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Abstract

During acquisition and transmission, images are often blurred and corrupted by noise.
One of the fundamental tasks of image processing is to reconstruct the clean image
from a degraded version. The process of recovering the original image from the data
is an example of inverse problem. Due to the ill-posedness of the problem, the simple
inversion of the degradation model does not give any good reconstructions. Therefore, to
deal with the ill-posedness it is necessary to use some prior information on the solution
or the model and the Bayesian approach.

Additive Gaussian noise has been extensively studied since it produces simple and
tractable mathematical models. However, in the real applications, the noise is much more
complicated and it cannot be well simulated by additive Gaussian noise, for instance, it
may be signal dependent, very impulsive, multiplicative, mixed, etc. This PhD thesis
intends to solve some of the many open questions for image restoration under non-
Gaussian noise. The two main kinds of noise studied in this PhD project are the impulse
noise and the Cauchy noise.

Impulse noise is due to for instance the malfunctioning pixel elements in the camera
sensors, errors in analogue-to-digital conversion, faulty memory locations in hardware.
Cauchy noise is characterized by a very impulsive behaviour and it is mainly used to
simulate atmospheric and underwater acoustic noise, in radar and sonar applications,
biomedical images and synthetic aperture radar images. For both noise models we in-
troduce new variational models to recover the clean and sharp images from degraded
images. Both methods are verified by using some simulated test problems. The experi-
ments clearly show that the new methods outperform the former ones.

Furthermore, we have carried out a theoretical study on the two most known esti-
mates: maximum a posteriori (MAP) estimate and conditional mean (CM) estimate for
non-Gaussian noise. With only the convexity assumption on the data fidelity term, we
introduce some cost functions for which the CM and MAP estimates are proper Bayes
estimators and we also prove that the CM estimate outperforms the MAP estimate, when
the error depends on Bregman distances.

This PhD project can have many applications in the modern society, in fact the
reconstruction of high quality images with less noise and more details enhances the
image processing operations, such as edge detection, segmentation, etc.
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Resumé

Under transmission og dannelse af billeder opst̊ar der ofte slørings- og støjforstyrrelser.
En af de fundamentale opgaver indenfor billedbehandling er at rekonstruere det rene
billede ud fra det forringede. Gendannelsen af det originale billede ud fra data er et
eksempel p̊a et inverst problem. Da problemet er “d̊arligt formuleret” (ill-posed) vil
en simple inversion af degraderingsmodellen ikke give en god rekonstruktion. For at
h̊andtere det d̊arligt formulerede problem er det nødvendigt at anvende forudg̊aende
(prior) information om løsningen eller modellen, og en Bayesiansk tilgang.

Additiv Gaussisk støj er blevet udførligt undersøgt da det producerer simple og
medgørlige matematiske modeller. Men i forbindelse med faktisk anvendelse er støjen
langt mere kompliceret og den kan ikke approksimeres ved hjælp af Gaussisk støj, for
eksempel, kan den være signalafhængig, meget impulsiv, multiplikativ, en sammenbland-
ing, osv. Intentionen med denne Ph.d.-afhandling er at besvare nogle af de mange åbne
spørgsm̊al indenfor digital billed-restaurering i tilfælde af ikke-Gausisk støj. De to støj-
typer der er omdrejningspunktet for dette ph.d.-projekt er impuls støj og Cauchy støj.

Impuls støj opst̊ar blandt andet p̊a grund af defekte pixelelementer i kamera-sensoren,
fejl i analog-til-digital konvertering eller p̊a grund af fejlbehæftet hukommelseslagring i
hardwaren. Cauchy støj er karakteriseret ved at have en meget impulsiv opførsel og det
bliver primært brugt til at simulere atmosfærisk- og akustisk undervands-støj, i radar
og sonar applikationer, biomedicinske billeder og for syntetisk apertur radar billeder.
For begge støj-modeller introducerer vi nye variationelle modeller for genvinde de rene
og skarpe billeder ud fra de forringede. Vi bekræfter virkningen af begge metoder via
simulerede testproblemer.

Derudover, har vi udført et teoretisk studie af de to bedst kendte estimater: maxi-
mum a posteriori (MAP) estimatet og betinget gennemsnit (“conditional mean” (CM))
estimatet for ikke-Gausisk støj. Vi har, kun baseret p̊a en antagelse om konveksitet af
data-overensstemmelsesledet, introduceret en udgiftsfunktion for hvilken CM og MAP
estimaterne er egentlige (“proper”) Bays etimatorer, og vi beviser ogs̊a at CM estimatet
udkonkurrerer MAP estimatet, n̊ar fejlen afhænger af Bregman afstande.

Dette ph.d.-projekt kan have mange forskellige anvendelsesmuligheder i det moderne
samfund, faktisk leder rekonstruktion af højkvalitetsbilleder med mindre støj og flere
detaljer til forbedrede billedbehandlings-operationer, som for eksempel kant-detektion,
segmentering, osv.
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CHAPTER 1
Introduction and motivation

In the last few decades digital images have reached a high importance in the world,
they can be used for example, for medical purpose (such as computed tomography (CT),
magnetic resonance imaging (MRI), positron emission tomography (PET)), astronomic
purpose, or simply in our daily life in our personal laptop and cellphone. Due to the
popularity of digital cameras and smartphones, everyone knows how hard is to take a
“‘good” picture, in fact the picture could not be as clean as we would like mainly for two
reasons: blur and noise. The presence of blur makes an image not sharp due to some
motion defects or some focusing degradation. The noise does not allow to see all the
details of the scene, it may be due to some issues during the acquisition and transmission
for instance. Consequently, there is a huge demand for developing the imaging sciences.

Imaging sciences consist of three relatively independent components: image acquisi-
tion, image processing, and image interpretation. The first one studies the formation of
the images by some physical mechanisms. The second discipline deals with the process-
ing of images using mathematical operations, i.e. given an acquired image by using some
mathematical model returns another image. The last one interprets the 3D world from
images. Here, we just focus on the image processing. We underline that image processing
is strongly connected with image acquisition, since the knowledge of an image acquisition
process can be helpful in developing a good image processing model and algorithm.

Image processing is a very huge field that includes many disciplines, for instance:
image denoising, image deblurring, image segmentation and image inpaiting. The first
two deal with the restoration of the images, trying to recover the clean image from the
degraded data. Image segmentation finds a visually meaningful partitioning of the image
domain, see [63]. This process allows to simplify the acquired image into something that
is more meaningful and easier to analyse, for instance for the biomedical images it can
separate the bones from the soft tissues. Image inpainting [4] is the process of recover
some hidden and lost parts of an image, for instance it may be the restoration of ancient
paintings or the zooming and superresolution. In this thesis, we focus on the first two
disciplines: image denoising and deblurring. These processes have a very important role
in the imaging science, since the acquired images are always degrades due to either poor
imaging conditions or problems during acquisition, storage and communication. Thus,
image denoising and deblurring aim to recover the uncorrupted and sharp image knowing
the blurred and noisy acquired image. The key idea is that some information of the clean
and sharp image is hidden in the degraded image and it can be recovered if we know the
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2 Chapter 1. Introduction and motivation

noise model and the blurring process. For this reason, sometimes image acquisition is
combined with image processing, since the information of the formation of the data can
be useful for getting a better reconstruction.

Unfortunately there is no hope to reconstruct the clean image exactly. In fact,
during the the acquisition process there are some unavoidable errors, for instance the
representation of the image with a limited number of digits and the noise puts a limit
on the size of the details. Therefore, one of the main challenges of image reconstruction
is the study a mathematical model that relates the degraded image to the unknown
original image and to find some efficient algorithms that are able to recover the original
image with much information and details as possible from the recorded image. According
to [7], noise is an unwanted component of the image that inevitably occurs during the
image acquisition and transmission. Over the years, additive white Gaussian noise has
been extensively studied since it produces simple and tractable mathematical models.
However, in many real applications, the noise is much more complicated, and cannot
be well simulated by additive white Gaussian noise, since it can be signal dependent,
multiplicative, impulsive, or even mixed. Thus, due to the complication and variety of the
noise there are still a lot of open questions for image reconstruction under non-Gaussian
noise. The goal of this thesis is the study of noise models and try to recover the ideal
clean image. We will mainly focus on the denoising of images corrupted by non-Gaussian
noise and for each of our projects we will try to extend our work also to the deblurring
case. In some cases, the generalization to the combined deblurring and denoising case is
quite straightforward, while some other times it can be more complicated. Later we will
refer to image reconstruction when we will work on the image denoising and deblurring.

One of the main challenges of image reconstruction is to seek a good mathematical
model that is able to denoise and deblur the image in order to get it as close as possible
to the original one. Unfortunately, the way of solving the model is not straightforward,
in fact the simply inversion of the blurring operator does not lead to any good result.
This is due to the ill-posedness of the inverse problem that we need to solve.

Therefore, the use of the Bayesian inference is necessary. The Bayesian approach
combines the known information about the image that we aim to recover to reconstruct
it. In particular, by using some statistical properties, we can formulate the mathematical
model for reconstructing the original image as a sum of two terms: one that is related
with the noise model and the other one that describes some prior information about the
expected behaviour of the original image. The tradeoff between these two terms, i.e.
the good fit to the measurements and the smoothness of the solution is controlled by a
parameter called the regularization parameter. Since the aim of the thesis is to study
non-Gaussian noise, we will mainly focus on the term that controls the fit with the data.

1.1 Contributions of the thesis

This thesis focuses on the development of image reconstruction models and algorithms
under non-Gaussian noise. Our main contributions regard three works:

• Impulse noise. This project deals with the restoration of blurred image cor-
rupted by impulse noise. Impulse noise is characterized by having either uncor-
rupted pixels or noisy pixels which do not have any relation with the clean ones.
By using the above property of this noise model, we introduce a new two-phase
method. This method has the advantage of being parameter free. Furthermore,
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in the denoising case we can prove that the proposed method improves the com-
putational efficiency.

Relevant paper:

[A] F. Sciacchitano, Y. Dong, and M. S. Andersen, Total variation based
parameter-free model for impulse noise removal, Numerical Mathematics: Theory,
Methods and Applications; to appear.

• Cauchy noise. This project focuses on the restoration of blurred image corrupted
by Cauchy noise. Cauchy noise together with Gaussian noise belongs to the alpha-
stable distributions, but Cauchy noise is much more impulsive than the Gaussian
noise. Here, based on the total variation (TV) we introduce a variational model
for recovering images degraded by Cauchy noise and blurring. Due to the non-
convexity of the variational model, we proposed to restore the image by using
a convexification. Experimental results show the effectiveness of the proposed
method for deblurring and denoising simultaneously images corrupted by Cauchy
noise.

Relevant paper:

[B] F. Sciacchitano, Y. Dong, and T. Zeng, Variational approach for restor-
ing blurred images with cauchy noise, SIAM Journal on Imaging Sciences 8.3
(2015): 1894-1922.

• CM and MAP estimates. This project provides a theoretical study of the max-
imum a posteriori (MAP) estimate and the conditional mean (CM) estimate for
the non-Gaussian noise. In particular, we introduce some Bregman cost functions
for which the CM and the MAP estimates are proper Bayes estimator. Moreover,
we also prove that the CM estimate outperforms the MAP estimate, when the
error depends on some Bregman distances.

Relevant paper:

[C] M. Burger, Y. Dong, and F. Sciacchitano, Bregman Cost for Non-
Gaussian Noise, to be submitted. Available on arXiv http://arxiv.org/abs/1608.07483

1.2 Thesis structure

This PhD thesis is based on a collection of scientific articles published or to be submitted
in peer-reviewed scientific journals. The rest of the thesis is organized as follows.

We first establish backgrounds and fundamentals of the image processing field and
describe basic definitions in Chapters 2. A comparison between different noise models is
provided as well. Chapter 3 provides the reader some background knowledge of inverse
problems and image reconstruction. We particularly focus on the maximum a posteriori
(MAP) estimate and the conditional mean (CM) estimate. Chapter 4 deals with the
some numerical considerations, i.e. we introduce some algorithms that can be used
for computing the MAP and the CM estimates. Chapter 5 is dedicated to the main
contributions of this thesis. For each of our works, we give a broad introduction of the
topic and we include some perspective. Finally, the conclusions and some open questions
are given in Chapter 6.

Three papers are included in the attached appendices. It is recommended that
enclosed papers are read before proceeding to the conclusions chapter.

http://arxiv.org/abs/1608.07483




CHAPTER 2
Set the scene

In this chapter we give an overview of the image processing field. Image processing
includes many applications, for instance image deblurring, image denoising, image con-
trast enhancement, image inpainting, image segmentation and so on... In this thesis,
we mainly focus on the first two topics, i.e. image deblurring and denoising, which deal
with the reconstruction of the clean image from the degraded data. These disciplines are
very important since the acquired image is inevitably degraded due to acquisition and
transmission errors. Here, we start by giving a general introduction of the image, then
we analyse the way how it can be corrupted, i.e. by noise and blur.

2.1 What is an image?

Nowadays images are omnipresent in our society, they are widely used in medicine,
biology, astronomy, movies, forensic and video surveillance, 3-D reconstructions, robotics,
games and special effects, and many others. The main reason of such popularity is
because the images are a very powerful medium of communication and through them we
can easily represent the physical world.

Mathematically speaking, we consider the following mapping

u : Θd → Rs,

where Θ ⊂ R is the domain acquisition, d ≥ 1 and s ≥ 1 is the dimensionality of the
input and output space, respectively. When d = 1 and s = 1, u is a signal, when d = 2
and s = 1 it is a gray scale image, while if d = 2 and s > 1 color image, for instance if
d = 2 and s = 3 is a color image with three channels (R for red, G green, B for blue).
In this thesis, we only focus on the gray image, but since color image can be seen as the
union of different gray images, most of our work can likely be extended also to the color
image.

The images are analogue, which means that they are defined on a continuous domain
and they take values that come from a continuum of possibilities. However, in order to
turn images into a computer-readable digital format, we have to discretize them. The
discretization process will be describe in Chapter 4, while in the first chapters we just
consider analogue images.

Images are inevitable deteriorated during the formation, transmission and recording
processes. The degradation is often due to two phenomena: blur and noise, which can be

5



6 Chapter 2. Set the scene

caused by some possible defects of the imaging system during the image acquisition, for
instance the image may look blurry due to the motion of the system or a miscalibrated
lens in the system or the image may look noisy due to some dust in the lens. But they
can also be random, for instance due to some issues during the image transmission or
some motion defects due to the movement while the picture was taken.

Mathematically speaking, the forward model to acquire an image is described by

f = Kũ� v,

where f the degraded image defined on the acquisition domain Ω ⊂ R2, K is the known
linear and continuous blurring operator, ũ is the desired clean image, v represents the
noise component and � indicates a mathematical operation that may be a sum or a
multiplication or even a more complicated operation. Informally, the forward problem
define how a sharp and clean image would look like if the camera was incorrectly focused
and no noise occurred. In the next sections, we will first focus on the noise model, i.e.
on the noise v and the operation �, then we will describe the blurring operator.

2.2 Noise

With the word noise we refer to any unwanted signal, variation of brightness or color
information in images. Over the years additive Gaussian noise has very often been
assumed due to its simplicity. Unfortunately, in real applications, the noise is much more
complicated than just an additive Gaussian noise, for instance it can be signal dependent
[38, 39, 48, 58], multiplicative [2, 35, 74, 82], more impulsive than the Gaussian noise
[67, 78, 90], or even mixed [16, 57, 59, 88]. In order to get good restored images, it is
very important to choose the noise model as close as possible to reality, thus the main
aim of this section is to give an overview of the most well-known noise models with their
main applications. In Chapter 3 we will show how to recover the noisy image according
to the noise model. In this thesis, we have extensively studied two non-Gaussian noise
models: impulse noise and Cauchy noise. More details about these two degradations will
be given in Chapter 5.

2.2.1 Additive noise

We start with the most popular noise model: the additive noise. Given Ω ⊂ R2 the
acquisition domain, f the degraded image defined on Ω, in the additive case, we can
decompose the corrupted image into the desired clean image ũ and noise component v,
i.e.

f = ũ+ v.

We assume v to be white that means that every realization is independent from the
others, which in other words, corresponds to say that it is spatially uncorrelated, i.e. the
noise for each pixel is independent, [24, Def. 4.1]. Some examples of additive noise are
Gaussian noise, uniform noise, Laplacian noise and Cauchy noise. Additive Gaussian
noise has been extensively studied since it produces simple and tractable mathematical
models, see [19, 24, 36, 73, 85]. In this case, the noise v follows the Gaussian distribution
with zero mean and standard deviation σ > 0, thus, the probability distribution function
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(also known as PDF) is defined as follows

P(v(x) = η) =
1√

2πσ2
exp

(
− η2

2σ2

)
, x ∈ Ω.

The Gaussian distribution is strongly related with the central limit theorem, which
says that the arithmetic mean of a large number of independent and identically dis-
tributed random variables each with a finite expected value and variance is approxi-
mately Gaussian distributed, for more details the reader is referred to [37]. Although,
in many applications the assumptions of the central limit theorem are almost, but not
quite, true, [7], for instance the number of variables may not be large enough, or the
terms may not be sufficiently independent. In order to get the best reconstruction, i.e.
remove or diminish the noise, we have to choose the degradation model that is close
enough to the real one. For this reason, the focus of this work is on the non-Gaussian
models. We now introduce other additive noise models.

A less studied white additive noise is the uniform noise [30], which appears as a
statistical model of quantization errors, thus is common during the digital acquisition
[80, 86]. Here, the noise v follows the uniform distribution, which has the following
probability density function

P(v(x) = η) =





1

b− a if a ≤ η ≤ b
0 otherwise,

, x ∈ Ω

with a < b. The additive noise models can be also more impulsive than the Gaussian
noise: Laplacian noise and Cauchy are some examples of additive impulsive noise. These
noise models are characterized by heavy tails, which means that for large values the
density approaches 0 slower than the Gaussian distribution. The Laplace distribution is
defined as follows,

P
(
v(x) = η

)
=

1

2b
exp

(
−|η|
b

)
, x ∈ Ω,

where b > 0 is the scale parameter and the variance is given by 2b2. Due to the heavy
tailed behaviour Laplace noise usually models the impulse noise, see §2.2.4.

Cauchy noise is a degradation more impulsive than the Laplacian noise and it ap-
pears in atmospheric and underwater acoustic noises, radar and sonar applications, air
turbulence, wireless communication system, biomedical images, synthetic aperture radar
(SAR) images, see [B] and references therein. Cauchy noise together with the Gaussian
noise belongs to the alpha-stable distribution, which is a family of distributions char-
acterized by a bell-shaped distribution. The Cauchy distribution has the probability
density function

P(v(x) = η) =
1

π

γ

γ2 + (η − δ)2
, (2.1)

where γ > 0 is the scale parameter and δ ∈ R is called the localization parameter.
The scale parameter determines the spread of the distribution around δ and plays a
role similar to that of the variance in the Gaussian distribution. For a more detailed
description of Cauchy noise, we refer the reader to Chapter 5.

In Fig. 2.1, we show an example of images corrupted by some additive noise mod-
els. As you can see Laplacian noise has a very impulsive behaviour compared with the
Gaussian. Furthermore, a common characteristic of the additive noise is that the noise
v is independent of the original image ũ.
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Figure 2.1: From the left to the right: uncorrupted image, degraded image by
Gaussian noise and by Laplacian noise. The standard deviation is 0.1 for both
noisy images.

2.2.2 Multiplicative noise

Multiplicative noise is another kind of degradation where the noisy image is obtained
by the multiplication between the noise v and the original image ũ. In the applications,
it commonly appears in synthetic aperture radar (SAR), ultrasound imaging, micro-
scope images, laser images, see for instance [2, 6, 35]. The degradation model for the
multiplicative noise is given by

f = ũv.

A very common assumption is that v follows Gamma distribution with mean 1, i.e.

P(v(x) = η) =
1

θKΓ(K)
ũ(k−1) exp

(
ũ

θ

)
, x ∈ Ω,

with Γ as the Gamma-function, θ and K as the scale and the shape parameters respec-
tively. Note that, since the mean is 1, we have θK = 1. In Fig. 2.2, we show an example
of noisy image obtained by multiplicative noise. The main difference between the addi-
tive and multiplicative noise models is that in the multiplicative case the noisy image is
darker than the original one. This is due to the fact that the noise v belongs to [0, 1],
thus when we multiply the original image by the noise, we reduce the intensity of the
pixel values, therefore the noisy image is darker. While in the additive case, the noisy
image is given by the sum of the original image and the zero-mean noise, thus the noisy
image does not look obviously darker or lighter.

2.2.3 Signal dependent noise

There is also important situations in which neither the additive nor the multiplicative
model fits the noise well: the signal dependent noise. Here, contrary to the additive and
multiplicative case, the noise strongly depends on the original image. An example of
signal dependent noise is the Poisson noise and the Rician noise. Poisson noise occurs
whenever the device for image acquisition is a photon counter, for instance, Computed
Tomography (CT), Positron Emission Tomography (PET), radiography, and so on, see
[7, 38, 39, 58]. For each pixel, the observed image f(x) is a realization of a Poisson
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random value with the expected value ũ(x), i.e.

P(f(x) = η) =
ũ(x)η exp(−ũ(x))

η
, x ∈ Ω.

The other very popular signal dependent noise model is the Rician noise which typically
appears in Magnetic Resonance Imaging (MRI), [48, 81]. Here, the noisy image f is
modelled as follows

f =
√

(ũ+ η1)2 + η2
2 ,

with η1, η2 ∼ N (0, σ2) and σ > 0.
Figure 2.2 shows an image corrupted by Poisson noise. The noisy image is con-

structed by taking each pixel value in the original image ũ and generating a Poisson
random variable with parameter equals to the pixels value. As you can see, the white
areas are noisier than the dark areas. Thus, the noise level increases with the intensity of
the image while in the additive case the noise has almost the same power. Note that for a
sufficiently large number of photon counts, the Poisson distribution can be approximated
by Gaussian distribution with expected value and variance that depends on the intensity
of the original image.

2.2.4 Impulse noise

Impulse noise is a common type of image degradation, which does not belong to any
of the previous classes. Impulse noise is due to, e.g., malfunctioning pixel elements in
the camera sensors, errors in analog-to-digital conversion, faulty memory locations in
hardware, or transmission errors [67, 90]. A characteristic property of impulse noise is
that only some pixels are corrupted while the rest are noise-free.

Impulse noise can be described as a stochastic degradation process of the form

f(x) =

{
v(x) with probability r

ũ(x) with probability 1− r , x ∈ Ω

where r > 0 represents the corruption rate by impulse noise. The main characteristics of
the impulse noise is that the noise v is independent from the original image ũ and a part of
the image remains unchanged. Two main types of impulse noise are the salt-and-pepper
noise when, for each x, the noise v(x) has values drawn from the set {umin, umax}, and the
random-valued impulse noise when, for each x, the noise v(x) is a uniformly distributed
random variable with values in the gray-level range [umin, umax]. For salt-and-pepper
noise corrupted pixels take the lowest or the highest pixel value (i.e., umin or umax),
whereas for random-valued impulse noise, the noisy pixels have values anywhere in the
interval from umin to umax. Therefore, the random-valued impulse noise is more general
and more difficult to detect than the salt-and-pepper noise.

In Fig. 2.2, there is an example of image corrupted by salt-and-pepper noise (here,
r = 0.3). As you can see, some pixels are uncorrupted, while the ones corrupted by noise
carry no information about the original image and appear only white or black.

2.2.5 Mixed noise

In real world the noise often cannot be modelled only with one distribution, but is given
by the combination of more different noise models. For instance the most common mixed



10 Chapter 2. Set the scene

Figure 2.2: From the left to the right: image corrupted with multiplicative
noise, with a signal dependent noise and with impulse noise. For these simula-
tions, we used the same original image in Fig. 2.1.

noise models are given by Poisson and Gaussian or impulse and Gaussian, see for instance
[16, 57, 59, 60, 88].

Knowing a priori the noise that is presented in the image helps to recover the clean
image. However, due to the difficulty of the problem, the complete elimination of the
noise is impossible, but, the aim is to eliminate as much noise as possible and without
introducing any other artifacts in the restored image.

