradient of f1 at the current iterate. Furthermore, in

the inexact version, two outer iterations are sufficient to obtain results similar to the

ones related to the exact version. For this particular test problem, the inner solver AEM

appears more efficient than the CP method.
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Table B1. Test problem 1D: results of different version of the Bregman iteration

with β = 29.
exact version with closed formulas

k ρk it f0(x(k)) Dp(k)
f1(x∗, x(k))

1 0.6286 13.6402 0
2 0.01325 0.49955 0

k ρk it f0(x(k)) Dp(k)
f1(x∗, x(k)) k ρk it f0(x̃(k)) ∆p(k)

ϵk f1(x∗, x̃(k))
exact version with AEM as inner solver, tol = 10−6 inexact version with AEM and tol = 10−3, α = 1.5
1 0.6296 830 13.64 −8.1 10−5 1 0.6026 239 12.59 5.3 10−16

2 0.01325 845 0.500 −1.1 10−4 2 0.01326 623 0.500 3.5 10−16

3 0.01923 816 0.484 −1.7 10−4 3 0.02350 697 0.481 7.0 10−17

exact version with CP as inner solver, tol = 10−8 inexact version with CP and tol = 10−6, α = 1.5
1 0.6289 61742 13.6126 9.33 10−4 1 0.6277 22392 13.56 2.0 10−10

2 0.01304 52678 0.49956 −1.01 10−5 2 0.01379 34950 0.4996 1.0 10−16

3 0.02005 46246 0.48373 −1.61 10−5 3 0.02013 38485 0.4839 8.0 10−16
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