2.3 Blur

When we take a picture with a camera, the picture that we get is not a faithful rep-
resentation of the scene that we see with our eyes, since it is inevitable blurred. The
blurring often occurs inside the camera, it may arise because the camera lens may be
out of focus or because the camera or the object is moving during the time the shutter
was open, which happens very often in astronomical imaging because of turbulence in
the atmosphere. These are only a few examples of situations that can give the inevitable
result of blurred images.

Mathematically speaking, the blurred image f is given by

f(x) = Kũ := (k ? ũ)(x) =

∫

R2

k(y)ũ(x− y)dy,

where x ∈ Ω, ũ is the original image and k is some suitable kernel function, which is
called point spread function (PSF). In other words, the blurred image is given by the
convolution of the original image with a two-dimensional point-spread function. For
simplicity, here, we consider PSF spatially invariant, i.e. the image is blurred in exactly
the same way at every spatial location.

2.3.1 Blurring models

Briefly, we give some examples of PSFs that occur often in real applications. We start
with the uniform out-of-focus blur. This blur occurs every time that we take a 2-D
picture from a 3-D scene, where some parts of the image are in focus, while some others



2.3. Blur 11

are not. If the aperture of the camera is circular, the image of any point source is a small
disk that is called circle of confusion (COC). The PFS of the uniform out-of-focus blur
with radius R is defined as follows,

k(x) =

{
1

πR2 if ‖x‖2 ≤ R2

0 otherwise.

Gaussian blur is another degradation that occurs in the atmospheric turbulence and
it may depend on the temperature, wind speed, exposure time, and so on. The PSF is
defined by the Gaussian function,

k(x) = C exp

(‖x‖22
2σ2

)
,

where σ determines the spread of the blur and C is a normalization constant.
Finally, we consider the motion blur. Motion blur is due to the motion between the

recording system and the scene or object. There exists many types of motion blur, for
instance it can be due to a transition, a rotation, a change of scale or a combination of
these things. Here we give the formula of the PSF only in the case of the transition. The
PSF for the transition motion blur is defined by

k(x) =

{
1
L if ‖x‖2 ≤ L

2 ,
x1

x2
= − tan Φ

0 otherwise,

where L defines the length of the motion and Φ is the angle in radiant of the motion.

Figure 2.3: From the left to the right: original image, blurred image by using
the motion blur and the out-of-focus blur.

Although there is no hope to recover the original image exactly, our aim is to obtain
the best estimation of the original sharp and uncorrupted image. One of our challenges is
to study suitable mathematical model for non-Gaussian noise and to devise efficient and
reliable algorithms for recovering as much information as possible from the given data.
Usually, the characteristic of the degradation system (the operator K) and the noise are
assumed to be known as a priori. If there are no information about the blurring operator,
then the field is known as blind image deconvolution, [7]. Here, we will mainly focus on
the denoising problem and then we generalize to the more general case, i.e. deblurring
and denoising problem (always considering the blurred operator to be known). Note
that, in some of our works the deblurring and denoising problem follows straightforward
from the denoising problem only.



12 Chapter 2. Set the scene

Figure 2.4: Formation of the noisy image. From left to the right: original
image, original image degraded by blur, original image degraded by blur and
noise.

In general, to simulate a degraded image, we will start with the original uncorrupted
and sharp image and then we will degrade it with blur and noise. In Fig. 2.4, there is
an example of how the degradation model works, i.e. the first image represents the clean
image, the second one is given by corrupting the original image with blur and finally
in the last one there is also the presence of the noise. In the real world, knowing the
degraded image (the third one in Fig. 2.4), we need to solve an inverse problem, i.e.,
try to reconstruct the clean image (the first one in Fig. 2.4). As we will see in the next
chapter, the inverse problem is not easy to solve due to the ill-posedness of the problem.
Now, we give some objective quality assessment to evaluate the recovered image.

2.4 Quality of an image

The most straightforward way to evaluate the quality of the recovered image is through
subjective evaluation. However, the evaluation from the human beings is usually too
inconvenient (since it depends from person to person and it may be ambiguous), time-
consuming and expensive. Over the years many quantitative measures have been intro-
duced to automatically compute the image quality. In our studies, we often use the peak
signal-to-noise ratio (PSNR) value [7] and the structural similarity (SSIM) [92].

The PSNR is widely used in image quality assessment and it is defined as follows,

PSNR = 20 log10

m1m2|umax − umin|
‖u− ũ‖2

,

where u and ũ are respectively the restored and the original image with values in the
gray-level range [umin, umax]. We underline that, high value of PSNR implies a good
restored image. It is a very useful tool, since it is able to measure quantitatively the
quality of the reconstruct image compare to the original image. However the PSNR
value is not very well matched to perceived visual quality. Recently, another measure
has become very popular among the imaging community, the so-called SSIM measure.
This measure compares local patterns of pixel intensities that have been normalized for
luminance and contrast and it has been proved that it is more consistent with human
eye perception than PSNR, we refer the reader to [92]. The SSIM measure is defined as

SSIM =
(2µũµu + c1)(2σũu + c2)

(µ2
ũ + µ2

u + c1)(µ2
ũ + µ2

u + c2)
,
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where u and ũ are the restored and original image, µũ and µu denote the means of ũ
and u, σũ and σu denote the variances of ũ and u, σũu represents the covariance of ũ
and u and c1, c2 > 0 are constants. Also in this case, high value of SSIM means good
reconstruction.





CHAPTER 3
Inverse problems

The process of recovering the original image from the data is an inverse problem. In most
of the cases, the direct inversion of the degraded model does not give any good results,
due to the ill-posedness of the problems. Thus a way to deal with ill-posedness is to use
the Bayesian approach that is based on some a-priori information. Here, after a short
introduction on the inverse problems, we study the two most common ways to estimate
the image: the maximum-a-posteriori (MAP) and the conditional mean (CM) estimates.
Furthermore, we show how the noise model influences the reconstruction problem.

3.1 Inverse problem

Solving an inverse problem is the opposite task of a direct (or forward) problem. Roughly
speaking, in a direct problem we find an effect from a cause, while in an inverse problem
we do the opposite, that corresponds to recover the cause knowing the effect. One of
the main needs of inverse problem is the need to interpret indirect physical measure-
ments of an unknown object of interest. Inverse problems arise everywhere, for instance
in optics, radar, acoustics, communication theory, signal processing, medical imaging,
computer vision, geophysics, oceanography, astronomy, remote sensing, machine learn-
ing, and many other fields. For instance, in computed tomography we are interested in
looking inside the human body to see something that cannot be directly observed. By
passing x-rays through the body, we get some projection images that correspond to the
acquired data. The task of determining the data from the body and the knowledge of the
physical model is called the forward model. Another example is the image reconstruc-
tion: here, the inverse problem consists of recovering the original sharp and noise-free
image by knowing the degraded image, [50, 62]. In Fig. we 3.1, we show the forward
and the inverse problem for image reconstruction.

Mathematically speaking, in image processing, solving the inverse problem means
recovering the original image ũ based on

f = Kũ� v, (3.1)

knowing the corrupted image f and the blurring operator K. For more details about
the forward model in (3.1), we refer the reader to the previous chapter. Unfortunately,
computing ũ in (3.1) by using the simple inversion does not lead to any suitable solution.

15
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Inverse

Forward

Figure 3.1: Example of forward and inverse problem in image processing. Left:
original image. Right: corrupted image during the acquisition and transmission.

This is due to the fact that inverse problems very often are ill-posed, and thus solving
them may be very challenging. The term ill-posed problem was introduced the first
time in the early 20th century by Hadamard. A problem is well-posed if the following
conditions are satisfied:

• Existence: The problem must have a solution.

• Uniqueness: The solution must be unique.

• Stability: The solution must depend continuously on the data.

If a problem does not satisfy one or more of these conditions, it is called ill-posed.
Therefore, the forward model in (3.1) is well-posed if K is well-defined, single-valued,
and continuous function. But, very often in image processing, K−1 does not exist or is
not continuous, thus the problem is ill-posed.

At first glance, one way to handle the first condition, i.e. the existence of the solution,
is to compute the least-squared solution,

û = argmin
u
‖Ku− f‖22.

If the solution is unique solution, then it is given by

(K?K)û = K?f.

But computing the least-squared solution does not guarantee the uniqueness of the solu-
tion. For this reason, a way to handle the ill-posed problem is to introduce some further
regularity to the problem, adding a regularization term to the minimization problem, for
instance it can be done as follows,

û = argmin
u
‖Ku− f‖22 + λ‖Lu‖22, (3.2)

where λ > 0 and L can be for instance the identity operator or the gradient operator.
The stability condition can be handled by tuning the regularization parameter λ in
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(3.2). In the next section, we will see that the minimization problem in (3.2) can be
also formulated from the statistical point of view, also known as Bayesian approach,
[2, 17, 55].

3.2 The Bayesian approach

To reconstruct the clean image one can employ the Bayesian approach that combines
prior information on ũ and the forward model in (3.1), see [2, 17, 55]. For simplicity, we
will use the lower-case letters for indicating both random variables and instances. From
Bayes’ rule, [44] we have

p(u|f) =
p(f |u)p(u)

p(f)
, (3.3)

where p(u|f) is called posterior and represents the conditional probability density of
u given the degraded image f , p(f |u) is called likelihood function and it encodes the
likelihood that the data f is due to the image u, p(u) is called prior and describes
the properties of the image that we want to recover and p(f) is a normalization factor
(independent of u). To point out the connection to the previous section and the problem
in (3.2), we give an example of priori and likelihood. When the image is corrupted by
blur and additive Gaussian noise, the likelihood density is given by

p(f |u) ∝ exp

(
−E(u;K, f)

)
,

where ∝ means “proportional to” and E(u;K, f) = 1
2‖f −Ku‖22. In image processing,

the most common prior use are the so-called Gibbs distributions, [40],

p(u) ∝ exp(−λJ(u)),

where J(u) is a convex functional and λ > 0 is a parameter. Thus, the posterior can be
written as follows

p(u|f) ∝ exp

(
−E(u;K, f)− λJ(u)

)
. (3.4)

The term E(u;K, f) is often called data fidelity term, J(u) is known as regularization
term and λ > 0 is the regularization parameter. We now analyse these two terms and
the regularization parameter. Finally in the end of the chapter, we show how to compute
the clean image by knowing the posterior distribution.

3.2.1 The data-fidelity term

The data fidelity term strongly depends on the forward model, which means that different
noise models lead to different data fidelity terms. In Chapter 2, we give some examples of
noise models. Here, we give their corresponding data-fidelity terms for the noise models
introduced in the previous chapter.

We start with the additive noise model, i.e. when the noisy image is given by

f = Kũ+ v.
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We have already seen that in the Gaussian case, the data-fidelity term is given by the
L2-norm, that means

E(u;K, f) = ‖Ku− f‖22.

As suggested in [30], the data-fidelity for recovering an image corrupted by the
uniform noise is given by the norm infinity, i.e.

E(u;K, f) = ‖Ku− f‖∞.
In one of our contributions, we propose the following data fidelity term for the

additive Cauchy noise removal

E(u;K, f) =

∫

Ω

log
(
γ2 + (Ku− f)2

)
dx.

For more details about Cauchy noise we refer the reader to Chapter 5.
The data fidelity term for the multiplicative noise was introduced the first time in

[2] and it reads

E(u;K, f) =

∫

Ω

(
log(Ku) +

f

Ku

)
dx.

Regarding the signal dependent noise model, the data fidelity for the Poisson noise
has been introduced in [58] only for the denoising case. Later, it has been generalize for
the deblurring and denoising see for instance [38, 79] and it is defined by

E(u;K, f) =

∫

Ω

(
Ku− f log(Ku)

)
dx, with Ku ≥ 0.

The other well-known signal-dependent noise model is the Rician noise which is
common found in the magnetic resonance imaging, see [39, 42, 48]. In this case the
data-fidelity term is given by

E(u;K, f) =
1

2σ2

∫

Ω

(Ku)2dx−
∫

Ω

log I0

(
f(Ku)

σ2

)
dx,

where σ > 0 is the noise level and I0 corresponds to the modified Bessel functions of the
first kind with order zero. As in the Cauchy case, also here the noise level is required
in the data-fidelity term. Thus, in these two cases, in order to reconstruct the image we
need to know (or to estimate) the corruption rate.

Finally, for impulse noise it is used the following term, [66, 67],

E(u;K, f) = ‖Ku− f‖1.
Since our contribution mainly deals with Cauchy noise and impulse noise, in the

following chapter we will extensively study these two noise models and their variational
methods.

3.2.2 The regularization term

The regularization term J(u) is based on some prior information about the expected be-
haviour of the original image ũ. One of the most straightforward choices of regularization
term is given by Tikhonov regularization [84], that corresponds to

J(u) =

∫

Ω

|∇u|2dx,
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where ∇u indicates the gradient of u. The main idea is to recover u that best fits the
data and has lowest gradient. In this setting, the functional space for which the data
fidelity term and the Tikhonov regularization term are defined is

W 1,2(Ω) = {u ∈ L2(Ω),∇u ∈ L2(Ω)2},

with Ω a bounded open subset of R2. The reason why Tikhonov regularization was so
attractive is because it leads to a quadratic optimization problem for which the solution
has a closed-form,

K∗(Ku− f)− λ∆u = 0,

where ∆ indicates the Laplacian operator, and there exist fast algorithms to solve it, for
instance we refer the reader to [49]. However, due to the L2 norm of the gradient the
reconstructions of natural images given by Tikhonov regularization are too smooth, since
we penalize too much on the high values of the gradients which corresponds to edges.
For this reason, in [73] the total variation (TV) regularization, which corresponds to the
L1 norm of the gradient of u, was proposed and it is defined as follows

J(u) =

∫

Ω

|Du| := sup

{∫

Ω

u(x)div(ξ(x))dx; ξ ∈ C1
c (Ω;R2), |ξ(x)| ≤ 1 ∀x ∈ Ω

}
, (3.5)

with u ∈ L1(Ω), div(ξ(x)) = ∂ξ1
∂x1

(x) + ∂ξ2
∂x2

(x) and C1
c (Ω;R2) is the space of continuously

differentiable functions with compact support in Ω.
If u ∈ C1(Ω), then

∫
Ω
u(x)div(ξ(x))dx = −

∫
Ω
∇u · ξdx and therefore J(u) =∫

Ω
|∇u(x)|2dx.
Furthermore, we define the space of the functions of bounded variation BV (Ω) as

BV (Ω) =

{
u ∈ L1(Ω);

∫

Ω

|Du| <∞
}
.

The space BV (Ω) has the lower semicontinuity property, i.e. let uj ∈ BV (Ω) and uj → u
in L1(Ω), then

∫
Ω
|Du| ≤ lim infj→+∞

∫
Ω
|Duj |. The space BV (Ω) endowed with the

norm ‖u‖BV = ‖u‖L1 +
∫

Ω
|Du| is a Banach space. Total variation regularization has

the good property of preserving the edges, but it has some drawbacks, for instance the
staircasing effect. To overcome this issue other modern regularization terms have been
proposed, such as nonlocal TV [43, 89], high order TV [22], total generalized variation
(TGV) [9].

3.2.3 The regularization parameter

Last but not least we consider the choice of the regularization parameter λ > 0. The
regularization parameter represents the tradeoff between a good fit to the data and the
smoothness due to the regularization term, thus it is very important to find the right
regularization parameter in order to get the best solution. In particular, from (3.4) we
can see that if λ is too big then the reconstruction will be too blurred, because of the
predominance of the regularization term, on the other hand if the regularization param-
eter is too small the noise will not be removed from the image, and the reconstruction
will still look very noisy.

In Fig. 3.2, we show the influence of the regularization parameter for the recon-
struction. The noisy image has been created with 10% of salt-and-pepper noise. The
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quality of the restored images is computed quantitatively using the peak signal noise
ratio (PSNR) value, see section 2.4. From the plot of the regularization parameter λ
versus the PSNR, we can see how the recovered image depends on the tuning of the
parameter λ. Visually, we can see the difference between the reconstructions by using
different λ-values. In fact, when λ = 2 the image looks too blurry, because during the
reconstruction process the image is over-regularized, on the other hand when λ = 0.3
there is still some noise in the image. Thus, the reconstruction strongly depends on the
regularization parameter, therefore finding a good way to compute the regularization
parameter is extremely important.

The problem of finding the best regularization parameter has been extensively stud-
ied over the years. But at this time there is no a general automatic parameter-choice
method that produce the best reconstruction. On the other hand there exist many meth-
ods that, under certain conditions, work well, but all of them can fail to produce good
results.
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Figure 3.2: Influence of the regularization parameter for recovering the image.
First row: degraded image with 10% of salt-and-pepper noise; plot regulariza-
tion parameter λ versus the PSNR(dB). Second row: reconstructed images by
using λ = 0.3, 0.5, 2.

One of the most intuitive and straightforward choice is based on visual criterion [7].
If there is a considerable prior knowledge on the scene, it may be reasonable to choose
the regularization parameter through a simple visual consideration of the reconstructed
images. For instance the way to find the best parameter corresponds in finding the image
that visually looks better, i.e. it is not over-regularized and the noise is fully removed.

In the literature, there exist many possible strategies to choose the regularization
parameter: the discrepancy principle [61], the L-curve [49, 51], the generalized cross-
validation [47], just to mention some of them. The discrepancy principle is a method
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that finds the best regularization parameter if a priori is known the error level. The
L-curve is based on a log-log scale plot of the regularization term J(û(λ)) versus the
data fidelity term D(û(λ), f), where û(λ) represents the recovered image using the regu-
larization parameter λ. With the L-curve method the best parameter is computed using
the corner of the L-shaped plot. The generalized cross-validation determines the regular-
ization parameter without the knowledge of the noise properties. The behaviour of these
methods is very problem-dependent, for instance the discrepancy principle relies on a
good estimate of the error norm, which may be not known, the L-curve often fail when
the solution is too smooth, the generalized cross-validation is often a robust method, but
sometimes fails leading to under-regularization.

Recently, many other techniques to automatically select the regularization parameter
are introduced, for an overview we refer the reader to [32, 33] and the references therein.

One of the contribution of the thesis, is given by introducing a parameter-free method
to remove impulse noise from blurred and noisy images. For more details, we refer the
reader to 5 and to our paper [77].

We now focus on the process of extracting information from the posterior distri-
bution. The process of finding some information from the posterior is called Bayesian
estimation. In the next section, we introduce the Bayesian formalism by giving two ways
to reconstruct the image.

3.2.4 MAP and CM estimates

Probably the most common choice to extract information from the posterior is given by
computing the maximum-a-posteriori estimate (MAP),

ûMAP := argmax
u

p(u|f). (3.6)

In practise, since the joint log-likelihood of a set of independent variables is the sum of
the log-likelihood of individual variables, it is more convenient to minimize the opposite
of the log-likelihood instead of maximizing the likelihood,

ûMAP := argmin
u

log(p(F |U)) + log(p(U)).

Let’s note that in the Gaussian case, the above equality corresponds of solving the
following minimization problem

ûMAP := argmin
u

1

2
‖f −Ku‖22 + λJ(u),

which exactly corresponds to the minimization problem in (3.6). Thus, the MAP es-
timation is directly related to the variational methods and regularization techniques.

Another way to compute an estimate is given by the conditional mean estimate
(CM), which is defined as follows

ûCM := E[u|f ] =

∫
up(u|f)du (3.7)

Therefore, the difference between the two estimates is that the MAP estimate corre-
sponds to find the mode of the posterior, while the CM estimate corresponds to compute
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the expected value of the posterior. In order to get the best reconstruction we need to
understand which of these two estimates is best. Unfortunately, there is no a general
answer to the question, but there are some considerations that we should take into ac-
count. The conditional mean looks like the most intuitive choice, since it represents the
average of samples. But, from the numerical point of view, the MAP estimate requires
to solve an optimization problem which can be usually computed easily, while the CM
estimate requires to solve an integration problem which in high-dimension scenarios can
cause some trouble. In the next chapter, we will show some ways to compute these
two estimates numerically. In Chapter 5, we will analyse the two estimates from the
theoretical point of view.



CHAPTER 4
Numerical considerations

In this chapter we show how to compute the restored image numerically by knowing
the noisy and blurred image. First of all, we start with the digital images and some
notation in the discrete case. For simplicity we will mainly use the same notation as
in the continuous case. After that, we will show how the maximum-a-posterior (MAP)
and the conditional mean (CM) estimate can be numerically computed. By definitions,
the first one requires to solve an optimization problem while the second one requires to
solve an integral problem. Therefore, we will briefly give some general notions about
optimization, by mainly focusing on the algorithms that we used in our contributions,
i.e. the primal-dual algorithm and the semismooth Newton’s method. To calculate the
CM estimate, the quadrature rules cannot be used due to the very large dimension of the
image, thus we will apply the Monte Carlo methods. Since in general, it is not possible
to draw samples from the posterior distribution we will need the Markov chain Monte
Carlo techniques. Examples of how apply this algorithm in image restoration are shown
as well.

4.1 What is a digital image?

As we have seen in Chapter 3, the images are analogue, which means that they are
defined on a continuous domain and that they take values that come from a continuum
of possibilities. However, in order to have an image which has computer-readable digital
format, we need to introduce the digital images. A digital image is defined on a discrete
domain and it takes values from a discrete set of possibilities. We briefly describe the
process of analogue-to-digital conversion, which consists of two processes: the sampling
and the quantization

4.1.1 Sampling

Sampling is the process of converting a continuous signal into a discrete-space signal.
During this process it is very important to not loose information of the image by limiting
the presence of artifacts and noise. Since some information is lost, it may not be possible
to reconstruct the original continuous signal from the samples. A sampled image is
an array that is arranged in a row-column format. Each element of the array is called

23
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picture element or shortly pixels. In Figure 4.1, we have an example of different sampling
densities (256×256, 128×128 and 32×32) for the same image. As you can see, the details
of the image substantially change when we undersample the image. In the 128-by-128
image, the shape of the boats can be still recognized, but some details are missing, while
in the 32-by-32 image the subject of the scene is completely lost.

Figure 4.1: Sampling process. From left to right: 256-by-256 image, 128-by-
128 image and 32-by-32 image.

4.1.2 Quantization

The other process involved during the conversion from analogue-to-digital is the quan-
tization. This process consists of converting the continuous intensities into a discrete
values. When the gray level of an image pixel is quantized the finite set of numbers is
called gray level range. In Fig. 4.2, we have an example of images at various levels of
gray level resolution (4, 2, and 1 bit representation). The 8-bit image can be found in
Fig. 4.1. In the 4-bit image we can still recognize the subject of the image, but some
of the details are lost compared to the 8-bit image. In the other representations (2 bit
and binary) most of the information disappear, making difficult to recognize the scene
represented.

Figure 4.2: Quantization process. From left to right: 4-bit image, [0, 15]; 2-bit
image, [0, 3]; and binary image, {0, 1}. The corresponding 8-bit image, [0, 255],
is represented on the left in Fig. 4.1.

From now on in this chapter, we will just focus on digital images.
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4.1.3 Notations in the discrete case

Let u ∈ Rm1×m2 a two-dimensional image with size m1 × m2 (m1 ∈ N and m2 ∈ N
indicate the number of pixels in the horizontal and vertical direction, respectively) and
m = m1m2 represents the total number of pixels in the image. For i = 1, . . . ,m1 and
j = 1, . . . ,m2, the intensity value of the pixel (i, j) is denoted with ui,j . Along this
thesis, we will often use the following notation uk = ui,j , where k = (i − 1)m2 + j
for i = 1, . . . ,m1 and j = 1, . . . ,m2, to identify the pixel at position (i, j) with the
kth element of u, and we define a set Ω = {1, 2, . . . ,m} that contains all pixel indices.
Often, it will be convenient to consider a two-dimensional pixel-array by concatenation
in the usual columnwise fashion. Given umin and umax the minimum and maximum
intensity of the image, respectively, the intensity of the pixels ui,j ∈ [umin, umax] with
i = 1, . . . ,m1 and j = 1, . . . ,m2.

For instance the following matrix



0 0 0 0 0 0 0
0 1 1 0 0.5 0 0
0 1 0 0 0.5 0 0
0 1 1 0 0.5 0 0
0 1 0 0 0.5 0.5 0
0 0 0 0 0 0 0




corresponds to the image in Fig. 4.3. Using the previous notations, we have m1 = 6,
m2 = 7, umin = 0 and umax = 1. The intensity value 0 corresponds to the black pixels
while the 1 produces a white pixels and the values between 0 and 1 create a gray color.

Figure 4.3: Example of 6-by-7 gray level image.

The most popular choices for the range of the image u is [0, 1] or [0, 255]; in our
work, we mainly considered the first one. Each pixel of the image has an intensity, which
characterize the color of a small rectangular segment of the scene. For example, if an
image is 256-by-256, then it contains 65536 pixels, while a high-resolution image can be
much more than 5 million of pixels.

In this context we need to define also the discrete total variation, [3], which reads

TV(u) :=

m1∑

i=1

m2∑

j=1

|(∇u)i,j |2, with |(∇u)i,j |2 =
√
|(∇xu)i,j |2 + |(∇yu)i,j |2.
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The discrete gradient operator ∇ ∈ R2m×m is given by

(∇u) =

(
∇xu
∇yu

)
∈ R2m,

and ∇xu ∈ Rm and ∇yu ∈ Rm denote the horizontal and vertical first order differences,
i.e., by using the symmetric boundary conditions, we have

(∇xu)i,j =

{
ui+1,j − ui,j if i < m1,

0 if i = m1,
and (∇yu)i,j =

{
ui,j+1 − ui,j if j < m2,

0 if j = m2,

for i = 1, . . . ,m1 and j = 1, . . . ,m2.
In order to solve the optimization problems introduced in Chapter 3, we need to

introduce the divergence. The divergence is defined as div = −∇>, where ∇> is the
transpose of the gradient operator. Hence, the explicit formula of the divergence can be
found by using the definition of transpose

〈−div p, v〉Rm = 〈p,∇v〉R2m ,

for every p ∈ R2m and v ∈ Rm, where 〈·, ·〉Rm and 〈·, ·〉R2m denote the standard scalar
products in Rm and R2m, respectively. Thus,

(divp)i,j = (divp)1
i,j + (divp)2

i,j ,

where

(divp)1
i,j =





p1
i,j − p1

i−1,j if 1 < i < m1

p1
i,j if i = 1

−p1
i−1,j if i = m1

and

(divp)2
i,j =





p2
i,j − p2

i,j−1 if 1 < j < m2

p2
i,j if j = 1

−p2
i,j−1 if j = m2

for every p = (p1, p2) ∈ R2m.
In the next chapters, we will describe how to numerically denoise and deblur the

degraded image.

4.2 Optimization

A way to numerically solve an ill-posed inverse problem for reconstructing an image is
given by using the variational methods. Variational methods constitute the computation
of a reconstructed image u based on the observed image (or more generally data) f as a
minimizer of a functional, which is called as a variational model.

Computing a solution of the variational method requires to solve an optimization
problem. We now give an overview of how solving the variational models. Variational
models for image reconstruction usually has such a format:

min
u∈U

E(u;K, f) + λJ(u),
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here, U indicates the feasible set, and, as in the previous section, J(u) represents the
regularization term, λ > 0 is the regularization parameter, and E(u;K, f) is the data
fidelity term. As we have already discussed in §3.2.3, the problem of finding the best reg-
ularization parameter can be very tricky. For this reason, sometimes is more convenient
to consider a constrained minimization problem instead, i.e.

min
u∈U

J(u) such that E(u;K, f) ≤ τ,

where τ > 0 is a given constant that can be related with the noise level, see for instance
[64, 83]. If the noise level is known or it can be estimated, then the constrained mini-
mization problem is easier to solve than the unconstrained one, since τ is known while
λ has to be tuned.

Optimization problems can be classified as follows: convex and non-convex problems,
see [72]. Convex problems have the advantages that the global optimum can be computed
independently of the initialization. Thus, the quality of the solution depends only on
the accuracy of the denoising and deblurring model. Non-convex problems are able to
model more precisely the process behind the image acquisition, but on the other hand the
solution depends on the initialization and the algorithm used to solve the optimization
problem.

The convexity of the optimization problem depends on the objective function and on
the feasible set. For instance, the data-fidelity terms for denoising an image corrupted
by Gaussian noise, impulse noise or Poisson noise are convex, while the original one for
Cauchy noise is non-convex. In one of our contribution, we add a quadratic penalty term
to guarantee the convexity of the data-fidelity term, see [B] for more details. Regarding
the regularization term, total variation plays a very important role in the image process-
ing field, since it allows discontinuities in the recovered image, thus it guarantees the
presence of edges which are very important for a wide range of applications. However,
due to the non-smoothness of total variation, see §3.2.2, computing the solution of the
optimization problem with TV is not so straightforward. From now on, we will focus
only on convex problems.

The first classification that we gave, i.e. constrained and unconstrained problems
is very important in our paper on impulse noise [A]; the second one, i.e. convex and
nonconvex, will be useful for our paper on Cauchy noise [B].

We now introduce some numerical algorithms that are often used in image processing.
In literature there exist a lot of optimization algorithms available, but as usual it is
not clear which one is better in general. In fact, up to our knowledge, there is no
an algorithm that produces the most accurate solutions in the shortest time with less
memory requirement. For this reason, the choice of the numerical algorithm strictly
depends on the application. To compute the solution for the convex problems, there exist
a huge selection of algorithms, for instance the primal dual algorithm [19, 23, 31], the
alternating direction method with multipliers (ADMM) [8], the split-Bregman algorithm
[45] and the Chambolle-Pock algorithm [20]. Since the convergence of the Chambolle-
Pock algorithm is well studied, see [20], in our contributions we have mainly employed it
to solve our minimization problem. Furthermore, since in our paper on impulse noise, A,
we need to compare the computational time with a second-order method, here we also
introduce the Newton’s method.
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4.2.1 Primal-dual algorithm

Due to the simplicity and the convergence theorem of the Chambolle-Pock algorithm, in
most of our works we used this algorithm to recover the clean image. Now, we present
the Chambolle-Pock algorithm for a general convex functions and later, we will show
how to apply to the image denoising.

In the general continuous case, given X,Y two finite-dimensional real vector space,
L : X → Y a continuous operator with induced norm

‖L‖ = max{‖Lx‖ : x ∈ X with ‖x‖ ≤ 1},

the primal problem is defined as follows

min
x∈X

F (Lx) +G(x), (4.1)

where F : Y → [0,+∞), G : X → [0,+∞) are proper, convex and lower-semicontinuous
functions. The dual problem is then given by

max
y∈Y
−
(
G∗(−L∗y) + F ∗(y)

)
,

where F ∗ (resp. G∗) indicates the convex conjugate of a convex lower-semicontinuous
function F (resp. G). Then, the primal-dual formulation is the saddle-point problem
and it reads

min
x∈X

max
y∈Y

〈Lx, y〉Y +G(x)− F ∗(y),

with 〈·, ·〉Y indicates the inner product in Y . If there exists at least one solution (x̂, ŷ) ∈
X × Y we have

Lx̂ ∈ ∂F ∗(ŷ) and − (L∗ŷ) ∈ ∂G(x̂),

where ∂ denotes the subdifferential1 of a function, see [72] for more details.
Now, we can present the primal-dual algorithm in [20] which is also known as

Chambolle-Pock algorithm. Initialize (x0, y0) ∈ X × Y and choose the parameters
σ, τ > 0 and θ ∈ [0, 1]. Until the convergence is reached repeat the following three
steps (n ≥ 0)

1. Update yn+1:
yn+1 = (I + σ∂F ∗)−1(yn + σLx̄n).

2. Update xn+1:
xn+1 = (I + τ∂G)−1(xn − τL∗yn+1).

3. Update x̄n+1:
x̄n+1 = xn+1 + θ(xn+1 − xn).

If θ = 1 and τσ‖L‖2 < 1, in [20], it has been proved that the algorithm converges to the
saddle-point (x∗, y∗).

Now, we show two applications of the Chambolle-Pock algorithm to image processing.

1In general, we recall that z ∈ ∂G(x) means

G(w) ≥ F (x) + 〈w − x, z〉X for all w in X.
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Example 4.2.1. The ROF model. The variational method to recover an image cor-
rupted by Gaussian noise is given by the well known ROF model, see [73], which, in the
discrete setting, reads as follows

min
u∈X

TV(u) +
λ

2
‖u− f‖22,

with u ∈ Rm the unknown image, f ∈ Rm the noisy image and λ > 0 the regularization
parameter, see Chapter 3. Using the notations in the primal problem (4.1), we have
F (∇u) = TV(u) and G(u) = λ

2 ‖u− f‖22. Thus, given the dual variable p ∈ R2m, based
on the definition of TV, the primal-dual problem of the ROF model is defined as follows

min
u∈Rm

max
p∈R2m

−〈u,−divp〉+
λ

2
‖u− f‖22 − δP (p),

where δP is the indicator function of the set P , i.e.

δP (p) =

{
0 if p ∈ P
+∞ otherwise

and P is the convex set given by

P = {p ∈ R2m : ‖|p|2‖∞ ≤ 1}.

The discrete maximum norm ‖ |p|2 ‖∞ is defined as

‖ |p|2 ‖∞ = max
i,j
|pi,j |2, and |pi,j |2 =

√
(p1
i,j)

2 + (p2
i,j)

2.

Now, we can apply the Chambolle-Pock algorithm to the saddle-point problem with
F ∗(p) = δP (p) and G(u) = λ

2 ‖u − f‖22. Since F ∗ is the indicator function of a convex
set, the resolvent operator is the pointwise Euclidean projectors onto the `2 unit ball,
i.e. p = (I + σ∂F ∗)−1(p̃) is equivalent to

pi,j =
p̃i,j

max(1,+|p̃i,j |2)
.

The second step of the algorithm, is even simpler since it leads to a pointwise quadratic
problem, i.e. u = (I + τ∂G)−1(ũ) is equivalent to

u =
ũ+ τλf

1 + τλ
.

In [19], it has been computed the bound of the norm of the linear operator ∇. Using
the discrete gradient and divergence operator, we have

‖∇‖2 = ‖div‖2 ≤ 8.

Thus, in order to have a convergent algorithm we just need to set the two parameter τ
and σ such that τσ < 8.

Example 4.2.2. The `1-TV model. In case the image is corrupted by impulse noise,
the `1-TV model works quite well,

min
u∈Rm

TV(u) + λ‖u− f‖1,
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where the main difference is given by the `1-norm in the data fidelity term. Using the
notations in the primal problem (4.1), we have F (∇u) = TV(u) and G(u) = ‖u − f‖1.
Thus, using the same notations in the previous example, the primal-dual problem of the
ROF model is defined as follows

min
u∈Rm

max
p∈R2m

−〈u,−divp〉+ λ‖u− f‖1 − δP (p).

Therefore, the only difference with the ROF model is the resolvent operator with respect
to G, which in this case is given by the pointwise shrinkage operator, i.e. u = (I +
τ∂G)−1(ũ) corresponds to

ui,j =





ũi,j − τλ if ũi,j − gi,j > τλ

ũi,j + τλ if ũi,j − gi,j < −τλ
gi,j otherwise.

4.2.2 Semismooth Newton’s method

In this section we introduce the second order method that has been used in our paper
[A]: the semismooth Newton’s method. Given a nonlinear equation

F (x) = 0,

where F : Rs → Rt is a continuously differentiable function, one of the classical way to
solve it is by employing the Newton’s method. Newton’s method reads

xk+1 = xk −
(
F ′(xk)

)−1
F (xk),

where F ′ indicates the first derivative of F and xk represents the kth iterate. This
problem is quite easy to solve, however, in some cases the optimality system of the
optimization problem is not smooth. For instance, in our contribution [A] we have to
deal with a max-operator which is nonsmooth. In this case, the semismooth Newton’s
method can be employed, see [52]. We can define the semismooth Newton’s method as the
generalized version of Newton’s method for semismooth maps [70]. Then, if F : Rs → Rt
is semismooth, then the semismooth Newton’s method is defined as follows

xk+1 = xk −
(
GF (xk)

)−1
F (xk),

where GF denotes the generalized derivative of F . The mapping F is called generalized
differentiable in an open set U ⊂ Rs if there exists GF : Rs → Rs×t such that

lim
‖h‖→0

1

‖h‖‖F (x+ h)− F (x)−GF (x+ h)h‖ = 0,

for every x ∈ U ; see e.g. [52]. For an example on how to apply the semismooth Newton’s
method for solving a system we refer to our paper [A].
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4.3 Monte Carlo method-solving the

integration

While the maximum a posteriori estimate leads to a minimization problem, the condi-
tional mean requires the integration over Rm, where m represents the dimension of the
image u. Usually, the dimension of the image, that we want recover is very large, there-
fore the numerical quadrature rules fail due to the exceeding the computational capacity
of the computers. Another drawback of the quadrature rules is that they required the
knowledge of the support of the probability distribution, which is in most of the cases
unknown (since it is part of the information that we want to recover). For this reason, for
computing the conditional mean estimate we will use the Monte Carlo integration. Given
a sequence of N samples ui, for i = 1, . . . , N , distributed as the posterior distribution,
from the law of large numbers we have

E[u] =

∫
up(u|f) = lim

N→∞
1

N

N∑

i=1

ui, (4.2)

for any measurable f almost certainly, [55].
A problem that can arise is the difficulty of drawing samples from the posterior, since

it is known only up to a normalization factor and it usually does not belong to a class
of distributions for which independent sampling schemes are known. To overcome this
problem, one can employ the strong ergodic theorem, and we have that (4.2) holds if the
sequence is dependent but generated from an ergodic Markov chain that has p(u|f) as its
equilibrium distribution. For the ergodic theory we refer the reader to [54]. Systematic
ways of generating a sample ensemble such that (4.2) holds is called the Markov chain
Monte Carlo techniques (MCMC for short). The most common procedures to generate a
Markov chain are the Metropolis-Hastings algorithm and the Gibbs algorithm, [55]. For
simplicity, we will denote the posterior by using p(x), x ∈ Rn.

4.3.1 Metropolis-Hastings sampling

Pick the initial value x1 ∈ Rn. For k = 1, . . . , N , where N indicates the number of
samples, repeat the following procedure

1. Draw y ∈ Rn from a proposal distribution q(xk, y).

2. Compute the acceptance ratio

r(xk, y) = min

(
1,

p(y)q(y, xk)

p(xk)q(xk, y)

)
.

3. Draw t ∈ [0, 1] from a uniform probability density.

4. If r(xk, y) ≥ t, set xk+1 = y else xk+1 = xk.

Note that, to compute the acceptance ratio we just need to know p(x) up to a scaling
factor. Furthermore, if the proposal distribution is symmetric, i.e. q(x, y) = q(y, x) with
x, y ∈ Rn, then the acceptance ratio can be simplified as following

r(xk, y) = min

(
1,

p(y)

p(xk)

)
.
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The main difficulty of this algorithm is finding a good proposal distribution. In fact, the
algorithm works only if the proposal distribution q(x, y) leads to a chain that moves fast
in the sampling space, in this way the region would be explored reasonably fast and the
consecutive samples would be uncorrelated as possibles, see [55]. A very common way of
choosing the proposal distribution is given by

q(x, y) ∝ exp

(
− 1

2γ2
‖x− y‖2

)
,

therefore, in step 1, y is set as follows

y = x+ w, where w ∼ N (0, γ2I).

4.3.2 Gibbs sampling

However, there may exist some situations in which the direct sampling of a m-dim
multivariate distribution is not possible or computational too expensive. In this case the
Gibbs sampling can be employed. The basic idea behind the Gibbs algorithm is that the
samples are drawn not from the multivariate distribution, but from some conditioned
versions of the multivariate distribution. Before describing the Gibbs sampling we need
to introduce some notations. Let I = {1, 2, . . . , n} be the index set of Rn and I = ∪sj=1Ij
a partitioning of the index set into disjoint nonempty subsets. Denoting κj the number
of the elements in Ij , we can partition Rn = Rκ1 × · · · × Rκm and

x = [xI1 ; . . . ; . . . xIm ] ∈ Rn, with xIj ∈ Rκj ,

where the components of x are rearranged so that xi ∈ R is a component of the vector
xIj if and only if i ∈ Ij . In the following we will use the notation with the hat to indicates
that the corresponding elements are not included in the vector, i.e.

x−Ij = [xI1 ; . . . ; x̂Ij ; . . . ;xIm ]

= [xI1 , . . . ;xIj−1
, xIj+1

; . . . ;xIm ].

In the Gibbs sampling algorithm the samples are generated as follows: Pick the
initial value x1 ∈ Rn. For k = 1, . . . , N , where N indicates the number of samples,
repeat the following procedure

1. Set x = xk.

2. For 1 ≤ j ≤ n, draw yIj ∈ Rkj from the kj-dimensional
distribution p(yIj |yI1 , . . . , yIj−1

, xIj+1
, . . . , xIn).

3. Set xk+1 = y.

Although the Gibbs sampler does not require any proposal distribution, it is often
seen as a special case of the Metropolis-Hastings algorithm, where the main difference
is that in the Gibbs sampler the proposal is always accepted. On the other hand, if
the proposal distribution q is simple to handle, the drawing process in the Metropolis-
Hastings algorithm is easier and less time consuming than the Gibbs sampler.

The convergences of the previous sampling methods strongly depends on the size of
the sample. In fact, it is not simple to decide when the sample in the MCMC is large
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Figure 4.4: From left to the right: samples (N = 10000) from the random
walk Metropolis-Hastings algorithm with different step sizes γ = 0.01, 0.3, 2.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ep
ta

nc
e 

ra
tio

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ep
ta

nc
e 

ra
tio

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ep
ta

nc
e 

ra
tio

Figure 4.5: From left to the right: acceptance ratio for N = 10000 samples
with γ = 0.01, 0.3, 2, respectively.

enough to cover the probability distribution p. For more details about the convergence
see [55, Sect. 3.6.4].

Here we include two examples that show how the Metropolis-Hasting algorithm
works.

Example 4.3.1. In this example, we show how the Metropolis-Hastings algorithm works
with the density p in R2, defined as follows

p(x) = exp

(
−10(x[1]2 − x[2])2 −

(
x[2]− 1

4

)4
)
, with x = (x[1], x[2]) ∈ R2.

The contour plot of the density p is shown in Fig. 4.4. For this simulation we draw
N = 10000 samples and we initialize the algorithm to the point x1 = (−1,−1) ∈ R2.
For the proposal distribution q we use the normal distribution. In Fig. 4.4, we show
three random walks obtained with different step sizes γ, i.e. γ = 0.01, 0.3, 2. From the
figure, it is clear that when the step size is too small (γ = 0.01) the density is not full
explored and it also takes a while before moving from the initial point x1 and drawing
right sample from the distribution. On the other hand, when the step size is too big
(γ = 2) the random walk move too fast and only a few samples are accepted. To further
point out the influence of the step size γ, in Fig. 4.5 we present the acceptance ratio.
It clearly shows that when the step size γ is too big the proposals are very often not
accepted, while when it is too small they are usually accepted.

Example 4.3.2. The conditional mean estimate Given a nosy image f ∈ Rm a
way to compute the condition mean (CM) estimate is to use the Metropolis-Hastings
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algorithm. In fact, by using the Metropolis-Hastings algorithm, we can draw N samples
from the posterior p(u|f). Then, for N big enough, the conditional mean estimate can
be calculated by computing the weighted sum of the samples, i.e.

ûCM ≈
1

N

N∑

i=1

ui,

where ui for i = 1, . . . , N are the samples drawn from the posterior density. This method
seems quite simple to solve, the main issues are the how to find the proposal distribution
q(x, y) in the Metropolis-Hastings algorithm and the value of N .



CHAPTER 5
Contributions

This thesis is aimed at studied non-Gaussian noise models in the image processing field.
The main contributions regard the introduction of a parameter-free two phase method for
impulse noise removal, the study of a variational method for Cauchy noise removal and
the study of the maximum-a-posterior (MAP) and the conditional mean (CM) estimates
for non-Gaussian noise models. In this chapter, for each of our works we give an overview
of the topic, we highlight the most significant results and we conclude with some possible
future works on that topic. For a more detail description of our works we refer the reader
to the papers enclosed at the end of this thesis.

5.1 Impulse noise

We focus on degraded image with impulse noise. We will start giving an overview of the
noise model and the variational model for reconstructing images corrupted by impulse
noise. Then we will show our contribution in this field and we will conclude given some
ideas for future works.

5.1.1 Overview

Impulse noise is a common type of image degradation due to, e.g., malfunctioning pixel
elements in the camera sensors, errors in analogue-to-digital conversion, faulty memory
locations in hardware, or transmission errors [7]. A characteristic property of impulse
noise is that a certain number of pixels are uncorrupted and the noise-corrupted pixels
contain no information about the true pixel value. Since our paper on impulse noise is
only in the discrete case, here we focus directly on the discrete.

Impulse noise can be described as a stochastic degradation process of the form

fk =

{
ηk with probability r

ũk with probability 1− r , k ∈ Ω

where ũ ∈ Rm is the original image, f ∈ Rm is the corrupted image, and η ∈ Rm is
the noise, which is independent from the original image ũ. We refer to the parameter
r ∈ [0, 1] as the noise level since it can be interpreted as the probability that a pixel is

35
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Figure 5.1: From the left to the right: original image, noisy image corrupted
with salt-and-pepper noise r = 0.3, noisy image corrupted with random-valued
impulse noise r = 0.3.

corrupted. Notice that some pixels remain unchanged, and the pixels that are corrupted
by noise carry no information about the noise-free image.

The two most common kinds of impulse noise degradation are given by the salt-
and-pepper noise and the random-valued impulse noise. Given umin = mink ũk and
umax = maxk ũk, then for the salt-and-pepper noise

ηk =

{
umin with probability 1

2

umax with probability 1
2 , k ∈ Ω,

while for the random-valued noise

ηk ∼ U([umin, umax]), k ∈ Ω,

where U([umin, umax]) represents the uniform distribution in [umin, umax]. In Fig. 5.1, we
show an example of image corrupted by salt-and-pepper and by random-valued impulse
noise with r = 0.3. Although we use the same noise level, the image corrupted by
salt-and-pepper noise looks more noisy that the other one, this is because, noisy pixels
corrupted by salt-and-pepper noise take the lowest or the highest pixel value (i.e., umin

or umax), whereas the degraded pixels with random-valued impulse noise have values
anywhere in the interval from umin to umax. Thus, the image with salt-and-pepper noise
looks more corrupted, even if it has the same rate of corruption as the random-valued
impulse noise. On the other hand, since the random-valued impulse noise may assume
any value in the gray-level range, it is more difficult to detect than the salt-and-pepper
noise, which assumes only the maximum and the minimum of the range.

Over the years, many nonlinear digital filters methods have been proposed, see [1].
The most common filters used to remove impulse noise are the median-type filters: me-
dian filter [71], weighted median filter [11], adaptive median filter (AM) [53], multistate
median filter [28], center weighted median filter [56] and adaptive center-weighted me-
dian filter (ACWM) [29]. Basically, these filters are based on a sliding window and the
pixels are reconstructed by using the values of the neighbourhood. In Fig. 5.2, we give
an example of reconstruction by using the median filter and the adaptive median filter
(if the image is degraded with salt-and-pepper noise) and the adaptive center-weighted
median filter (if the image is degraded with random-valued impulse noise). Here, it is
clear that the images corrupted by salt-and-pepper are easier to reconstruct than the



5.1. Impulse noise 37

Figure 5.2: From the left to the right: reconstruction by using the median
filter, the adaptive median filter and the adaptive center-weighted median filter.
The clean and noisy images are represented in Fig. 5.1. For the first two
reconstructions we use the image corrupted with salt-and-pepper noise while
for the last we use the image degraded with random-valued impulse noise.

one with random-valued impulse noise. Although these filters are efficient and easy to
implement, they cannot achieve good results in general, in particular they are not able
to restore blurred images and they do not preserve the image edges well.

In order to preserve the edges, in 2004, Nikolova [67] proposed a variational model
which combines an `1-data fidelity term with total variation (TV), which has been in
shown in [66, 67] to work better than the classical `2-term, [73].

The resulting reconstruction problem is convex and takes the following form

min
u∈Rm

‖u− f‖1 + λTV(u), (5.1)

where ‖u − f‖1 =
∑
k∈Ω |uk − fk| is the data-fidelity term, TV(u) is a regularization

term, and λ > 0 is a regularization parameter.
The `1-TV model has some nice properties, such as contrast preservation, multiscale

decomposition and morphological invariance [21, 66, 91]. However, the main disadvan-
tage of this approach is that we have to reconstruct all the pixels of the image, including
the ones that are noise-free. Furthermore, including the noisy pixels in the data-fidelity
term introduces errors since the noise-corrupted pixels contain no information about the
true image. To address this issue, Chan et al. [27] studied a two-phase method (the CDH
method) in which they first detect the noisy pixels (phase 1) and then exclude these pix-
els from the data-fidelity term when computing a reconstruction (phase 2). Thus, in the
first phase, they use a detector (an AM filter for salt-and-pepper and an ACWM filter
for random-valued impulse noise) to split the domain Ω into two sets: N that includes
all indices of the corrupted pixels and U that includes the indices of the noise-free pixels.
We will henceforth assume that there are |N | = n noisy pixels and |U| = m−n noise-free
pixels. In the second phase, for the denoising case (here, instead of the blurring operator
we consider the identity), they reconstruct the image based on the following model

min
u∈Rm

∑

k∈U
|uk − fk|+ λTV(u). (5.2)

The main advantage of the CDH method is that the noise detector improves the data-
fidelity term in `1-TV model (5.1), and this often yields a great improvement in terms of
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Figure 5.3: From the left to the right: noisy image with salt-and-pepper noise
(first row: r = 0.3 and second row: r = 0.6); reconstruction given by the `1-TV;
reconstruction given by the two phase method. The clean image is represented
in Fig. 5.1.

restoration capabilities. Furthermore, the `1-norm in the data-fidelity term allows many
noisy-free pixels to maintain their exact values.

In Fig. 5.3, we show the reconstruction for `1-TV and the two-phase method for
two different noise levels, r = 0.3, 0.6. It is clear, especially when the noise level is high,
that the two-phase method outperforms the `1-TV. In particular, when r = 0.6, in the
recovered image given by the two-phase method we can still recognize the windows in
the buildings, the cars and even the scratches in the wall, while the one given by the
`1-TV looks very blurry and we can barely recognize the two guys sitting on the left of
the image.

Even if the two-phase method seems to work quite well, some drawbacks are still
present. In fact, the presence of a regularization parameter in the model necessitates
multiple reconstructions or tests in order to find a good choice for the parameter. More-
over, the problem in (5.2) includes all pixels of the image as variables, including the ones
that are assumed to be free of noise.

5.1.2 Relevant paper

In this framework our contribution regards the study of a new two phase method for
deblurring and denoising impulse noise. In particular, to overcome the disadvantages of
the CDH method, we propose to alter the second phase of the method such that the
noise-free pixels are required to be equal to their known values. The main characteristic
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Figure 5.4: First column: given images. Second column: reconstructions given
by [41] (Cameraman: PSNR=28.78 and Parrot: PSNR=27.73). Third column:
our reconstructions (Cameraman: PSNR=28.86 and Parrot: PSNR=27.75).

of our method is that it is regularization parameter-free and that in the denoising case
is faster than the other two-phase methods.

For more details we refer the reader to the following paper:

[A] F. Sciacchitano, Y. Dong, and M. S. Andersen, Total variation based
parameter-free model for impulse noise removal, Numerical Mathematics: Theory, Meth-
ods and Applications; to appear.

5.1.3 Perspective and some future works

The method presented in [A] can be applied also for the problem of missing data. The
missing data can occur when some pixel elements in the camera sensors do not work
well, during the transmission, the analogue-to-digital conversion etc, see [7] for more
details. The missing regions can have arbitrary size, but, usually, the location is known.
Therefore, one could think to apply the second phase of model in [A]. We remark that,
since the location of the regions is known, we do not need the detection in the first phase.
Some examples of missing data are image inpainting and super-resolution reconstruction.

Image inpainting corresponds to the problem to fill in missing regions in an image,
see for instance [25, 26, 41]. The missing region, which need to be inpaintend, is usually
called mask and it is denoted with M. In general, the variational model for image
inpainting in the discrete case can be seen as

min
u

∑

k∈Ω\M
|uk − fk|2 + λTV (u).
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Figure 5.5: From left to right: given image; double size image filled with
zeros; reconstruction given by the Matlab function imresize (PSNR=23.76);
our reconstruction (PSNR=24.93).

In Fig. 5.4, we show an example of image inpainting problem. Here, we compare the
results given by our method with the one in [41]. As we can see from the pictures and
the PSNR values, both methods yield good reconstruction.

Super-resolution reconstruction corresponds to generate a higher resolution image
from lower resolution images, in other words, it represents the procedure to fill in gray-
level values of the missing pixels after up-sampling (for more details we refer to [23, 65],
and their reference therein). The high resolution can be applied in different fields, for
instance for the diagnosis of the medical imaging, for surveillance, forensic and satellite
imaging applications.

In Fig. 5.5, we show an example of super-resolution reconstruction. The given image
is a 128-by-128 gray level image of the Parrot. The second image in the figure represents
a 256-by-256 gray level image, where the missing pixels are filled with zero values. In
the last two images we show the super-resolution reconstructions given by the Matlab
function imresize and our approach. Note that, as for the inpainting problem, since we
know the location of the missing data, we do not need the first phase of our method.

The proposed two-phase method can be likely also applied for ring artifacts removal
in computed tomography (CT). In CT, an image of an object is reconstructed from
projections obtained by measuring the attenuation of the x-rays passed through the
object, see [15]. During the tomographic acquisition process some artifacts are often
generated in the CT image. In particular, due to the malfunctioning and miscalibration
of the detector pixels, impurities and dust on the scintillator screens, and the non-
linear response of individual detector elements, stripe artifacts occur in the sinogram.
During the reconstruction process, these artifacts generate concentric ring artifacts in
the reconstructed CT images. The interesting thing is that the stripes in the sinogram
can be seen as a missing data, therefore one could try to detect these artifacts and then
try to reconstruct the object and remove the stripes simultaneously, by using a modified
version of the proposed two-phase method.

5.2 Cauchy noise

As in the previous chapter, first we describe the Cauchy degradation and then we give
an overview of some open questions.
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5.2.1 Overview

Many studies in image and signal processing rely on the fundamental assumption that the
noise follows a Gaussian distribution. This hypothesis is justified due to the existence of
the central limit theorem, see [44]. Unfortunately, most of the real world problems cannot
be modeled by Gaussian distribution, since the noise is much more impulsive than the
one that is modeled by additive Gaussian noise. Examples of these applications can be
found in the radar and sonar applications, where there are atmospheric and underwater
acoustic noises, in biomedical images, in SAR images and so on. These types of noise
follow the so called alpha-stable distributions [68, 69, 75].

The alpha-stable distributions are closed under additions, i.e. the sum of two alpha-
stable random variables is still an alpha-stable random variable. Moreover, the alpha-
stable random variables obey to the Generalized Central Limit Theorem [69]. But, this
class of random variables has no close formula for densities and distribution functions
(apart from Gaussian, Cauchy and Lévy distributions). The easiest and most common
way to define these distributions is through the characteristic function or Fourier trans-
form, see [75].

Generally speaking, an alpha-stable distribution is characterized by four parameters:
an index of stability α ∈ (0, 2], a skewness parameter β ∈ [−1, 1], a scale parameter
γ > 0 and a location parameter δ ∈ R. When α ∈ (1, 2], the location parameter δ
corresponds to the mean of the distribution, otherwise δ corresponds to its median.
The scale parameter determines the spread of the distribution around δ and it plays a
similar rule as the variance in the Gaussian distribution. If γ = 1 and δ = 0 we say
that the distribution is standardized, furthermore if β = 0 the distribution is symmetric
around zero, in this case we call it symmetric alpha-stable distributions. Since Cauchy
distribution belongs to the symmetric alpha-stable distribution, from now on we will
focus only on symmetric alpha-stable distributions.

The distributions of this class are all bell-shaped, with increasing density on the left
and decreasing on the right. The heaviness of the distribution tails is controlled by the
parameter α ∈ (0, 2], i.e., the tails grow thicker as α becomes smaller.

In Figure 5.6, we show the probability density functions (PDFs) of alpha-stable
distributions with different values of α and γ. The distribution with α = 2 corresponds
to the well-known Gaussian distribution with variance σ2 = 2γ2 and the one with α = 1
corresponds to the Cauchy distribution. Comparing the PDFs, we see that the tails of
the bells become heavier as α decreases. In fact, the Cauchy bell (α = 1) has thicker tail
than the Gaussian distribution (α = 2). Thus, the rare events have more probability of
occurring in the Cauchy bell curve than in the Gaussian bell curve and for this reason,
the noise generated from the Cauchy distribution is more impulsive than the Gaussian
one.

To further illustrate the difference between the symmetric α-stable distribution, in
Figure 5.7 we show the realizations for different α values: α = 2, 1.5, 1, 0.5 with fixed
γ = 1 and δ = 0. For having a better comparison, we use the same vertical scale for all
the images. From the figures, one can see that the spikes increases when α decreases.
Thus, Cauchy noise is more impulsive than the Gaussian noise.

Finally, we now describe how Cauchy noise influences the clean image. Given the
original image ũ : Ω → R , with Ω ⊂ R2 be a bounded, open and connected set with
compact Lipschitz boundary, the noisy image f : Ω→ R is given by,

f = ũ+ v,
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Figure 5.6: Comparison of the PDFs of symmetric alpha-stable distributions
with δ = 0, α = 2 (Gaussian) and α = 1 (Cauchy) and γ = 0.5, 1.

0 10 20 30 40 50 60 70 80 90 100
-10

-8

-6

-4

-2

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100
-10

-8

-6

-4

-2

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100
-10

-8

-6

-4

-2

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100
-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 5.7: Symmetric alpha-stable realizations with δ = 0 and γ = 1. From
left to the right: α = 2 (Gaussian), α = 1.5, α = 1 (Cauchy) and α = 0.5.
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Figure 5.8: From left to the right: original image, noisy images corrupted by
symmetric alpha-stable realizations with δ = 0, γ = 0.1 and α = 2 (Gaussian),
α = 1.5, and α = 1 (Cauchy).

Figure 5.9: Comparison of different 10-by-10 noisy images. From left to right:
clean image; degraded image by an additive Gaussian noise; degraded image by
an additive Cauchy noise; degraded image by random-valued impulse noise.

where v represents the random noise that models a Cauchy distribution. A random
variable V follows the Cauchy distribution, V ∼ Cauchy(γ, δ), if it has density as in
(2.1). Without loss of generality, from now on, in our analysis we consider δ = 0.

In Fig. 5.8, we show an example of image corrupted by symmetric alpha stable
distributions with γ = 0.1 and different α values. Although we use the same noise level
γ, the image corrupted by Cauchy noise is much more impulsive than the other ones.

Finally, to further show the impulsive behaviour of Cauchy noise, in Fig. 5.9, we
compare it with Gaussian noise and impulse noise. In the impulse noise and in the
Cauchy noisy there are some degraded pixels that assume values either white or black,
while the image corrupted by Gaussian noise is uniformly modified and white and black
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pixels are very rare. On the other hand, for Cauchy noise and Gaussian noise, all the
pixels of the image are corrupted by noise, while in the impulse noise some pixels are
noise free.

5.2.2 Relevant paper

Here, our contribution regards the introduction of a variational method to restore blurred
images corrupted with Cauchy noise. Since the model is non-convex, we suggest a con-
vexified version of it by adding a quadratic penalty term .

For more details we refer the reader to the following paper:
[B] F. Sciacchitano, Y. Dong, and T. Zeng, Variational approach for restoring

blurred images with Cauchy noise, SIAM Journal on Imaging Sciences 8.3 (2015): 1894-
1922.

5.2.3 Perspective and some future works

There are some open questions about Cauchy noise.
A deeper study of the scale parameter γ will be very interesting. In fact, since the

scale parameter appears explicitly in the data fidelity term, in order to reconstruct an
image an estimation of γ is required.

Another important topic would be the study of the regularization parameter for the
proposed variational model. For instance, by using the similar argument in [5, 83], a
discrepancy principle for the Cauchy model may be formulated. Furthermore, since for
some pixels the image corrupted by Cauchy noise is highly corrupted, an extension to
the spatially dependent regularization parameter would be interesting. A future work
regards the estimation of the regularization parameter and the scale parameter by using
a learning approach, [32].

Finally, since Gaussian noise and Cauchy noise belongs to the alpha-stable distribu-
tions, a generalization of the proposed variational model to the symmetric alpha-stable
distribution would be interesting. Here, the main difficulty is the lack of close formula
of the alpha-stable distributions.

5.3 Bregman cost for non-Gaussian noise

Here, we focus on the Bayes formalism. We start by giving the definition of Bayes cost
and Bayes estimate, then we show our contribution.

5.3.1 Overview

One of the tasks of the Bayesian inverse problem is to find a good estimate based on the
posterior probability density. The most common point estimators are the conditional
mean (CM) and maximum a posteriori (MAP) estimates, which correspond to the mean
and the mode of the posterior, respectively. As we saw in the previous chapters, from
the numerical point of view, the MAP estimate can be computed rather easily, while
the CM estimate requires to solve a much harder and more time-consuming integration
problem. Although there are numerical challenges to calculate the CM estimate, it has
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many theoretical benefits. Before introducing the advantages of the CM estimate, we
need some theoretical remark about the Bayes cost formalism.

The Bayesian estimation of u from the given noisy image f , relies on the minimization
of a Bayes cost, which is defined as follows

BCC(û) :=E[C(u, û)]

=

∫ ∫
C(u, û)p(u, f)dudf

=

∫ ∫
C(u, û)p(u|f)dup(f)df,

where C : Rn×Rn → R is a mapping that measures the cost of estimating û by f instead
of the true image. C(u, û) is called the cost function or loss function, since it shows the
loss when the true value is ũ but we estimate it by f . In Bayesian estimation framework,
a Bayes estimator ûC is the estimator which minimizes the Bayes cost function BCC(û),
i.e.

ûC := argmin
û

BCC(û).

Since û only depends on the noisy image f and p(f) is non-negative, the Bayesian
estimator can be computed as follows

ûC := argmin
û

∫
C(u, û)p(u|f)du = argmin

û
E[C(u, û)].

Therefore, in order to compute the Bayesian estimator we need to find a suitable
cost function. One of the most common choice for the cost function is given by the mean
squared error, i.e.

C(u, û) = ‖u− û‖22. (5.3)

The conditional mean estimate ûCM is the Bayes estimator for the mean squared error,
in fact

∫
‖u− û‖22p(u|f)du =

∫
‖u− ûCM‖22p(u|f)du+

∫
‖û− ûCM‖22p(u|f)du

− 2

∫
〈u− ûCM, û− ûCM〉p(u|f)du

=

∫
‖u− ûCM‖22p(u|f)du+

∫
‖û− ûCM‖22p(u|f)du

where the last equality holds by definition of CM estimate. Thus, since the first term is
independent of û, we have that the minimizer is given by û = ûCM.

Another popular choice for the cost function is the uniform cost, defined as follows

C(u, û) =

{
0 |uk − ûk| < ε for all k, 1 ≤ k ≤ n
1 otherwise,

where ε > 0 is a small constant. It turns out that the MAP estimate is asymptotically
a solution to the Bayes cost optimization with the uniform cost function, in fact

∫

|uk−ûk|>ε
p(u|f)du = 1−

n∏

k=1

∫ ûk+ε

ûk−ε
p(u|f)duk ≈ 1− (2ε)np(û|f),
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where the last approximation holds by the mean value theorem. Thus, minimizing the
Bayes cost is equivalent to computing the MAP estimate.

Recently, in [12] it has been proved that the MAP estimate is a proper Bayes esti-
mator for

C(u, û) = ‖K(û− u)‖22 + 2λDq
J(û, u), (5.4)

where K is the blurring operator, λ is the regularization parameter and DJ represents
the Bregman distance for the regularization term J , which is defined

Dq
J(û, u) = J(û)− J(u)− 〈q, û− u〉,

for the subgradient q ∈ ∂J(u). We will often refer to the Bregman distance by omitting
q, i.e. DJ(û, u). If J is Fréchet differentiable in u, than the subgradient q corresponds to
the standard Fréchet derivative J ′. The Bregman distance has been introduced in [10]
and it is a very useful tool in image processing, see for instance [13, 14, 46]. Although it
is called distance it is not a distance in the mathematical sense, since it is not symmetric
and the triangle inequality does not hold. On the other hand, some nice properties hold:
DJ(û, u) ≥ 0; if J is strictly convex, DJ(û, u) = 0 implies û = u; DJ(û, u) is convex in
û. We underline that in [12], it has only been proven that the MAP estimate is a proper
Bayes estimator in the additive Gaussian noise case, i.e. when the data fidelity term is
the L2 norm.

Moreover, in [12] the authors show that the MAP estimate outperforms the CM
estimate when the error is measured using the Bregman distance DJ(û, u) and that
the CM estimate outperforms the MAP estimate when the error is measured using the
quadratic distance ‖K(û− u)‖22. In particular, we have

E
[
‖K(ûCM − u)‖22

]
≤ E

[
‖K(ûMAP − u)‖22

]

E
[
DJ(ûMAP, u)

]
≤ E

[
DJ(ûCM, u)

]
.

Since the CM estimate is a Bayes estimator for the mean squared error (see (5.3)), the
first inequality is straightforward. Regarding the second inequality, by using the fact
that the MAP estimate is a Bayes estimator for the cost function in (5.4), we have

∫ (
‖K(ûMAP − u)‖22 + 2αDq

J(ûMAP, u)

)
p(u|f)du

≤
∫ (
‖K(ûCM − u)‖22 + 2αDq

J(ûCM, u)

)
p(u|f)du

≤
∫ (
‖K(ûMAP − u)‖22 + 2αDq

J(ûCM, u)

)
p(u|f)du,

where the last inequality follows from the fact that the mean squared error is a cost
function for the CM estimate.

The results in [12] give some new points of view for the MAP and the CM estimate,
but all the results are achieved under the assumption that the image is corrupted by
Gaussian noise. In our contribution we extend some results of [12] to a more general
noise model.



5.3. Bregman cost for non-Gaussian noise 47

5.3.2 Relevant paper

With only the convexity assumption on the data fidelity term, we introduce some Breg-
man cost functions for which the CM and MAP estimates are proper Bayes estimators.
Moreover, we also prove that the CM estimate outperforms the MAP estimate, when the
error depends on some Bregman distance.

For more details we refer the reader to the following paper:
[C] M. Burger, Y. Dong, and F. Sciacchitano, Bregman Cost for Non-Gaussian

Noise, to be submitted. Available on arXiv http://arxiv.org/abs/1608.07483

5.3.3 Perspective and some future works

This study has been done only from the theoretical point of view, a numerical validation
of the results would be interesting. Furthermore, another very interesting point would
be finding other costs functions for both MAP and CM estimates and try to see if there
exist other relations between them.

http://arxiv.org/abs/1608.07483




CHAPTER 6
Summary/Conclusion

This PhD study investigates new methods in the image processing field for achieving
sharp and noise-free images from the given data. Due to the popularity of the Gaussian
noise, the main focus of the thesis is study of the non-Gaussian noise models. This
project can be split into two parts, in the first one we propose variational methods to
recover blurred images corrupted with impulsive noise models: the impulse noise and
Cauchy noise; the second one is more theoretical and it deals with the Bayes estimators
for reconstructing blurred images corrupted by non-Gaussian noise with convex data
fidelity term.

For the impulse noise removal, we proposed a parameter-free two-phase method for
restoring degraded images. In the denoising case, by separating the noisy pixels and the
noise-free ones, we can recover the original image by simply solving an unconstrained
problem with only the noisy pixels as variables. Therefore, especially for low noise-levels,
the size of the problem is considerably reduced. Our method does not require any tuning
of the regularization parameter and for the denoising case, it provides competitive results
in less time when compared to the other two-phase methods. A very interesting future
work would be the application of this method to the ring artifacts removal in computed
tomography.

Concerning the Cauchy noise, we propose a convex variational model for deblurring
and denoising of degraded images. Due to the convexity of the minimization problem a
primal-dual algorithm has been employed to recover the original image. In future works,
it would be very interesting to estimate the scale parameter γ of the Cauchy distribution.
Moreover, a generalization of our variational model to the alpha-stable distribution could
be useful. Furthermore, a study of a discrepancy principle for the Cauchy noise removal
would be also very interesting.

The last project regards the study of the two typical point estimators for the posterior
probability density: the conditional mean (CM) estimate and the maximum-a-posterior
(MAP) estimate. Here, based on the Bregman distance, we propose new cost functions
for which the CM and the MAP estimates are Bayes estimators. Furthermore, we give a
new comparison result on these two estimates. An ongoing work deals with testing the
theoretical results with some numerical simulations.
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Abstract. We propose a new two-phase method for reconstruction of blurred images
corrupted by impulse noise. In the first phase, we use a noise detector to identify
the pixels that are contaminated by noise, and then, in the second phase, we recon-
struct the noisy pixels by solving an equality constrained total variation minimization
problem that preserves the exact values of the noise-free pixels. For images that are
only corrupted by impulse noise (i.e., not blurred) we apply the semismooth New-
ton’s method to a reduced problem, and if the images are also blurred, we solve
the equality constrained reconstruction problem using a first-order primal-dual algo-
rithm. The proposed model improves the computational efficiency (in the denoising
case) and has the advantage of being regularization parameter-free. Our numerical
results suggest that the method is competitive in terms of its restoration capabilities
with respect to the other two-phase methods.

AMS subject classifications: 68U10, 94A08, 49J40, 52A41, 65K10, 90C47, 49M15

Key words: Image deblurring, image denoising, impulse noise, noise detector, primal-dual first-
order algorithm, semismooth Newton method, total variation regularization.

1. Introduction

During the image acquisition and transmission, observed images are inevitably de-
graded by blur and noise. In the literature, many kinds of noise have been widely
considered, Gaussian noise [14, 20, 36], impulse noise [7, 11, 28, 29, 31], multiplica-
tive noise [3, 19, 35], Poisson noise [21, 26, 37] or mixed noise [8, 27, 38]. In this
paper, we focus on blurred image with impulse noise, which is a common type of image
degradation due to, e.g., malfunctioning pixel elements in the camera sensors, errors
in analog-to-digital conversion, faulty memory locations in hardware, or transmission
errors [5]. A characteristic property of impulse noise is that a certain number of pixels
are uncorrupted and the noise-corrupted pixels contain no information about the true
pixel value.

∗Corresponding author. Email addresses: feds@dtu.dk (F. Sciacchitano), yido@dtu.dk (Y. Dong),
mskan@dtu.dk (M. S. Andersen)
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Over the years, many nonlinear digital filters methods have been proposed, see [2].
The most common filters used to remove impulse noise are the median-type filters:
median filter [34], weighted median filter [6], adaptive median filter [24], multistate
median filter [15], center weighted median filter [25] and adaptive center-weighted
median filter [16]. Although these filters are efficient and easy to implement, they
cannot achieve good results in general, in particular they are not able to restore a blurred
image and they do not preserve the image edges well.

In order to preserve the edges, in 2004, Nikolova [31] proposed a variational model
which combines an `1-data fidelity term with total variation (TV), which has been in
shown in [30,31] to work better than the classical `2-term, [36].

Later, other approaches based on the `1-TV have been proposed to handle the de-
blurring problem and the non-differentiability of the `1-norm, for instance: Bar et al. [4]
introduce a model using the Mumford-Shah regularizer and the `1-data fidelity term;
Yang et al. [39] suggested an efficient algorithm to solve the `1-TV model; Dong et
al. [17] solved the `1-TV model using a primal-dual approach.

However, since the `1-TV minimization method negatively affects the noisy-free pix-
els, in 2005, Chan, Ho, and Nikolova [12] proposed the so-called two-phase method.
The basic idea behind this method, which we will refer to as the CHN method, is to
separate noise detection and image reconstruction. In the first phase, the method uses
a noise detector to identify which pixels are corrupted, and in the second phase, it re-
constructs only the noisy pixels based on an objective function with an `1-data fidelity
term and with TV as a regularization term. The two-phase model has also been studied
for other applications, for instance in [8], the authors apply the two-phase method to
restore blurred images with impulse and Gaussian noise; in [23], a two-phase method
is used for recovering images corrupted by multiplicative noise; in [7] and [11], a two-
phase method is used to simultaneously deblur and denoise an image with impulse
noise. Different from [12], in the second phase of [7] and [11] the authors reconstruct
the image based on a modified `1-TV model where only noise-free pixels are kept in the
`1-data fidelity term, due to no useful information contained in impulse noise. We will
focus only on the method in [11] (the CDH method in short), since it outperforms the
one in [7] and [12]with respect to both image restoration capability and computational
efficiency.

While the CDH method has been shown to perform well on many test problems,
the inclusion of noise-free pixels in the data-fidelity term is somewhat at odds with
the assumption that their true values are known. If the pixels are indeed noise-free,
then they can either be treated as constants or eliminated from the problem. In this
work, we investigate such an approach and propose a modified two-phase method. In
particular, as suggested in [11], in the first phase we distinguish noisy pixels from the
noise-free pixels by the adaptive median (AM) filter [24] for detecting salt-and-pepper
noise, and the adaptive center-weighted median (ACWM) filter [16] for random-valued
impulse noise. The detector for salt-and-pepper noise is able to detect almost all noisy
pixels even for noise level around 90%, while for random-valued impulse noise, the
ACWM works quite well until a noise level of 40%, since in this case the noisy pixels
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can be confused as clean ones and vice-versa. In case of higher noise for random-
valued impulse noise, we suggest to use other filters, e.g. [1] and [18], which have the
capability to detect noisy pixels in images with noise percentage up to 60%. The study
of a good detector for random-valued impulse nose is outside the scope of this paper.

In the second phase, we compute the reconstruction by solving a reduced TV mini-
mization problem that involves only the corrupted pixels. For solving the problem, we
employ the semismooth Newton method, [32]. Furthermore, if the noise level is below
30%, we speed up the process by preprocessing the independent noisy pixels. The main
difference between our method and the CDH method is that we reconstruct only the
pixels that are identified as corrupted by noise instead of all pixels. For this reason, our
method often leads to computational savings, and it can be viewed as an exact method
in the sense that the reconstruction model matches the information about the noise-free
pixels. Moreover, a notable advantage of our model is that the reconstruction results
do not rely on the adjustment of any regularization parameters.

In addition to the impulse noise denoising problem, we also consider simultaneous
deblurring and denoising. Instead of including the noise-free pixels in a data-fidelity
term, we propose a regularization parameter-free model based on a constrained mini-
mization problem. We solve this problem numerically using a primal-dual first-order
algorithm [10].

This study focuses on the second phase of the two-phase method, and the main
contributions regard the introduction of a regularization parameter-free model to re-
construct the corrupted image and, for the denoising case, the computational efficiency
compared to the latest two-phase method, especially given by the preprocessing part.

The paper is organized as follows. In Section 2, we review the impulse noise model
and propose a two-phase methods for denoising and also deblurring images. In Section
3, we present the implementation details, and in Section 4, we show some numerical
results. We conclude the paper in Section 5.

2. The regularization parameter-free two-phase models

We start this section by introducing two impulse noise models, namely salt-and-
pepper noise and random-valued impulse noise. Then, inspired by the existing denois-
ing models in the literature [11], we propose (i) a two-phase method for denoising, and
(ii) a two-phase method for simultaneous denoising and deblurring.

Given a discrete image of size m1 × m2, we define a vector u ∈ Rm with the m =
m1m2 pixels. We shall use the following notation uk = ui, j, where k = (i − 1)m2 + j
for i = 1, . . . , m1 and j = 1, . . . , m2, to identify the pixel at position (i, j) with the kth
element of u, and we define a set Ω= {1,2, . . . , m} that contains all pixel indices.
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2.1. Impulse Noise Models

Impulse noise can be described as a stochastic degradation process of the form

zk = Nr(ũk) =

¨
ηk with probability r
ũk with probability 1− r

, k ∈ Ω

where ũ ∈ Rm is the original image, z ∈ Rm is the corrupted image, and η ∈ Rm is the
noise, which is independent from the original image ũ. Both images are assumed to be
obtained from a two-dimensional pixel-array by means of columnwise concatenation.
We refer to the parameter r ∈ [0, 1] as the noise level since it can be interpreted as the
probability that a pixel is corrupted. Notice that some pixels remain unchanged, and
the pixels that are corrupted by noise carry no information about the noise-free image.

Two main types of impulse noise are the salt-and-pepper noise when, for each k, the
noise ηk is a discrete random variable with values drawn from the set {dmin, dmax} with
equal probability (with dmin = mink ũk and dmax = maxk ũk), and the random-valued
impulse noise when, for each k, the noise ηk is a uniformly distributed random variable
with values in the gray-level range [dmin, dmax]. For salt-and-pepper noise corrupted
pixels take the lowest or the highest pixel value (i.e., dmin or dmax), whereas for random-
valued impulse noise, the noisy pixels have values anywhere in the interval from dmin
to dmax. Then, the random-valued impulse noise is more general and more difficult to
detect than the salt-and-pepper noise.

2.2. Denoising Models

The `1-TV model for impulse noise denoising proposed by Nikolova [30, 31] com-
bines the TV regularization term with an `1 data-fidelity term. The resulting reconstruc-
tion problem is convex and takes the following form

min
u∈Rm

‖u − z‖1 +αTV(u), (2.1)

where ‖u−z‖1 =
∑

k∈Ω |uk−zk| is the data-fidelity term, TV(u) is a regularization term,
and α > 0 is a regularization parameter. The (discrete) TV is defined as

TV(u) :=
∑
k∈Ω
|(∇u)k|2 =

∑
k∈Ω

q
|(∇x u)k|2 + |(∇y u)k|2,

where the discrete gradient operator ∇ ∈ R2m×m is given by

(∇u)k =

�
(∇x u)k
(∇y u)k

�
,

and ∇x u and ∇y u denote the horizontal and vertical first order differences, i.e., using
the symmetric boundary conditions, we have

(∇x u)k =

¨
ui+1, j − ui, j if i < m1,
0 if i = m1,

and (∇y u)k =

¨
ui, j+1 − ui, j if j < m2,
0 if j = m2,



Total variation based parameter-free model for impulse noise removal 5

for k = (i − 1)m2 + j with i = 1, . . . , m1 and j = 1, . . . , m2.
The `1-TV model has some nice properties, such as contrast preservation, multiscale

decomposition and morphological invariance [13,30,40]. However, as mentioned in the
introduction, the main disadvantage of this approach is that we have to reconstruct all
the pixels of the image, including the ones that are noise-free. Furthermore, including
the noisy pixels in the data-fidelity term introduces errors since the noise-corrupted
pixels contain no information about the true image. To address this issue, Chan et
al. [11] studied a two-phase method (the CDH method) in which they first detect the
noisy pixels (phase 1) and then exclude these pixels from the data-fidelity term when
computing a reconstruction (phase 2). Thus, in the first phase, they use a detector (an
AM filter for salt-and-pepper and an ACWM filter for random-valued impulse noise) to
split the domain Ω into two sets: N that includes all indices of the corrupted pixels and
U that includes the indices of the noise-free pixels. We will henceforth assume that
there are |N | = n noisy pixels and |U | = m− n noise-free pixels. In the second phase,
for the denoising case (here, instead of the blurring operator we consider the identity),
they reconstruct the image based on the following model

min
u∈Rm

∑
k∈U
|uk − zk|+αTV(u). (2.2)

The main advantage of the CDH method is that the noise detector improves the data-
fidelity term in `1-TV model (2.1), and this often yields a great improvement in terms
of restoration capabilities. Furthermore, the `1-norm in the data-fidelity term allows
many noisy-free pixels to maintain their exact values. However, the presence of a regu-
larization parameter in the model necessitates multiple reconstructions or tests in order
to find a good choice for the parameter. Moreover, the problem (2.2) includes all pix-
els of the image as variables, including the ones that are assumed to be free of noise.
To overcome these disadvantages of the CDH method, we propose to alter the second
phase of the method such that the noise-free pixels are required to be equal to their
known values, i.e., we consider the following constrained optimization problem

min
u∈Rm

TV(u)

s.t. uk = zk k ∈ U .
(2.3)

In other words, instead of looking at the unconstrained minimization problem in (2.2),
we are considering the constrained version of it. The equality constraints in this model
reflect the exact prior that some pixels are known, assuming that all pixels were cor-
rectly identified as either noise-free or corrupted in the first phase. For this reason, the
reconstruction model (2.2) can be seen as an approximation model since it allows the
noise-free pixels to deviate from their known value.

Although the model (2.3) does not require the determination of any regularization
parameters, it can be shown to be equivalent to (2.2) if the regularization parameter α
is chosen sufficiently small. Specifically, we refer the reader to [32, Thm. 17.3] (note
that, this theorem holds in the continuous case).
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Unlike the model (2.2), which includes all pixels as variables, the constrained prob-
lem (2.3) allows us to eliminate the variables that correspond to noise-free pixels from
the problem formulation. To write (2.3) as an unconstrained optimization problem, we
define a vector uN ∈ Rn that corresponds to the corrupted pixels. With this notation,
u can be expressed as

u = ΛN uN +ΛU u, (2.4)

where ΛU ∈ Rm×m is a diagonal matrix defined as

(ΛU )i,i =

¨
1 if i ∈ U
0 if i ∈ N

and ΛN ∈ Rm×n is a matrix with n unit vectors e j ∈ Rm, j ∈ N , as columns. Note
that ΛUΛN = 0 by construction. Since ΛU u represents the intensity of the noise-free
pixels, based on the constraint in (2.3), we can substitute ΛU z into (2.4) and express
the image u as follows

u = ΛN uN +ΛU z. (2.5)

The problem (2.3) can therefore be expressed in terms of uN as follows

min
uN ∈Rn

TV(ΛN uN +ΛU z). (2.6)

Comparing this model with (2.2), we see that both are unconstrained minimization
problems, but (2.6) has some advantages. Firstly, the minimization problem involves
only n variables instead of m variables, and if the noise level is relatively low (i.e.
n� m) the reduction in the number of variables is quite substantial. Secondly, it does
not require the determination of the regularization parameter.

Before we discuss how to solve (2.6), we first consider an extension of our denoising
approach to simultaneous deblurring and denoising.

2.3. Deblurring and Denoising Models

Suppose the observed image z is not only corrupted by impulse noise but also
blurred by a known linear blur operator K ∈ Rm×m, i.e., we define z = Nr(Ku). To
solve the deblurring and denoising problem, we consider the two-phase method in [11],
which extends the CHN method for the general case. In the first phase, the authors
of [11] identify the corrupted pixels, and then, in the second phase, they compute a
reconstruction by solving the following problem

min
u∈Rm

∑
k∈U
|(Ku)k − zk|+αTV(u). (2.7)

Note that only the noise-free pixels are included in the data-fidelity term. As in the
denoising problem (2.3), we can formulate a constrained minimization problem

min
u∈Rm

TV(u)

s.t. (Ku)k = zk k ∈ U
(2.8)
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which implies that the value of noise-free pixels in the blurred image are treated as
known constants. However, unlike in the denoising case, the blur operator K introduces
coupling and makes it difficult to eliminate the equality constraints. In the next section,
we address how to solve the problem numerically.

3. The algorithms

We now present methods for solving the denoising problem (2.6) as well as the
deblurring and denoising problem (2.8).

3.1. Solving the Denoising Problem

Since the objective function in (2.6) is not differentiable everywhere, we introduce
the following smooth approximation of TV,

TVγ(u) =
∑
k∈Ω
Φγ(|(∇u)k|2),

where the function Φγ is the Huber function which is defined as

Φγ(t) =

¨|t| − γ

2
if |t| ≥ γ

1
2γ
|t|2 else,

with parameter γ > 0. Other smooth approximations may be used instead, such as e.g.Æ
t2 + γ2. The gradient of TVγ(ΛN uN +ΛU z) can be expressed as

Fγ(uN ) = −Λ>N divDγ(uN )−1∇(ΛN uN +ΛU z),

where div ∈ Rm×2m represents the divergence, Dγ(uN ) ∈ R2m×2m is defined as

Dγ(uN ) =
�

Nγ(uN ) 0
0 Nγ(uN )

�
,

and Nγ(uN ) ∈ Rm×m is a diagonal matrix with diagonal max
�|∇(ΛN uN +ΛU z)|2,γ

�
.

The divergence satisfies the equation div = −∇>, where ∇> is the transpose of the
gradient operator. Hence, the explicit formula of the divergence can be found using the
definition of transpose

〈−div p, v〉Rm = 〈p,∇v〉R2m ,

for every p ∈ R2m and v ∈ Rm, where 〈·, ·〉Rm and 〈·, ·〉R2m denote the standard scalar
products in Rm and R2m, respectively.

It follows from the first-order optimality condition associated with (2.6) that the
solution to the smooth approximation should satisfy the following equation

Λ>N divDγ(uN )−1∇(ΛN uN +ΛU z) = 0. (3.1)
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The nonlinear equation in (3.1) can be solved by the semismooth Newton method.
Before describing the algorithm, we give the definition of generalized differentiability of
a mapping F : Rs→ Rt with s, t ∈ N. The mapping F is called generalized differentiable
in an open set V ⊂ Rs if there exists GF : Rs→ Rs×t such that

lim
‖δv‖→0

1

‖δv‖
‖F(v +δv )− F(v)− GF (v +δv )δv‖= 0,

for every v ∈ V ; see e.g. [22]. This definition is equivalent to the semismoothness of
locally Lipschitz maps F in [33]. Thus, we can define the semismooth Newton’s method
as the generalized version of Newton’s method for semismooth maps. In particular,
given the current iterate u l

N , the semismooth Newton iteration is

GF (u
l
N )δu,l = −Fγ(u l

N ), (3.2)

with δu,l = u l+1
N − u l

N .
The generalized derivative of Fγ is given by

GF (uN ) = Λ>N div(Dγ(uN ))−1∇ΛN +
1

2
h(uN )w> +

1

2
w (h(uN ))>,

where h(uN ) = Λ>N div∇(ΛN uN +ΛU z) and w ∈ ∂ ((Dγ(uN ))−1), with ∂ ((Dγ(uN ))−1)
indicates the generalized derivative of (Dγ(uN ))−1, [22]. Thus, w is given by w =
Λ>N w̃ where

w̃ =

¨
−div(Dγ(uN ))−3∇(ΛN uN +ΛU z) if m(uN )> γ
0 otherwise

and m(uN ) = |∇(ΛN uN +ΛU z)|2.
A solution δu,l in (3.2) may not exist or may not be unique, since it is not ensured

that GF is positive definite. For this reason, we add a small multiple of the identity
matrix to GF ,

GεF = GF + εI , (3.3)

where ε is a small positive constant. Thus, substituting GF with GεF in (3.2), the semis-
mooth Newton iteration is given by

GεF (u
l
N )δu,l = −Fγ(u l

N ), (3.4)

with δu,l = u l+1
N −u l

N . Since the regularized matrix is positive definite and symmetric,
we can solve (3.4) using the conjugate gradient method, [32].

In our numerical experiments, we have tested our implementation of the algorithm
with different values of ε ∈ [10−3, 1], and we always obtained good reconstructions
which suggests that our method is robust with respect to the choice of ε. In the numer-
ical experiments reported in Section 4, we fix ε = 0.1.
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i − 1

i

i + 1

j − 1 j j + 1

Figure 1: Neighborhood of a noisy pixel ui, j (black) containing six noise-free pixels (white).

3.1.1. Preprocessing

The problem (2.6) is very structured and partially separable. It follows from the defi-
nition of the discrete gradient operator ∇ that a noisy pixel with a noise-free neighbor-
hood as shown in Fig. 1 is completely independent of other noisy pixels and hence can
be computed independently. Specifically, if we regard u as a matrix instead of a vector
and consider a noisy pixel ui, j with six noise-free neighboring pixels

{ui, j−1, ui+1, j−1, ui−1, j, ui+1, j, ui−1, j+1, ui, j+1},
then it follows from (2.6) that ui, j can be obtained by solving an unconstrained univari-
ate optimization problem

ui, j = argmin
v

Hi, j(v) (3.5)

where

Hi, j(v) =


�

ui+1, j − v
ui, j+1 − v

�
2

+


�

ui+1, j−1 − ui, j−1
v − ui, j−1

�
2

+


�

v − ui−1, j
ui−1, j+1 − ui−1, j

�
2

.

The function Hi, j(v) is clearly convex, and hence the minimization problem (3.5) can be
solved using e.g. the golden section search method. To this end, it is worth noticing that
each of the three terms of Hi, j(v) is coercive, and hence we can easily derive a lower
bound and an upper bound on ui, j. Indeed, the three terms of Hi, j(v) have minimizers
(ui+1, j + ui, j+1)/2, ui, j−1, and ui−1, j, so the interval [a, b] with

a =min{(ui+1, j + ui, j+1)/2, ui, j−1, ui−1, j}
and

b =max{(ui+1, j + ui, j+1)/2, ui, j−1, ui−1, j}
must contain a solution.

When the noise-level is high, there may not be many pixels with a noise-free neigh-
borhood as shown in Fig. 1. However, it may still be possible to separate the problem
(2.6) into a number of independent subproblems. Extraction of such subproblems can
easily be automated using morphological image processing and image analysis, but in
this paper, we will only consider corrupted pixels with a neighborhood as in Fig. 1 and
solve for these independently.
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3.1.2. Algorithm

Our denoising algorithm is summarized in Algorithm 3.1.

Algorithm 3.1 Impulse noise denoising
1: Detect the noise-free pixels using a noise detector.
2: If the estimated noise level r ≤ 30%, do preprocessing:

• find pixels with noise-free neighborhood;

• solve (3.5) to find optimal pixel value.

3: Initialize u0
N ∈ Rn as the value obtained from the previous steps and set l = 0.

4: Compute δu,l , by solving the equation (3.4), and update u l+1
N = u l

N + δu,l . (Note
that, with preprocessing, a part of noisy pixels have been restored in step 2. In this
case, the size of uN in (3.4) is further reduced.)

5: Stop if stopping criteria are satisfied; otherwise set l = l + 1 and go to step 4.

3.2. Solving the Deblurring and Denoising Problem

A saddle-point formulation of the problem (2.8) is given by

max
b∈B

min
u∈C b>∇u, (3.6)

where b ∈ R2m is a dual variable, and the sets C andB are defined as

C = {u ∈ Rm |ΛU Ku = ΛU z}
and

B = {b ∈ R2m | ‖b‖∞ ≤ 1}.
The norm ‖b‖∞ denotes the discrete maximum norm, defined as

‖b‖∞ =max
k
|bk|2 =max

k

q
|(bx)k|2 + |(b y)k|2,

with

b =

�
bx
b y

�
and bx , b y ∈ Rm.

The Chambolle–Pock algorithm [10] for solving the convex–concave saddle-point
problem (3.6) is summarized in Algorithm 3.2.

The projection operator PC in (3.7) can be evaluated by solving the following least-
norm problem

min
u
‖u − w l‖22

s.t. ΛU Ku = ΛU z,
(3.10)
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Algorithm 3.2 Chambolle–Pock algorithm for deblurring and denoising
1: Detect the noise-free pixels using a noise detector.
2: Initialize u0 with image from step 1 and b0 = 0 and set l = 0.
3: Set θ ∈ [0,1] and τ, σ > 0 such that τσ‖∇‖22 < 1.
4: Compute u l+1:

u l+1 = PC (u l +τdivbl). (3.7)

5: Compute ū l+1:
ū l+1 = u l+1 + θ (u l+1 − u l). (3.8)

6: Compute bl+1:
bl+1 = PB(bl +σ∇ū l+1). (3.9)

7: Stop if stopping criteria are satisfied; otherwise set l = l + 1 and go to step 4.

where w l = u l +τdivbl . This problem has the closed-form solution

u l+1 = w l − K>Λ>U (ΛU KK>Λ>U )
−1ΛU (Kw l − z).

In order to compute the above quantity, we use the conjugate gradient method, [32].
Due to the singularity of the matrix ΛU , to guarantee the stability of the conjugate
gradient algorithm, we add a small multiple of the identity matrix to ΛU KK>Λ>U .

Furthermore, the projection PB in (3.9) is a pointwise Euclidean projection onto L2

balls, i.e.

bl+1 =
bl +σ∇ū l+1

max(1, |bl +σ∇ū l+1|2)
.

The Chambolle-Pock primal-dual algorithm ensures convergence if θ = 1 and

τσ‖∇‖22 < 1. (3.11)

For more details we refer the reader to [10]. From [9], we know that the bound on the
norm of the linear operator ∇ is

‖∇‖22 = ‖div‖22 < 8,

and hence the algorithm converges if 8τσ < 1. In our numerical experiments, we use

τ=
β

3
and σ =

1

3β
,

with β > 0. In this way, the convergence of the algorithm is ensured. In our experiments
described in the next section, we fixed β = 0.01 which worked well. Thus, the proposed
model for deblurring and denoising is also regularization parameter-free.
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Table 1: PSNR values for restored images with different levels of salt-and-pepper noise given by different
approaches.

20% noise 40% noise 60% noise 80% noise
AM CDH Ours AM CDH Ours AM CDH Ours AM CDH Ours

Boat 30.27 34.81 34.82 26.85 30.25 30.32 24.14 27.07 27.18 20.87 24.03 24.19
Bridge 28.41 32.01 32.06 25.11 28.17 28.25 22.44 25.09 25.18 19.47 22.11 22.26

Cameraman 28.66 33.60 33.59 25.27 29.14 29.13 22.59 26.23 26.29 19.97 23.07 23.14
Goldhill 29.91 34.07 34.12 27.46 30.64 30.70 24.80 27.76 27.84 22.15 25.06 25.22

Lena 32.05 36.71 36.72 28.13 32.15 32.16 24.82 28.96 28.95 21.10 25.07 25.21
Parrot 29.03 34.43 34.44 25.23 29.52 29.53 22.03 25.90 26.01 18.73 21.20 21.29

Peppers 25.47 25.58 25.60 24.44 25.26 25.27 23.02 24.67 24.68 20.25 22.91 22.96

Figure 2: Original images: “Parrot”, “Cameraman” and “ ‘Boat”.

4. Numerical results

In this section, we show some reconstructions obtained by applying the proposed
methods to sharp and blurred images corrupted by impulse noise. For the illustrations,
we use the 256× 256 gray-level images: “Boat”,“Cameraman” and “Parrot”; see Fig. 2.
The quality of the images is compared in terms of the peak signal to noise ratio (PSNR)
which is defined as

PSNR(u?) = 20 log10
m|ũmax − ũmin|
‖ũ − u?‖2

,

where ũ and u? represent respectively the original image and the reconstructed image
with values in the gray-level range [ũmin, ũmax]. Our reconstructions are compared with
the ones given by the detector (AM or ACWM) and the latest two-phase method, i.e.
the one proposed in [11]. As suggested in [11], we set the parameters λ = 0.0005
and γ = 0.01 and we tune α to get the highest value of PSNR (for more details about
the parameters we refer the reader to [11]). Concerning our reconstruction, based
on numerical experiment, we set ε = 0.1 and γ = 0.01, as in the CDH method. In our
simulations, we stop our algorithm as soon as there are not big changes in the iterations,
i.e.,

‖u l − u l−1‖2
‖u l‖2

< 10−5.

In our first experiment, we consider denoising without blurring. Recall that in the
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first phase of our algorithm, we detect the noisy pixels using the adaptive median (AM)
filter [24] for salt-and-pepper noise and the adaptive center-weighted median (ACWM)
filter [16] for random-valued impulse noise. In the second phase, we solve the minimi-
zation problem (2.6) to denoise the corrupted pixels.

Figure 3: First row: noisy images “Parrot” with salt-and-pepper noise with noise level 20%, 40%, 60%,
and 80% (left to right). Second row: results obtained with AM filter. Third row: results obtained with
CDH method (α = 0.16, α = 0.18, α = 0.2 and α = 0.25). Fourth row: results obtained with proposed
method.

In Fig. 3, we show the restored images from salt-and-pepper noise using (i) the
adaptive median filter [24], (ii) the CDH method [11], and (iii) our method. For the
CDH method, we adjusted the regularization parameter through numerical tests and
show the best results. Comparing the PSNRs listed in Table 1, we see that the pro-



14 F. Sciacchitano, Y. Dong and M. S. Andersen

Table 2: Comparison of CPU time (in seconds) for “Pirate” corrupted by salt-and-pepper noise.

Noise CDH method Our method
No preprocessing Preprocessing

10% 177.9 54.7 33.7
20% 202.1 83.4 69.6
30% 199.9 110.3 101.3
40% 284.0 142.8 -
50% 293.9 195.2 -
60% 353.3 245.1 -
70% 359.3 313.0 -
80% 425.8 375.5 -

posed method outperforms the AM filter and is competitive when compared to the CDH
method. Taking into account that the proposed model is regularization parameter-free
and only restores the noisy pixels, it is more practical and more efficient than the CDH
method.

To compare the computational cost, we list the CPU time of the CDH method and
the proposed method in Table 2. All of the numerical experiments were carried out in
MATLAB R2014a on a PC equipped with a 3.20GHz CPU and 8GB memory. The results
are based on the 1024×1024 test image “Pirate” and represent the average computation
time based on ten noise realizations. Note that since the first phase of the CDH method
and our method is same and the main computational load is in the second phase, we
only give the CPU time associated with the second phase in Table 2. To show the effect
of the preprocessing step in our method, we report the CPU times for restoration with
and without the preprocessing when the noise level is at most 30%. Based on the results
in Table 2, we find that the CDH method is slower than our method, especially when
the noise-level is low. Moreover, the results verify that preprocessing is beneficial when
the noise-level is low. Furthermore, the computation times for the CDH method do not
include the overhead of tuning the regularization parameter, and hence the results do
not reflect the added advantage of our model being regularization parameter-free.

In Fig. 4, we show the results when restoring the image “Parrot” corrupted by 30%
random-valued impulse noise. In the first phase, we use the ACWM filter [16] as noise
detector. In case of higher noise level, others filter (see for instance [1] and [18]),
which have the capability to detect noisy pixels up to 60% noise level, might be em-
ployed. From the Table 3, it is clear that our method still provides results similar to
those obtained with the CDH method, and both methods outperform the ACWM filter.
As for salt-and-pepper case, the main advantages are that the proposed model does not
require the adjustment of the regularization parameter and, since it reconstructs only
the noisy pixels, it is faster than the CDH method.

As a final experiment, we compare the CDH method [11] and the method proposed
in Section 3.2 for restoring blurred images with salt-and-pepper noise. In our simula-
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Figure 4: From left to right: noisy image “Parrot” corrupted by 30% random-valued impulse noise,
image restored with ACWM filter, image restored with CDH method (α = 0.15), and image restored
with proposed method.

Table 3: PSNR values for restored images with different levels of random valued impulse noise given by
different approaches.

30% noise 40% noise
ACWM CDH Ours ACWM CDH Ours

Boat 25.85 26.08 26.09 24.27 24.74 24.75
Bridge 24.17 24.61 24.61 22.57 23.18 23.19

Cameraman 24.17 24.19 24.20 22.75 23.15 23.14
Goldhill 26.68 27.04 27.02 25.02 25.73 25.75

Lena 27.13 27.01 27.03 25.01 26.16 26.16
Parrot 23.62 23.83 23.82 21.72 22.05 22.04

Peppers 26.33 26.88 26.83 24.37 25.26 25.25

tion, we consider Gaussian blur with window size 7× 7 and standard deviation 5. Fig.
5 shows the degraded images and the restored images obtained with the AM filter, the
CDH method and our method. In addition, in Table 4 we list the PSNRs for different im-
ages restored with different methods. Moreover, to see how the amount of blur affects
the quality of the reconstructions we test our model with Gaussian blur with window
size 11× 11 and standard deviation 7. The results for the image “‘Boat” are shown in
Fig. 6. From Fig. 5 and 6, we see that the results given by the AM filter are still blurred,
since there is no deblurring step in the filter. Comparing the results of the two TV-based
methods, i.e. CDH and ours, we have that both methods yield good restorations. How-
ever, like the proposed denoising model, our denoising and deblurring model does not
require any regularization parameters adjustment.

In Fig. 7, we compare the PSNR values for the CDH method, using different regu-
larization parameters α in (2.1), and our method. For this purpose, we use the blurred
image “Cameraman” with 40% and 60% salt-and-pepper noise (see Fig. 5 second and
third column, respectively). Note that, only in the continuous case the constrained mi-
nimization problem in (2.8) is equivalent to the unconstrained minimization problem in
(2.7), if the regularization parameter is sufficiently small (see for more details [32, Thm.
17.3]). While, in the discrete case, we can see that due to numerical issues the theorem
does not hold. From the figure, it is clear that the performance of the CDH method
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Figure 5: First row: Corrupted image “Cameraman” with salt-and-pepper noise with noise level 20%,
40%, 60%, and 80% and Gaussian blur with window size 7× 7 and standard deviation 5. Second row:
results obtained with the AM filter. Third row: results obtained with the CDH method (α = 0.0008,
α= 0.0011, α= 0.0018 and α= 0.0033). Fourth row: results obtained with our method.

strongly depends on the selection of α. With a value of α that differs only slightly from
the best choice, the restoration results can be much worse. Hence, being regularization
parameter-free, our method is much more practical and always provides comparable
restored images with the CDH method.

5. Conclusion

We have introduced a total-variation based regularization parameter-free model
for restoring images corrupted by impulse noise. Since impulse noise only partly cor-
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Table 4: PSNR values for restored blurred images with different levels of salt-and-pepper noise given by
different approaches.

20% noise 40% noise 60% noise 80% noise
AM CDH Ours AM CDH Ours AM CDH Ours AM CDH Ours

Boat 23.00 38.85 39.00 22.90 35.78 36.02 22.68 32.13 32.09 21.88 27.74 27.79
Bridge 21.55 33.74 33.62 21.46 31.09 31.08 21.19 28.34 28.32 20.49 25.47 25.46

Cameraman 21.87 38.09 38.16 21.79 34.63 35.05 21.55 31.07 31.33 20.77 26.62 26.65
Goldhill 24.31 35.73 35.56 24.21 33.31 33.36 23.94 30.70 30.69 23.20 27.94 27.85

Lena 24.03 38.15 38.19 23.80 35.38 35.60 23.32 32.17 32.38 22.00 29.16 29.14
Parrot 21.02 37.16 37.24 20.88 33.95 34.08 20.55 30.18 30.43 19.41 26.47 26.48

Peppers 22.96 41.04 40.83 22.81 38.74 38.57 22.38 35.09 35.32 21.24 30.31 30.27

Figure 6: From the left to the right: corrupted image “Boat” with salt-and-pepper noise with noise level
40% and Gaussian blur with window size 11×11 and standard deviation 7; recovered image by using the
AM filter (PSNR=21.55); recovered image by using the CDH method with α= 0.0013 (PSNR=33.76);
recovered image by using our method (PSNR=33.92).
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Figure 7: Comparison of the performance for the CDH method, with different values of α, and for our
method for the blurred “Cameraman” with 40% and 60% salt-and-pepper noise (see Fig. 5 second and
third column, respectively).

rupts images, we start with a constrained minimization problem for which the CDH
model [11] can be viewed as an `1-approximation of our model. In the denoising case,
by separating the noisy pixels and the noise-free ones, our formulation yields an uncon-
strained problem with only the noisy pixels as variables. This reduces the size of the
problem, especially for low noise-levels. We also extend our method to the simultane-
ous deblurring and denoising case. The main advantage of our model is that it does not
require the tuning of the regularization parameter, and we have demonstrated numer-
ically that, for the denoising case, our method provides competitive results in less time
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when compared to the CDH method.
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Abstract. The restoration of images degraded by blurring and noise is one of the most important tasks in
image processing. In this paper, based on the total variation (TV) we propose a new variational
method for recovering images degraded by Cauchy noise and blurring. In order to obtain a strictly
convex model, we add a quadratic penalty term, which guarantees the uniqueness of the solution.
Due to the convexity of our model, the primal dual algorithm is employed to solve the minimization
problem. Experimental results show the effectiveness of the proposed method for simultaneously
deblurring and denoising images corrupted by Cauchy noise. Comparison with other existing and
well-known methods is provided as well.
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ization, variational model
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1. Introduction. Image deblurring and image denoising are fundamental problems in the
applied mathematics community; see, for instance, [4, 5]. Most of the literature deals with the
restoration of images corrupted by additive Gaussian noise [10, 15, 22, 54, 60]. Unfortunately,
in many engineering applications the noise has a very impulsive character, and thus it cannot
be modeled by this kind of noise. The most common example of impulsive noise is given by the
impulse noise [12, 45, 46], which can be caused, for instance, by analogue-to-digital converter
errors, by malfunctioning pixel elements in the camera sensors, and so on. Another impulsive
degradation is given by Cauchy noise, which appears frequently in atmospheric and underwater
acoustic noises, radar and sonar applications, air turbulence, wireless communication systems,
biomedical images, and synthetic aperture radar (SAR) images. For an overview we refer the
reader to [36, 39, 40, 49, 50, 52] and references therein.

Mathematically speaking, the degraded image f in the presence of blurring and Cauchy
noise is given by f = Ku + v, where u is the original image defined on the image domain
Ω ⊂ R2, K is the blurring operator, and v is some Cauchy noise. A random variable V follows
the Cauchy distribution if it has density

(1.1) g(v) =
1

π

γ

γ2 + (v − δ)2
,
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where γ > 0 is the scale parameter and δ ∈ R is called the localization parameter. The scale
parameter determines the spread of the distribution around δ and plays a role similar to that
of the variance in the Gaussian distribution, while the localization parameter corresponds to
the median of the distribution.

Recently, several approaches have been proposed to deal with Cauchy noise; for instance,
Chang et al. [16] used recursive Markov random field models for reconstructing images under
Cauchy noise. Achim and Kuruoğlu [1] proposed a method for denoising a image degraded
by Cauchy noise in the complex wavelet domain. Wan, Canagarajah, and Achim [59] studied
a segmentation technique for noisy color images corrupted by Cauchy noise. As far as we
know, in the literature, no one has ever studied a variational model for removing Cauchy
noise. Hence, our contribution is to propose a variational model for deblurring and denoising
degraded images with Cauchy noise.

One of the most famous variational models is the ROF model [54]. This approach was
introduced in 1992 by Rudin, Osher, and Fatemi, and it is defined as follows:

(1.2) inf
u∈BV (Ω)

J(u) +
λ

2

∫

Ω
(f − u)2dx,

where J(u) =
∫
Ω |Du| is the total variation (TV) regularization term, BV is the space of the

functions of bounded variation (see [4] or below), the last term is the data fidelity term, and
λ > 0 is the regularization parameter, which represents the trade-off between a good fit of
f and a smoothness due to the TV regularization term. Due to its capability of preserving
sharp edges, it is a very successful and popular approach for denoising images corrupted by
additive Gaussian noise.

Over the years, many variational models based on TV have been introduced for removing
other noises, such as multiplicative noise [3, 21, 53], impulse noise [12, 46, 62], Poisson noise
[19, 24, 41, 51, 56], etc. In our work, inspired by the above studies, we introduce a variational
model, based on TV as the regularization term, for restoring images with blur and Cauchy
noise. In particular, we propose the following problem for removing Cauchy noise:

(1.3) inf
u∈BV (Ω)

J(u) +
λ

2

∫

Ω
log

(
γ2 + (u− f)2

)
dx,

where γ > 0 is the scale parameter; see (1.1). As one can see, we keep the same regularization
term as in the ROFmodel, but we adapt the data fidelity term to the Cauchy noise, introducing
one that is suitable for such a type of noise. We emphasize that TV regularization is a very
useful tool for preserving edges but is not so good for texture recovery; thus, clearly, the
proposed model can be extended to other modern regularization terms such as nonlocal TV
[26, 58, 63], high order TV [61], dictionary learning [22, 33], or a tight-frame approach [8, 38].

Unfortunately, since the data fidelity term is not convex, the restored results depend on the
initialization and the numerical scheme. Hence, to overcome this problem we use a quadratic
penalty function technique; in particular, we introduce the following minimization problem:

(1.4) inf
u∈BV (Ω)

J(u) +
λ

2

(∫

Ω
log

(
γ2 + (u− f)2

)
dx+ μ‖u− u0‖22

)
,
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where u0 is the image obtained by applying the median filter [5] to the noisy image. Under
some assumptions on μ, we are able to prove that (1.4) is convex and there exists a unique
solution of (1.4). We employ the median filter in the quadratic penalty term, since it has
been shown that it works well for removing impulse noise [12], and the Cauchy degradation
has some similarities with the impulse degradation.

Readily, we can also generalize our model for restoring a blurred image corrupted by
Cauchy noise. Given a linear blurring operator K, we consider the following convex model for
deblurring and denoising simultaneously:

(1.5) inf
u∈BV (Ω)

J(u) +
λ

2

(∫

Ω
log

(
γ2 + (Ku− f)2

)
dx+ μ‖Ku− u0‖22

)
.

The minimization problem in (1.5) could be solved by the primal dual algorithm proposed by
Chambolle and Pock in [11] or other efficient optimization algorithms [14, 17, 26, 61, 62].

Numerical results show the potential and the effectiveness of the proposed method for
restoring blurred images degraded by Cauchy noise. Furthermore, we compare the recon-
structed images obtained by our method with those given by the ROF model [54], the median
filter [25], the myriad filter [29], the BM3D [18], the SURE-LET [43], the wavelet shrinkage [5],
and the L1-TV model [46].

The rest of the paper is organized as follows. In section 2, we describe the alpha-stable
distribution, focusing on the Cauchy distribution. Using the MAP estimator, in section 3 we
derive our model for simultaneously deblurring and denoising an image and we analyze some
theoretical properties of this model. Adding a quadratic penalty term, which depends on the
median filter, in section 4, we propose a convex model to restore blurred and degraded images
by Cauchy noise and we prove the existence and uniqueness of the solution. In section 5, using
the primal dual algorithm, we show some numerical results and we compare them with the
reconstructions obtained with other existing approaches. Finally, in section 6, we draw some
conclusions.

2. Cauchy noise modeling. Many studies in image and signal processing rely on the
fundamental assumption that the noise follows a Gaussian distribution. This hypothesis is
justified due to the existence of the central limit theorem; see [31]. Unfortunately, most of
the real world problems cannot be modeled by Gaussian distribution, since the noise is much
more impulsive than the one that is modeled by additive Gaussian noise. Examples of these
applications can be found in the radar and sonar applications, where there are atmospheric
and underwater acoustic noises, in biomedical images, in SAR images, and so on. These types
of noise follow the so called alpha-stable distributions [47, 48, 55].

The alpha-stable distributions are closed under additions; i.e., the sum of two alpha-stable
random variables is still an alpha-stable random variable. Moreover, the alpha-stable random
variables obey to the generalized central limit theorem [48]. But, this class of random variables
has no close formula for densities and distribution functions (apart from Gaussian, Cauchy,
and Lévy distributions). The distributions of this class are all bell-shaped, with increasing
density on the left and decreasing density on the right. The heaviness of the distribution tails
is controlled by the parameter α ∈ (0, 2]; i.e., the tails grow thicker as α becomes smaller.

In Figure 1, we show the probability density functions (PDFs) of alpha-stable distributions
with different values of α. The distribution with α = 2 corresponds to the well-known Gaussian
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Figure 1. Comparison of the PDFs of alpha-stable distributions with α = 0.5, α = 1, α = 1.5, and α = 2.
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Figure 2. Alpha-stable noise in one dimension: notice that the y-axis has different scales (scale between 30
and 120 on (a) and (b) and −100 and 400 on (c)). (a) one-dimensional noise-free signal; (b) signal degraded
by an additive Gaussian noise; (c) signal degraded by an additive Cauchy noise. The Cauchy noise is more
impulsive than the Gaussian noise.

distribution, and the one with α = 1 corresponds to the Cauchy distribution. Comparing the
PDFs, we see that the tails of the bells become heavier as α decreases. In fact, the Cauchy
bell (α = 1) has a thicker tail than the Gaussian distribution (α = 2). Thus, the rare events
have more probability of occurring in the Cauchy bell curve than in the Gaussian bell curve,
and for this reason, the noise generated from the Cauchy distribution is more impulsive than
the Gaussian one. For instance, the Cauchy noise can contain powerful noise spikes that can
be more than a hundred times the magnitude of the humbler Gaussian noise spikes.

In order to illustrate the difference between the Gaussian noise and the Cauchy noise, in
Figure 2 we show a one-dimensional noise-free signal and the corresponding degraded signal by
the Gaussian noise and the Cauchy noise. The noisy signal corrupted by the Gaussian noise has
been obtained simply by adding random values from a Gaussian distribution. From [47, 48],
we know that the Cauchy noise can be obtained from the ratio of two independent Gaussian
variables. Hence, to create the noisy signal with the Cauchy noise, first we generate two vectors
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containing random values from the Gaussian distribution, and then we add the ratio between
these two vectors to the original signal. From the figures, one can see that the Cauchy noise
is much more impulsive than the Gaussian noise, since the rare events have more probability
to occur. Note that the vertical scale goes from 30 to 120 for the original signal and the one
degraded by the Gaussian noise, while it goes from −100 to 400 for the signal degraded by
the Cauchy noise.

Finally, we now describe how Cauchy noise influences the clean image. Given the original
image u : Ω → R, with Ω ⊂ R2 being a bounded, open, and connected set with compact
Lipschitz boundary, the noisy image f : Ω → R is given by

f = u+ v,

where v represents the random noise that models a Cauchy distribution. A random variable
V follows the Cauchy distribution, V ∼ Cauchy(γ, δ), if it has density as in (1.1). Without
loss of generality, from now on, in our analysis we consider δ = 0.

3. Variational model. In this section we analyze a variational model for deblurring and
denoising images corrupted by Cauchy noise. In the first part, we focus only on the denoising
case and using the maximum a posteriori (MAP) estimator (see [31]) to derive a variational
model. Then, we study some properties of the restoration model, i.e., the existence of a
minimizer and the minimum maximum principle. Later, we incorporate a blurring operator
K in our variational model for simultaneously deblurring and denoising an image corrupted
by Cauchy noise.

3.1. Variational model via MAP estimator. Our goal is to find a variational model to
restore an image corrupted by Cauchy noise; in particular, we want to recover the original
image u, given the noisy image f = u+ v, where v follows the Cauchy noise. Based on [3], we
derive our model using the Bayes rule and the MAP estimator; see [31]. In the following, we
denote the random variables with the uppercase letters F , U , and V , the respective instances
with the lowercase letters f , u, and v, and the respective density functions with gF , gU , and
gV .

As already said in the previous section, we assume that v follows a “zero-centered” Cauchy
law, and thus its density function is defined as follows:

gV (v) =
1

π

γ

γ2 + v2
.

Given the noisy image F , for restoring the original image U , we have to maximize the
conditional probability P (U |F ). From Bayes’s rule [31], we know that

(3.1) P (U |F ) =
P (F |U)P (U)

P (F )
.

Based on (3.1), we can equivalently minimize

(3.2) − log(P (U |F )) = − log(P (F |U)) − log(P (U)) + log(P (F )).

Since the quantity P (F ) is constant with respect to the variable U , we just need to minimize
− log(P (F |U)) − log(P (U)).
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The pixels of our image are corrupted by Cauchy noise; thus for x ∈ Ω, with Ω the set of
the pixels of the image, we have

P (f(x)|u(x)) = Pu(x)(f(x)) =
γ

π
(
γ2 + (u(x)− f(x))2

) .

Inspired by [3], we assume that U follows a Gibbs prior:

gU (u) =
1

Z
exp(−βJ(u)),

where Z is the normalization factor, β > 0, and J is a nonnegative given function such as
J(u) =

∫
Ω |Du| (the notation will be explained in the next section).

Now, since the pixels x ∈ Ω are mutually independent and identically distributed (i.i.d.),
we have P (U) =

∏
x∈Ω P (U(x)), where U(x) is the instance of the random variable U at the

pixels x. Hence, minimizing (3.2) is equivalent to minimizing

(3.3) − log(P (F |U)) = −
∫

Ω

(
log

(
P (F (x)|U(x))

)
+ log

(
P (U(x))

))
.

Substituting the explicit expressions of logP (F (x)|U(x)) and logP (U(x)) in (3.3), we can
easily write (3.3) as follows:

(3.4) − log(P (F |U)) =

∫

Ω

(
log

(
γ2 + (U(x)− F (x))2

)
+ βJ(U(x)) + log π + logZ − log γ

)
.

Since the last three terms are constants, our model for restoring images corrupted with Cauchy
noise is given by

(3.5) inf
u∈BV (Ω)

E(u) :=

∫

Ω
|Du|+ λ

2

∫

Ω
log

(
γ2 + (u− f)2

)
dx,

where λ = 2
β is a strictly positive parameter and we assume f ∈ L∞(Ω).

As in [3, 21, 54], in our work we consider the recovered image u in the space of the functions
of bounded variation (BV). In particular, u ∈ BV (Ω) iff u ∈ L1(Ω) and the seminorm in the
space BV (Ω) is finite, where the BV-seminorm is defined as follows:

(3.6)

∫

Ω
|Du| := sup

{∫

Ω
u · div(ξ(x))dx

∣∣∣ξ ∈ C∞
0 (Ω,R2), ‖ξ‖L∞(Ω,R2) ≤ 1

}
.

The space BV (Ω) endowed with the norm ‖u‖BV = ‖u‖L1 +
∫
Ω |Du| is a Banach space. If

u ∈ BV (Ω), (3.6) corresponds to the TV. From the compactness of the space BV (Ω), we
have the following embedding, BV (Ω) ↪→ Lp(Ω), with 1 ≤ p ≤ 2, and for p < 2 it is compact
(see [2, 3] for more explanations).

In the following section, we give some theoretical results on the existence of the minimizer
and we enunciate the minimum-maximum principle.
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3.2. Properties of the model (3.5). We start this section with proving that there exists
at least one solution for the minimization problem (3.5).

Theorem 3.1. Let f be in L∞(Ω); then the problem (3.5) has at least one solution in BV (Ω)
satisfying

inf
Ω

f ≤ u ≤ sup
Ω

f.

Proof. Let us denote a = inf f and b = sup f , and consider a minimizing sequence {un} ∈
BV (Ω) for (3.5). First of all, we show that we can assume a ≤ un ≤ b without loss of
generality, and so the sequence {un} is bounded in L1(Ω). Fixing x ∈ Ω and denoting the
data fidelity term with h : R → R, where h(t) := log(γ2 + (t− f(x))2), we have

h′(t) =
2
(
t− f(x)

)

γ2 +
(
t− f(x)

)2 .

Thus, the function h is decreasing if t < f(x) and increasing if t > f(x). For every M ≥ f(x),
we have

h(min(t,M)) ≤ h(t).

Hence, if M = b, we have
∫

Ω
log

(
γ2 +

(
inf(t, b)− f(x)

)2)
dx ≤

∫

Ω
log

(
γ2 +

(
t− f(x)

)2)
dx.

Furthermore, from [34], we know that
∫
|D inf(u, b)| ≤

∫
|Du|. By definition of our func-

tional E, we can conclude that E(inf(u, b)) ≤ E(u). In the same way, we can prove that
E(sup(u, a)) ≤ E(u), with a = inf f . Hence, since a ≤ un ≤ b, the sequence {un} is bounded
in L1(Ω).

Now, applying our functional E in (3.5) to the sequence {un}, we have that E(un) is
bounded. In particular, there exists a constant C > 0 such that E(un) ≤ C. The data
fidelity term has minimum value 2 log γ when u = f and E(un) is bounded, and hence the
regularization term

∫
|D(un)| is also bounded. Thus, the sequence {un} is bounded in BV (Ω)

and there exists u ∈ BV (Ω) such that up to a subsequence, we have un → u in BV (Ω)-weak
and un → u in L1(Ω)-strong. Furthermore, using a ≤ u ≤ b, the lower semicontinuity of the
TV, and Fatou’s lemma, we have that u is a minimizer of the problem (3.5). Remark that
if γ ≥ 1, we can directly apply Fatou’s lemma, since the logarithm does not take negative
values; if γ < 1, we can still use Fatou’s lemma, but we need some considerations. In fact,
letting u = γv and f = γf0 (with v ∈ BV (Ω) and f0 ∈ L∞(Ω)), the minimization problem in
(3.5) can be rewritten as follows:

inf
v∈BV (Ω)

E(v) := γ

∫

Ω
|Dv|+ λ

2

∫

Ω
log

(
1 + (v − f0)

2
)
dx.

Hence, also in the case γ < 1, the logarithm does not take negative values, and then the use
of Fatou’s lemma is ensured.

Now we are able to prove, under some hypothesis, that there exists a unique solution for
our minimization problem (3.5).

Proposition 3.2. Let f be in L∞(Ω); then the problem (3.5) has only one solution u such
that f − γ < u < f + γ.
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Proof. Using the same notation as before and fixing x ∈ Ω, we have

h′′(t) =
2
(
γ2 − (t− f(x))2

)
(
γ2 + (t− f(x))2

)2 ,

where t ∈ R. If f − γ < t < f + γ, the function h is strictly convex, and hence there exists a
unique minimizer for the problem defined in (3.5).

In the following proposition we enunciate the minimum-maximum principle.
Proposition 3.3. Let f1 and f2 be in L∞(Ω), with a1 = infΩ f1, a2 = infΩ f2, b1 = supΩ f1,

and b2 = supΩ f2. Let us assume that f1 < f2. Then, denoting with u1 (resp., u2) a solution
of (3.5) for f = f1 (resp., f = f2), we have u1 ≤ u2 if b2 < γ + a1.

Proof. From Theorem 3.1, we know that problem (3.5) admits solutions. Thus, by defini-
tion of u1 and u2 we have

J(u1 ∧ u2) +
λ

2

∫

Ω
log(γ2 + (u1 ∧ u2 − f1)

2)dx ≥ J(u1) +
λ

2

∫

Ω
log(γ2 + (u1 − f1)

2)dx

and

J(u1 ∨ u2) +
λ

2

∫

Ω
log(γ2 + (u1 ∨ u2 − f2)

2)dx ≥ J(u2) +
λ

2

∫

Ω
log(γ2 + (u2 − f2)

2)dx,

where u1 ∧ u2 = inf(u1, u2) and u1 ∨ u2 = sup(u1, u2). From [9, 27], we know that J(u1 ∧
u2) + J(u1 ∨ u2) ≤ J(u1) + J(u2); thus, adding the two inequalities above we have

∫

Ω

(
log(γ2+(u1∧u2−f1)

2)−log(γ2+(u1−f1)
2)+log(γ2+(u1∨u2−f2)

2)−log(γ2+(u2−f2)
2)
)
dx ≥ 0.

We now split the domain Ω into two parts Ω = {u1 > u2} ∪ {u1 ≤ u2} and deduce that
(3.7)∫

{u1>u2}

(
log(γ2+(u2−f1)

2)− log(γ2+(u1−f1)
2)+log(γ2+(u1−f2)

2)− log(γ2+(u2−f2)
2)
)
dx ≥ 0.

With the hypothesis b2 < γ + a1, one can prove that the integrand of the above integral
is strictly negative (for further details we refer the reader to the appendix. Hence, we have
that {u1 > u2} has a zero Lesbegue measure, and thus we have proved that u1 ≤ u2 a.e. in
the domain Ω.

Although we proved under some conditions that there exists a unique solution for (3.5),
the model is not convex. Due to the nonconvexity of (3.5), the restored results from (3.5)
strongly depend on the initialization and the numerical schemes. To overcome this problem,
in section 4 we introduce a convex model by adding a quadratic penalty term. Before that we
first extend (3.5) to the deblurring case.
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3.3. Deblurring and denoising case. Since in the real applications the observed image f
is usually not only corrupted by noise but also blurred, we extend the minimization model in
(3.5) to the deblurring and denoising case. In particular, the blurred and noisy image is given
by f = Ku+v, whereK ∈ L(L1(Ω), L2(Ω)) is a known linear and continuous blurring operator
and v ∈ L2(Ω), as above, represents the Cauchy noise. In the deblurring and denoising case,
the minimization problem becomes

(3.8) inf
u∈BV (Ω)

∫

Ω
|Du|+ λ

2

∫

Ω
log

(
γ2 + (Ku− f)2

)
dx.

As in the denoising case, (3.8) is nonconvex; in the next section, to overcome this problem we
introduce a convex model.

4. Convex variational model. In this section we introduce a convex variation model for
deblurring and denoising an image corrupted by Cauchy noise. At the beginning, we focus
only on the denoising case, and then we generalize the model for the deblurring case. Drawing
inspiration from the nonconvex model defined in (3.5), we introduce a new model by adding
a quadratic penalty term that is based on the image given by applying the median filter to
the noisy image f . The reason why we choose to use the median filter will be explained in
subsection 4.1.

In particular, introducing a quadratic penalty term into the previous nonconvex model
(3.5), we have

(4.1) inf
u∈BV (Ω)

∫

Ω
|Du|+ λ

2

(∫

Ω
log

(
γ2 + (u− f)2

)
dx+ μ‖u− u0‖22

)
,

where u0 is the image obtained by applying the median filter to the noisy image f and λ > 0
and μ > 0 are the regularization parameters. In this way, we will prove that the model, under
some conditions, is strictly convex.

4.1. Median filter. In this part we explain the reason why we choose the median filter [25]
as a quadratic penalty term, focusing on the analogies between the Cauchy noise and impulse
noise. Due to its simplicity and its capability of preserving image edges, in past decades, the
median filter has attracted much attention in image processing [7, 35, 42, 57], especially for
denoising images corrupted by impulse noise; see [12, 20]. Given the original image u, the
noisy image f corrupted by impulse noise is defined as follows:

f(x) =

{
u(x) with probability 1− σ,

η with probability σ,
with x ∈ Ω,

where η is a uniformly distributed random variable with values in [minu,maxu] and σ > 0 is
the noise level.

Figure 3(a) shows the original Parrot image, and Figures 3(b), 3(c), and 3(d), respectively,
represent the images corrupted by additive Gaussian noise, impulse noise, and Cauchy noise.
In Figures 3(e)–3(h) we show the zooms of the top left corners of 3(a)–3(d). One can see
that the image degraded by Gaussian noise looks slightly different from the images corrupted
by Cauchy noise and impulse noise, while in some way Cauchy noise and impulse noise are
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(a) Original image (b) Gaussian noise (c) Cauchy noise (d) Impulse noise

(e) Zoom of (a) (f) Zoom of (b) (g) Zoom of (c) (h) Zoom of (d)

Figure 3. Comparison of different noisy images. (a) Original image u0; (b) u corrupted by an additive
Gaussian noise; (c) u corrupted by an additive Cauchy noise; (d) u corrupted by an impulse noise; (e)–(h)
zooms of the top left corners of images (a)–(d), respectively. The Cauchy noise and impulse noise are more
impulsive than the Gaussian noise.

quite close to each other. For instance, with the impulse noise and the Cauchy noisy there
are some pixels degraded to white or black, while the image corrupted by the Gaussian noise
is uniformly modified and white and black pixels are very rare. Although the Cauchy noise
has some analogies with the impulse noise, there are also some very important differences;
for example, in the impulse noise some pixels are noise-free (see Figure 3(h)), while in the
Cauchy noise all the pixels are corrupted by noise (see Figure 3(g)). Thus, due to the impulsive
character of the Cauchy noise and to its analogies with the impulse noise, we decide to employ
the median filter in our minimization problem (4.1).

In the literature, there also exist some filters created for removing noise in impulsive
environments, for instance the myriad filter [29, 30]. The myriad filter theory is based on the
definition of the sample myriad as the maximum likelihood location estimator of the alpha-
stable distribution. It is a very robust filter for suppressing impulsive noise, in particular
alpha-stable noise, but comparing with the median filter it is much more sensitive with respect
to the parameter selection and much more time-consuming. In section 5, we show the results
obtained by applying the median filter and the myriad filter to the noisy images, and we can
see that the myriad filter slightly outperforms the median filter. Furthermore, there is not
any significant improvement if, in our model, we use the myriad filter instead of the median
filter. Thus, for simplicity, we keep the median filter result as u0 in our model (4.1).

4.2. Existence and uniqueness of a solution. We now prove that under certain condi-
tions, there exists a unique solution for the minimization problem defined in (4.1). To do this,
first of all we show that under certain conditions the objective function of (4.1) is strictly
convex.

Proposition 4.1. If 8μγ2 ≥ 1, the model defined in (4.1) is strictly convex.



1904 FEDERICA SCIACCHITANO, YIQIU DONG, AND TIEYONG ZENG

Proof. We start to prove that the data fidelity term in (4.1) is strictly convex. Fixed
x ∈ Ω, we define a function h : R → R as

(4.2) h(t) := log
(
γ2 +

(
t− f(x)

)2)
+ μ

(
t− u0(x)

)2
,

and we prove that it is strictly convex. Easily, we can compute the first and the second order
derivatives of h, and we have

h′(t) = 2
t− f(x)

γ2 + (t− f(x))2
+ 2μ(t− u0(x)) and h′′(t) = 2

γ2 − (t− f(x))2
(
γ2 + (t− f(x))2

)2 + 2μ.

A direct computation shows that h is strictly convex for 8μγ2 ≥ 1. Since TV regularization
is convex, we can also conclude that the objective function in (4.1) is strictly convex, for
8μγ2 ≥ 1, and hence we have the thesis.

We now prove the existence and uniqueness of a solution to (4.1).
Theorem 4.2. Let f be in L∞(Ω); then the model (4.1) has a unique solution u ∈ BV (Ω)

satisfying

min

{
inf
Ω

f, inf
Ω

u0

}
≤ u ≤ max

{
sup
Ω

f, sup
Ω

u0

}
.

Proof. The proof of the existence of a solution to (4.1) is similar to that for Theorem
3.1. We would like to mention that in this case the function defined in (4.2) is decreasing if
t < min{inf f, inf u0} and is increasing if t > max{sup f, supu0}.

The uniqueness of the solution follows directly from the strict convexity of our model.
As in section 3, we enunciate the minimum-maximum principle for the convex minimiza-

tion problem. The proof of this proposition follows the same arguments as in Proposition 3.3.
Proposition 4.3. Let f1 and f2 be in L∞(Ω) with a1 = infΩ f1 and a2 = infΩ f2, and we

denote b1 = supΩ f1 and b2 = supΩ f2. Let us assume that f1 < f2. Then, denoting with u1
(resp., u2) a solution of (4.1) for f = f1 (resp., f = f2), we have u1 ≤ u2 if b2 < a1 + γ.

4.3. Deblurring and denoising case. We now modify our model to include a linear and
continuous blurring operator K ∈ L(L1(Ω), L2(Ω)). To restore a blurred image corrupted by
Cauchy noise, we introduce the following optimization problem:

(4.3) inf
u∈BV (Ω)

∫

Ω
|Du|+ λ

2

(∫

Ω
log

(
γ2 + (Ku− f)2

)
dx+ μ‖Ku− u0‖22

)
,

where u0 is the image obtained by applying the median filter to the blurred and noisy image f .
Since the blurring operator K is nonnegative and it is linear, we can conclude that the

model in (4.3) is convex when 8μγ2 ≥ 1. In the following theorem we give the existence and
uniqueness results to (4.3).

Theorem 4.4. Let f be in L∞(Ω), let u0 ∈ L2(Ω), and let K ∈ L(L1(Ω), L2(Ω)) be a
nonnegative linear operator, and let assume that K does not annihilate constant functions,
i.e., KI �= 0. Then the model (4.3) admits a solution. If 8μγ2 ≥ 1 and K is injective, there
exists a unique solution.

Proof. As in the proof of Theorem 3.1, one can prove that the objective function of
the minimization problem in (4.3) is bounded from below. Consider a minimizing sequence
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{un} ∈ BV(Ω) for (4.3). From the boundedness of the objective function of our model, we
have that {

∫
Ω |Dun|} is bounded. We define mΩ(un) =

1
|Ω|

∫
Ω undx with |Ω| as the measure

of Ω. Based on the Poincaré inequality [23] we have

‖un −mΩ(un)‖2 ≤ C

∫

Ω
|D(un −mΩ(un))| = C

∫

Ω
|Dun|,

where C is a positive constant. Recalling that Ω is bounded, we have that ‖un −mΩ(un)‖2
and ‖un −mΩ(un)‖1 are bounded for each n. Due to the continuity of the blurring operator
K ∈ L(L1(Ω), L2(Ω)), the sequence {K(un − mΩ(un))} is bounded in L2(Ω) and in L1(Ω).
Furthermore, since the objective function of (4.3) is bounded, we also have that (Kun − u0)

2

is bounded in L1(Ω) for each n; thus ‖Kun − u0‖1 is bounded and hence ‖Kun‖1 is bounded.
We are now ready to prove that |mΩ(un)|‖KI‖1 is bounded from

|mΩ(un)|‖KI‖1 = ‖K(un −mΩ(un))−Kun‖1 ≤ ‖K(un −mΩ)‖1 + ‖Kun‖1.

Since KI �= 0, we have that mΩ(un) is uniformly bounded. Thus, now we can conclude that
the sequence {un} is bounded in L2(Ω) and hence in L1(Ω). Thus, since BV (Ω) is closed
and convex, {un} is also bounded in BV (Ω). Thus, there exists a subsequence {unk

} which
converges strongly in L1(Ω) to some u� ∈ BV (Ω), and {Dunk

} converges weakly as a measure
to Du�. Since K is a continuous linear operator, {Kunk

} converges strongly to Ku� in L2(Ω).
Moreover, up to a subsequence, {Kunk

} converges almost everywhere to this Ku�. Based on
the lower semicontinuity of TV and Fatou’s lemma, we have that u� is a solution of (4.3).

The uniqueness of the solution follows directly from the injectivity of the operator K and
the assumption of 8μγ2 ≥ 1, since in this case the model is strictly convex.

Note that the assumption that K ∈ L(L1(Ω), L2(Ω)) is classical; see [15]. Basically, the
above proof also works when K =Id. We leave the details to the interested reader.

4.4. Numerical method. In this part we show how to compute numerically the minimizer
of (4.3). We focus directly on the general case, since the denoising case can be seen as a special
case of the deblurring and denoising one, when K is the identity operator. First of all, we
derive the discrete version of our minimization problem (4.3), and then we study how to
solve it numerically. For the sake of simplicity we keep the notation from the continuous
contest. Let f ∈ Rmn be the noisy image obtained from a two-dimensional pixel-array, with
dimension m×n, by concatenation in the usual columnwise fashion, and let K ∈ Rmn×mn be
the discretization of the continuous blurring operator K. Due to the convexity of (4.3), there
exist many algorithms to solve the proposed model, for instance the primal dual algorithm
[10, 14, 17], the alternating direction method with multipliers (ADMM) [6], the split-Bregman
algorithm [28], and the Chambolle–Pock algorithm [11]. Since, under some hypothesis, the
convergence of the Chambolle–Pock algorithm is guaranteed (see [11]), we decide to employ
it to solve our minimization problem (3.8).

In order to compute numerically the solution of our minimization problem, we introduce
the discrete version of (4.3),
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(4.4) min
u

‖∇u‖1 +
λ

2
G(Ku),

where G : Rmn → R represents the data fidelity term and it is defined as follows:

G(u) :=
∑

i

log
(
γ2 + (ui − fi)

2
)
+ μ‖u− u0‖22.

The first term of (4.4) represents the discrete TV of the image u, and it is defined as follows:

‖∇u‖1 =
∑

i

√
(∇xu)2i + (∇yu)2i .

The discrete gradient ∇ ∈ R2mn×mn is given by

∇u =

(
∇xu
∇yu

)
,

where the discrete derivative operators in the x-direction and y-direction, respectively, ∇x and
∇y, are obtained using the finite difference approximations to the derivatives with symmetric
boundary conditions,

(∇xu)l,j =

{
ul+1,j − ul,j if l < n,

0 if l = n
and (∇yu)l,j =

{
ul,j+1 − ul,j if j < m,

0 if j = m.

As in [13], for using the primal dual algorithm, we introduce two new variables v ∈ R2mn

and w ∈ Rmn, and, instead of consider the unconstrained problem, we look at the following
constrained optimization problem:

(4.5) min
u,v,w

‖v‖1 +
λ

2
G(w) subject to v = (vx, vy)

� = ∇u and w = Ku.

To apply the Chambolle–Pock algorithm, we study the following optimization problem:

(4.6) min
u,v,w∈Rmn

max
p,q∈Y

‖v‖1 +
λ

2
G(w) + 〈v −∇u, p〉+ 〈w −Ku, q〉,

where p ∈ R2mn and q ∈ Rmn are the dual variables, and Y = {q ∈ R2mn : ‖q‖∞ ≤ 1}, where
‖q‖∞ is the �∞-vector norm and it is defined as follows:

‖q‖∞ = max
i∈{1,...,mn}

√
q2i + q2i+mn.

Then the Chambolle–Pock algorithm for solving (4.6) is described in Algorithm 1. The
main calculation is carried out in (4.7)–(4.11). In the following, we give the details on how to
solve them.
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Algorithm 1. Solving (4.6) by using the Chambolle–Pock algorithm.

1: Fixed σ > 0 and τ > 0. Initialize: p0 = 0, q0 = 0, u0 = ū0 = f , v0 = v̄0 = ∇u0, and
w0 = w̄0 = Ku0.

2: Calculate pk+1, qk+1, uk+1, vk+1, wk+1, ūk+1, v̄k+1, and v̄k+1 using the following equations:

pk+1 = argmax
p

〈v̄k −∇ūk, p〉 − 1

2σ
‖p− pk‖22,(4.7)

qk+1 = argmin
q

〈w̄k −Kūk, q〉 − 1

2σ
‖q − qk‖22,(4.8)

uk+1 = argmin
u

−〈∇u, pk+1〉 − 〈Ku, qk+1〉+ 1

2τ
‖u− uk‖22,(4.9)

vk+1 = argmin
v

‖v‖1 + 〈v, pk+1〉+ 1

2τ
‖v − vk‖22,(4.10)

wk+1 = argmin
w

λ

2
G(w) + 〈w, qk+1〉+ 1

2τ
‖w − wk‖22,(4.11)

ūk+1 = 2uk+1 − uk,(4.12)

v̄k+1 = 2vk+1 − vk,(4.13)

w̄k+1 = 2wk+1 − wk.(4.14)

3: Stop or set k := k + 1 and go back to step 2.

The objective functions (4.7)–(4.9) are quadratics, and thus the update of p, q, and u is
given by

(4.15)

pk+1 = σ(v̄k −∇ūk) + pk,

qk+1 = σ(w̄k −Kūk) + qk,

uk+1 = uk + τ(K�qk+1 − divpk+1).

The equation in (4.10) can be rewritten in the following way:

vk+1 = argmin
v

‖v‖1 +
1

2τ
‖v − tk‖22,

where tk = vk − τpk+1. Thus, the update of v is easily given by applying the soft shrinkage
operator,

vk+1
i =

tki
|tki |

max{|tki | − τ, 0} and vk+1
i+mn =

tki+mn

|tki |
max{|tki | − τ, 0} for i = 1, . . . ,mn,

with |tki | =
√

(tki )
2 + (tki+mn)

2.

The optimality condition for (4.11) is given by

(4.16) λ
w − f

γ2 + (w − f)2
+ μλ(w − u0) + qk+1 +

1

τ
(w − wk) = 0,
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where, as usual, the division and the exponentiation have to be considered pointwise.
Multiplying both sides of the above equation for τ(γ2+(w−f)2), collecting the term with

the same factors, one can see that (4.16) is equivalent to the following cubic equation:

aw3 + bw2 + cw + d = 0,

with
a = μλτ + 1;

b = −(μλτ(2f + u0)− τqk+1 + 2f + wk);

c = τλ+ μλτ(γ2 + f2 + 2u0f)− 2τqk+1f + γ2 + f2 + 2wkf ;

d = −τλf − μλτu0(γ
2 + f2) + τqk+1(γ2 + f2)− wk(γ2 + f2).

From Cardano’s formula, we can find the explicit expression for the solutions of a cubic
equation; see the following proposition. For more details, we refer the reader to [37].

Proposition 4.5. A generic cubic equation with real coefficients

(4.17) ax3 + bx2 + cx+ d = 0, with a �= 0,

has at least one solution among the real numbers. Let

q =
3ac− b2

9a2
and r =

9abc− 27a2d− 2b3

54a3
;

if there exists a unique real solution of (4.17), the discriminant, Δ = q3+r2, has to be positive.
Furthermore, if Δ ≥ 0, the only real root of (4.17) is given by

(4.18) x =
3

√
r +

√
Δ+

3

√
r −

√
Δ− b

3a
.

Due to the strict convexity of our problem, we know that there exists a unique real solu-
tion for (4.16) and, from the above proposition, it can be computed explicitly using (4.18).
Otherwise, since the objective function in (4.11) has the second derivative, one can also de-
termine the solution in an efficient way using the Newton method followed by one projection
step, in order to guarantee the nonnegativity of u; see [21, 34]. In our simulations, we decide
to compute the explicit expression of unique real solution by using Cardano’s formula.

We remark that if K is the identity operator, i.e., the degraded image f is not blurred
but it is only corrupted by noise, there is no need to introduce the primal variable w and the
dual variable q, and the algorithm can be simplified accordingly.

In the last part of this section, we study the existence of the solution and the convergence
of the algorithm. First of all, we reformulate (4.6) in the following way:

(4.19) min
x

max
y

H(x) + 〈Ax, y〉,

with H(x) = ‖v‖1 + λ
2G(w) and

A =

(
−∇ I 0
−K 0 I

)
, x =

⎛
⎝
u
v
w

⎞
⎠ , x̄ =

⎛
⎝
ū
v̄
w̄

⎞
⎠ , y =

(
p
q

)
.
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Proposition 4.6. The saddle-point set of (4.19) is nonempty.
For the proof, we refer the reader to Proposition 2 in [44].
The following proposition shows the convergence of the algorithm described in Algorithm 1.
Proposition 4.7. The iterates (xk, yk) defined in Algorithm 1 converge to a saddle point of

the primal dual problem defined in (4.19) if στ‖A‖22 < 1, where ‖A‖2 denotes the operator
2-norm of A.

This proposition can be seen as a special case of the theorem proved by Chambolle and
Pock [11, Theorem 1].

In order to use the inequality given in the above proposition, we need to give an estimate
of ‖A‖2. By using the property of the norm, one can find that

‖Ax‖2 ≤
√

‖∇‖22 + ‖K‖22‖u‖2 +
∥∥∥∥
(
v

w

)∥∥∥∥
2

.

If ‖x‖2 = 1, by definition of x, we have that ‖u‖22 +
∥∥(v

w

)∥∥2
2
= 1; therefore, from the Cauchy

inequality, we obtain

‖Ax‖2 ≤
√

‖∇‖22 + ‖K‖22 + 1.

Hence, we have ‖A‖2 ≤
√

‖∇‖22 + ‖K‖22 + 1.
From [10], we know that ‖∇‖22 ≤ 8, and from [44], we have that ‖K‖2 ≤ 1, and thus

‖A‖2 ≤
√
10. Therefore, in order to ensure the convergence of our algorithm we just need

that στ < 0.1. In our numerical simulations we set σ = τ = 0.3, which ensures the convergence
of the algorithm.

5. Numerical simulations. In this section, we show some numerical reconstructions ob-
tained by applying our proposed model to blurred images corrupted by Cauchy noise. First
of all, we focus only on the denoising case, and then we consider also the deblurring case. In
order to show the potentiality of our method, we compare our reconstructions with images
obtained by employing other well-known methods, such as the ROF model [54], the median
filter [25], the myriad filter [29], and the L1-TV model. The L1-TV model was introduced
by Nikolova in [45, 46] for restoring images corrupted by impulse noise; in particular, in
this model, the TV regularization is combined with an L1 data fidelity term. Motivated by
the impulsive character of the Cauchy noise, we decide to compare our reconstructions also
with the L1-TV model. For the ROF model and the L1-TV model, we employ the primal
dual algorithm proposed in [11] to solve the minimization problem. Furthermore, in Figure
9, we also compare our method with other methods, such as the wavelet shrinkage [5], the
SURE-LET [43], and the BM3D [18].

For illustrations, we use the 256-by-256 gray level images Peppers, Parrot, and Camera-
man; the original images are presented in Figure 4. The quality of the restored images is
compared quantitatively using the peak signal noise ratio (PSNR) value [5] and the measure
of structural similarity (SSIM) [64]. The PSNR is a measure widely used in image quality
assessment, and it is defined as follows:

PSNR = 20 log10
mn|umax − umin|

‖u� − u‖2
,
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(a) (b) (c)

Figure 4. Original images. (a) Peppers; (b) Parrot; (c) Cameraman.

where u� and u are, respectively, the restored and the original images with values in the gray-
level range [umin, umax]. It is a very useful tool, since it is able to measure quantitatively the
quality of the reconstructed image compared to the original image. Recently, another mea-
sure has become very popular in the imaging community, the so-called SSIM measure. This
measure compares local patterns of pixel intensities that have been normalized for luminance
and contrast, and it has been proved that it is more consistent with human eye perception
than PSNR [64].

In our simulations, we stop our algorithm as soon as there are not big changes in the
objective function, i.e.,

E(uk)− E(uk−1)

E(uk)
< 5 · 10−5,

where E denotes the objective function of the proposed minimization problem. In our method,
we choose the regularization parameter λ to give a good balance between a good fit to f and
the smoothness from TV. Since γ depends on the noise level, we use the same value of γ for
all test images under the same noise level. Based on our numerical experiments, our method
is robust with respect to μ; so we choose it such that the convexity condition is just satisfied,
i.e., 8μγ2 = 1. The development of an automatic procedure for choosing these parameters is
outside the scope of this paper. In addition, all the simulations are run in MATLAB R2014a.

5.1. Image denoising. In this section we focus only on the denoising case. Our aim
is to recover the original image u, knowing the corrupted image f . Since the ratio of two
independent standard normal variables gives a standard Cauchy random variable, we generate
the noisy image f by using the following equation:

f = u+ v = u+ ξ
η1
η2

,

where the random variable v follows the Cauchy distribution, ξ > 0 gives the noise level, and
η1 and η2 follow the Gaussian distribution with mean 0 and variance 1.

In the following, we compare our reconstructions with those obtained by applying the ROF
model, the median filter (MD), the myriad filter (MR), and the L1-TV model. By tuning the
regularization parameter λ, in the ROF model and the L1-TV model, we use the results with
the best PSNRs to compare with our method.

In Figures 5 and 7, we give the results for denoising the corrupted images Peppers, Parrot,
and Cameraman for different noise levels, ξ = 0.02 and ξ = 0.04. In order to make evident
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Observed
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filter

Myriad filter

L1-TV

Ours

Figure 5. Comparison of the recovered images from different methods for removing Cauchy noise in Peppers
(“Pe” for short), Parrot (“Pa”), and Cameraman (“C”). First row: noisy images f (ξ = 0.02); second row:
restored images by the ROF approach (λ = 5 (“Pe”); 6 (“Pa”); 5.8 (“C”)); third row: restored images by the
median filter (MD); fourth row: restored images by the myriad filter (MR); fifth row: restored images by theL1-
TV approach (λ = 1.5 (“Pe”); 1.5 (“Pa”); 1.6 (“C”)); sixth row: restored images by our approach (λ = 0.7

(“Pe”); 0.8 (“Pa”); 0.7 (“C”), μ = 6.25, and γ =
√

2
10

).
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Original

L1-TV

Ours

Figure 6. The zoomed-in regions of the recovered images in Figure 5. First row: details of original images;
second row: details of restored images by the L1-TV approach; third row: details of restored images by our
approach.

the differences between the L1-TV approach and ours, in Figure 6 we present some details of
Figure 5 (here, we also include the original images in the first row). It can be seen that the
L1-TV model outperforms the ROF model, the median filter, and the myriad filter, but our
method gives even better visual quality. The reason why our method and the L1-TV approach
perform better is because Cauchy noise is very impulsive and in some way it is very similar to
impulse noise; see subsection 4.1. Since the ROF model was introduced for removing Gaussian
noise, in order to remove highly impulsive Cauchy noise, it has to oversmooth the image. For
example, in Cameraman many details are missing and the contrast of the image is reduced.
The median filter and the myriad filter work quite well if the noise level is low; otherwise they
are not able to eliminate all the noise and at the same time to preserve most details. From
the details in Figure 6, we can see that our reconstructions preserve better the details of the
image, for example the stalk of the Peppers, the eye and the stripes of the Parrot, and the
tripod and the column of the building in Cameraman.

For the comparison of the performance quantitatively, in Tables 1–4 we list the values of
the PSNR and SSIM for the noisy and recovered images. Here, we also provide the values of
PSNR and SSIM for other popular test images in image processing, such as Lena, Baboon,
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Myriad filter

L1-TV
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Figure 7. Comparison of the recovered images from different methods for removing Cauchy noise. First
row: noisy images f (ξ = 0.04); second row: restored images by the ROF approach (λ = 4.5 (“Pe”); 4.7 (“Pa”);
5 (“C”)); third row: restored images by the median filter (MD); fourth row: restored images by the myriad filter
(MR); fifth row: restored images by the L1-TV approach (λ = 1.3 (“Pe”); 1.3 (“Pa”); 1.5 (“C”)); sixth row:
restored images by our approach (λ = 0.6 (“Pe”); 0.8 (“Pa”); 0.9 (“C”), μ = 3.125, and γ = 0.2).
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Table 1
PSNR values for noisy images and recovered images given by different methods (ξ = 0.02). In the last line

of the table, we compute the average of the values.

Noisy ROF MD MR L1-TV Ours

Peppers 19.15 25.03 29.64 29.85 30.34 30.94

Parrot 19.13 23.88 27.05 27.13 28.02 28.98

Cameraman 19.07 24.00 26.14 26.57 27.21 27.91

Lena 19.06 24.58 28.94 28.98 29.84 30.36

Baboon 19.17 21.16 21.38 21.64 24.24 24.96

Goldhill 18.99 24.40 26.80 27.12 28.23 28.80

Boat 19.03 24.21 27.27 27.49 28.70 29.20

Average 19.09 23.89 26.75 26.97 28.08 28.74

Table 2
SSIM measures for noisy images and recovered images given by different methods (ξ = 0.02). In the last

line of the table, we compute the average of the values.

Noisy ROF MD MR L1-TV Ours

Peppers 0.3243 0.4820 0.6743 0.6790 0.7163 0.7168

Parrot 0.3179 0.4083 0.5894 0.5697 0.6571 0.6641

Cameraman 0.2743 0.2314 0.4115 0.4180 0.4715 0.4707

Lena 0.3240 0.4022 0.6488 0.6370 0.6950 0.6880

Baboon 0.5174 0.2115 0.4231 0.4175 0.6980 0.6950

Goldhill 0.3744 0.3191 0.5875 0.5952 0.6692 0.6811

Boat 0.3566 0.3474 0.6437 0.6387 0.6908 0.6931

Average 0.3556 0.3431 0.5683 0.5650 0.6568 0.6584

Table 3
PSNR values for noisy images and recovered images given by different methods (ξ = 0.04). In the last line

of the table, we compute the average of the values.

Noisy ROF MD MR L1-TV Ours

Peppers 16.25 23.95 27.25 27.50 28.29 28.80

Parrot 16.27 22.75 25.50 25.85 26.55 27.16

Cameraman 16.08 23.17 24.87 25.19 25.99 26.66

Lena 16.21 24.29 26.88 27.03 28.79 29.30

Baboon 16.16 20.67 20.90 21.55 22.50 23.05

Goldhill 16.21 23.72 25.48 25.85 26.49 27.00

Boat 16.28 23.55 25.67 25.16 26.67 27.18

Average 16.21 23.16 25.22 25.45 26.47 27.02

Goldhill, and Boat. From Tables 1–4, we can see that, on average, with our method we can
increase the PSNRs of the recovered images of 0.66 dB for ξ = 0.02 and 0.55 dB for ξ = 0.04
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Table 4
SSIM measures for noisy images and recovered images given by different methods (ξ = 0.04). In the last

line of the table, we compute the average of the values.

Noisy ROF MD MR L1-TV Ours

Peppers 0.2246 0.4294 0.5605 0.5734 0.6347 0.6411

Parrot 0.2334 0.3289 0.4706 0.4800 0.5529 0.5676

Cameraman 0.1989 0.2081 0.3379 0.3452 0.3857 0.3920

Lena 0.2220 0.4025 0.5394 0.5500 0.5993 0.6170

Baboon 0.3651 0.1588 0.3681 0.3795 0.5525 0.5650

Goldhill 0.2426 0.2786 0.5108 0.5256 0.5205 0.5684

Boat 0.2479 0.3266 0.5429 0.5498 0.5843 0.5930

Average 0.2478 0.3047 0.4757 0.4862 0.5471 0.5634
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Figure 8. Plots of the objective function values versus iterations of the three TV-based methods correspond-
ing to the experiments in the first line of Figure 5. (a) ROF model; (b) L1-TV model; (c) our model.

and also obtain largest SSIM values.
The convergence of the algorithm of the three TV-based methods is presented in Figure 8,

where we plot the objective function values versus the number of iterations (we use the image
of the Parrot when ξ = 0.02). Here, we see that the objective function values for the ROF
model and ours are monotonically decreasing.

Finally, we compare our method with some well-known techniques in image denoising.
Here, we use the noisy image Peppers with PSNR=19.15 and we compare with the wavelet
shrinkage [5], the SURE-LET [43], and the BM3D [18]. From Figure 9, we can clearly see
that our method outperforms all of them. Visually, there is still some noise left in the results
from the other three methods, which is due to the impulsive behavior of Cauchy noise.

5.2. Image deblurring and denoising. In this section, we consider restoring blurred im-
ages corrupted by Cauchy noise. In our simulation, we use the Gaussian blur with a window
size 9×9 and standard deviation of 1. After the blurring operation, we corrupt the images by
adding Cauchy noise with ξ = 0.02. As in the previous section we compare our reconstructions
with those obtained by employing the ROF model, the median filter, the myriad filter, and
the L1-TV model; see Figures 10 and 11. In Tables 5 and 6, we list the values of the PSNR
and SSIM for different images and different variational methods.
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(a) Wavelet: 23.13 (b) SURE-LET: 23.22 (c) BM3D: 28.74 (d) Ours: 30.94

Figure 9. Recovered images (with PSNR(dB)) of different approaches for removing Cauchy noise using as
the noisy image that in the first column of Figure 5. (a) Wavelet shrinkage; (b) SURE-LET; (c) BM 3D; (d)
our model.

Comparing the results of the three TV-based methods, i.e., the ROF, the L1-TV, and
ours, one can see that our method performs best visually. The images given by the ROF
model are too smooth, and the details are missed. The L1-TV model preserves more details
than the ROF model, but still some features are lost or not well recovered as in our model,
such as the eye of the Parrot and the columns of the building in the Cameramen; see Figure
11. In the third and fourth rows of Figure 10, the reconstructions given by the median filter
and the myriad filter are shown. We can see that the images are still blurred, because there
are no deblurring steps in both filters. Comparing the values of the PSNR and SSIM, we can
clearly see that our method outperforms the others even in presence of blur.

6. Conclusion. In this paper, we introduce a variational method for deblurring and de-
noising of blurred images corrupted by Cauchy noise. Inspired by the ROF model we combine
a TV regularization term with a data fidelity term suitable for the Cauchy noise. In order to
obtain a convex minimization problem, we add a quadratic penalty term based on the median
filter. Due to the strict convexity of our problem, we are able to prove the existence and the
uniqueness of a solution to our proposed model. Then, we introduce the primal dual algorithm
to solve our convex minimization problem and the convergence is ensured. Numerical results
show that our method outperforms other existing and well-known methods.

Appendix. Proof of Proposition 3.3. In this section we give more details on the proof of
Proposition 3.3; in particular we show that the integrand of (3.7) is strictly negative.

Using the properties of the logarithm, we can rewrite the last inequality in the proof as
follows:

(A.1)

∫

{u1>u2}
log

(γ2 + (u2 − f1)
2)(γ2 + (u1 − f2)

2)

(γ2 + (u1 − f1)2)(γ2 + (u2 − f2)2)
dx ≥ 0.

Now we show that, under our assumptions, the integrand of (A.1) is strictly negative. Since
the argument of the logarithm in (A.1) is strictly positive, we just need to show that

(A.2)
(γ2 + (u2 − f1)

2)(γ2 + (u1 − f2)
2)

(γ2 + (u1 − f1)2)(γ2 + (u2 − f2)2)
< 1.
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Figure 10. Comparison of the recovered images from different methods for deblurring and denoising an
image blurred and corrupted by Cauchy noise. First row: blurred and noisy images f (ξ = 0.02); second row:
restored images by the ROF approach (λ = 15 (“Pe”); 16 (“Pa”); 16 (“C”)); third row: restored images by the
median filter (MD); fourth row: restored images by the myriad filter (MR); fifth row: restored images by the
L1-TV approach (λ = 3 (“Pe”); 3.4 (“Pa”); 3.5 (“C”)); sixth row: restored images by our approach (λ = 2

(“Pe”); 2.1 (“Pa”); 2.1 (“C”), μ = 6.25, and γ =
√

2
10

).
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Original

L1-TV

Ours

Figure 11. The zoomed-in regions of the recovered images in Figure 10. First row: details of original
images; second row: details of restored images by L1-TV approach; third row: details of restored images by our
approach.

Table 5
PSNR values for noisy images and recovered images given by different methods (ξ = 0.02). In the last line

of the table, we compute the average of the values.

Noisy ROF MD MR L1-TV Ours

Peppers 18.31 24.21 25.19 25.01 26.70 27.46

Parrot 18.23 24.06 24.48 24.57 25.75 26.79

Cameraman 18.29 23.98 24.43 24.39 25.49 26.27

Lena 18.64 25.74 26.70 26.72 27.26 28.14

Baboon 17.42 20.84 21.54 21.49 21.36 21.81

Goldhill 18.47 24.84 25.88 25.85 26.17 26.76

Boat 18.48 24.36 25.42 25.43 26.18 26.69

Average 18.28 24.00 24.81 24.78 25.56 26.31

Now, collecting the term with the same factor γ2, we have

γ2
(
(u2−f1)

2+(u1−f2)
2−(u1−f1)

2−(u2−f2)
2
)
+(u2−f1)

2(u1−f2)
2−(u1−f1)

2(u2−f2)
2 < 0.
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Table 6
SSIM measures for noisy images and recovered images given by different methods (ξ = 0.02). In the last

line of the table, we compute the average of the values.

Noisy ROF MD MR L1-TV Ours

Peppers 0.2413 0.4974 0.5909 0.5762 0.6086 0.6297

Parrot 0.2316 0.4439 0.5145 0.4991 0.5278 0.5655

Cameraman 0.1753 0.2609 0.3433 0.3296 0.3516 0.3880

Lena 0.2487 0.4748 0.5764 0.5631 0.5712 0.6071

Baboon 0.1955 0.2167 0.3573 0.3502 0.3208 0.3905

Goldhill 0.2262 0.3678 0.5070 0.4949 0.4911 0.5390

Boat 0.2410 0.4059 0.5313 0.5243 0.5478 0.5721

Average 0.2228 0.3811 0.4887 0.4767 0.4884 0.5274

The above inequality can be simply rewritten as follows:

2γ2(u1f1 + u2f2 − u2f1 − u1f2) +
(
f2
1u

2
1 − 2u21u2f1 + u22f

2
2 − 2u2f1f

2
2 − 2u1u

2
2f2 − 2u1f

2
1 f2

)

−
(
f2
1u

2
2 − 2u1u

2
2f1 + u21f

2
2 − 2u1f1f

2
2 − 2u21u2f2 − 2u2f

2
1 f2

)
< 0,

and collecting some terms together we need to prove that

2γ2(f1 − f2)(u1 − u2) + f2
1 (u

2
1 − u22) + f2

2 (u
2
2 − u21)

+ 2
(
−u21u2f1 − u2f1f

2
2 − u1u

2
2f2 − u1f

2
1f2 + u1u

2
2f1 + u1f1f

2
2 + u21u2f2 + u2f

2
1 f2

)
< 0.

Thus,

2γ2(f1 − f2)(u1 − u2) + (u1 − u2)(f1 − f2)(u1 + u2)(f1 + f2)

+ 2
(
u21u2(f2 − f1) + f1f

2
2 (u1 − u2) + u1u

2
2(f1 − f2) + f2

1f2(u2 − u1)
)
< 0

and hence

2γ2(f1 − f2)(u1 − u2) + (u1 − u2)(f1 − f2)(u1 + u2)(f1 + f2)

+ 2
(
u1u2(u1 − u2)(f2 − f1) + f1f2(f2 − f1)(u1 − u2)

)
< 0.

Finally, collecting (f1 − f2)(u1 − u2) we need to prove that

(f1 − f2)(u1 − u2)
(
2γ2 + (u1 + u2)(f1 + f2)− 2(u1u2 + f1f2)

)
< 0.

Hence, since f1 < f2 and u1 > u2, we just need to show that

(A.3) 2γ2 + (f1 + f2)(u1 + u2)− 2(f1f2 + u1u2) > 0.
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Using the Cauchy inequality, we can easily find that (A.3) is consequence of the following:

(A.4) (
√
u1u2 − f1)(

√
u1u2 − f2) < γ2.

From Theorem 3.1, we know that a1 ≤ u1 ≤ b1 and a2 ≤ u2 ≤ b2; thus, by the hypothesis
that f1 < f2, we have a1 <

√
u1u2 < b2. Furthermore, |√u1u2−f1| < b2−a1 and |√u1u2−f2| <

b2 − a1. Hence, the inequality in (A.4) always holds if (b2 − a1)
2 < γ2, and thus b2 < γ + a1.
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[60] P. Weiss, L. Blanc-Féraud, and G. Aubert, Efficient schemes for total variation minimization under
constraints in image processing, SIAM J. Sci. Comput., 31 (2009), pp. 2047–2080.

[61] C. Wu and X.-C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for
ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), pp. 300–339.

[62] J. Yang, Y. Zhang, and W. Yin, An efficient TVL1 algorithm for deblurring multichannel images
corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009), pp. 2842–2865.

[63] Z. Yang and M. Jacob, Nonlocal regularization of inverse problems: A unified variational framework,
IEEE Trans. Image Process., 22 (2013), pp. 3192–3203.

[64] W. Zhou, A. Bovik, H. Sheikh, and E. Simoncelli, Image quality assessment: From error visibility
to structural similarity, IEEE Trans. Image Process., 13 (2004), pp. 600–612.





PAPER C
Bregman Cost for Non-Gaussian

Noise

Authors:

Martin Burger, Yiqiu Dong and Federica Sciacchitano

To be submitted

Available on arXiv http://arxiv.org/abs/1608.07483

115

http://arxiv.org/abs/1608.07483
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Abstract One of the tasks of the Bayesian inverse problem is to find a good estimate
based on the posterior probability density. The most common point estimators are the con-
ditional mean (CM) and maximum a posteriori (MAP) estimates, which correspond to the
mean and the mode of the posterior, respectively. From a theoretical point of view it has
been argued that the MAP estimate is only in an asymptotic sense a Bayes estimator for the
uniform cost function, while the CM estimate is a Bayes estimator for the means squared cost
function. Recently, it has been proven that the MAP estimate is a proper Bayes estimator for
the Bregman cost if the image is corrupted by Gaussian noise. In this work we extend this
result to other noise models with log-concave likelihood density, by introducing two related
Bregman cost functions for which the CM and the MAP estimates are proper Bayes estima-
tors. Moreover, we also prove that the CM estimate outperforms the MAP estimate, when
the error is measured in a certain Bregman distance, a result previously unknown also in the
case of additive Gaussian noise.

1 Introduction

Bayesian estimation theory deals with the determination of the best estimate of an unknown
vector from a related observation. In particular, here, we are interested in recovering the
original unknown u ∈ Rn from the knowledge of an indirect measurement f ∈ Rm and the
following forward degradation model

f = Ku� η, (1.1)

with K ∈ Rm×n being the linear forward operator and η ∈ Rm represents the noise, where
� might be a multiplication or a sum or even a more complicated operation. In literature,
for simplicity most of the work focused on the additive white Gaussian noise, i.e. when η
follows the Gaussian distribution, N (0,Σ), with mean 0 and covariance matrix Σ (often a
multiple of the identity), see for instance [24, 32, 30]. However, in many real applications,
the noise can be much more complicated than additive white Gaussian noise. For example,
it might be impulsive [21, 26, 31], signal dependent [11, 12, 15, 18], multiplicative [2, 10, 23],
or even mixed [8, 20, 17]. In this paper, we consider a general case, where the noise is just
an unknown realization of a known random noise process.
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Due to the ill-posedness of the inverse problem defined in (1.1), the simple matrix inversion
does not lead to any meaningful solution. Thus, to recover the original image we can employ
the Bayesian approach that combines prior information on u and the forward model in (1.1)
to reconstruct the image. By the Bayes’ rule [14], we have

p(u|f) =
p(f |u)p(u)

p(f)
,

where p(u|f) is called posterior density and represents the conditional probability density of
u given the noisy image f , p(f |u) is the likelihood density and it encodes the likelihood that
the data f is due to the image u, p(u) is the prior density and it describes the properties of
the image that we would like to recover, and p(f) is a normalization factor independent of
u. The Bayesian inference deals with extracting the useful information from the posterior to
recover the sharp and noise-free image. In particular, it intends to find the best estimate by
using the probability of the unknown u given the known observations f and to quantify the
uncertainty of the estimate.

A common prior density is the so-called log-concave Gibbs distribution [3] (using ∝ for
equality up to a normalization factor)

p(u) ∝ exp(−αR(u)),

where R : Rn → R is a convex functional and α > 0 is a scaling parameter, which is often
called as regularization parameter. Two popular examples of Gibbs distribution are the
Tikhonov regularization and the total variation (TV), see [27] and the references therein.

The likelihood density depends on the forward degradation model and the noise model.
The most common way to write is

p(f |u) ∝ exp(−E(u;K, f)),

where E is called data fidelity term and it represents the good fit with the data based on the
forward model. In this paper, we assume that E is convex with respect to u. For instance, if
the original image is corrupted by Poisson noise [11, 12, 18], based on Poisson distribution E
can be written as

E(u;K, f) =

n∑

i=1

[(Ku)i − fi log(Ku)i + log(fi!)] (1.2)

with Ku ≥ 0.
Thus, based on the Bayes’ rule the posterior can be rewritten as

p(u|f) ∝ exp(−E(u;K, f)− αR(u)), (1.3)

up to some terms independent of u. Now, the question is how to obtain a suitable estimate
of the unknown by using the information in the posterior (1.3). In the Bayesian inversion
approach (cf. [22, 29]), there are two popular estimates: the maximum a posteriori (MAP)
estimate, ûMAP, and the conditional mean (CM) estimate, ûCM. They are defined as (cf. [9, 16]
for infinite-dimensional versions)

ûMAP = argmax
u∈Rn

p(u|f) = argmin
u∈Rn

E(u;K, f) + αR(u),

ûCM = E[u|f ] =

∫
u p(u|f) du.

(1.4)

2



According to their definitions, the MAP estimate corresponds to find the mode of the poste-
rior, while the CM estimate corresponds to compute the expected value of the posterior. Of
course the quality of the different estimates as representations of the posterior distribution is
an important question.

Computing the MAP estimate leads to solving a high-dimensional optimization problem
and the CM estimate leads to solving a high-dimensional integration problem. From the
numerical point of view, the MAP estimate can be computed rather efficiently, see for in-
stance [27], while the CM estimate requires to solve a much harder and more time-consuming
integration problem. To calculate the CM estimate the classical techniques of numerical
quadrature seem prohibitive in high-dimension, hence Monte Carlo methods or special spar-
sity techniques [28] have to be employed. Further, drawing samples from the posterior is
often not straight-forward, so the Markov chain Monte Carlo (MCMC) techniques need be
used, for an overview see [22]. Although there are computational challenges to calculate the
CM estimate, it has many theoretical benefits. Comparing with the MAP estimate, the CM
estimate is a more intuitive choice, since it represents the average of the samples. Moreover,
from the theoretical point of view, the CM estimate is the Bayes estimator for the mean
squared error cost, while the MAP estimate is only asymptotically the Bayes estimator for
the uniform cost function. Recently, in [5], in the Gaussian noise case, it has been shown
that the MAP estimate is a Bayes estimator for the cost function given by an L2 term and
a Bregman distance. More details will be given in Section 2. In [16], the results in [5] are
extended to the infinite-dimensional setting.

The main novelty of this paper is to study from the Bayesian cost point of view the
CM and MAP estimator in non-Gaussian noise cases. In this paper, we provide several
cost functions for which the MAP and CM estimate are Bayes estimator not only under the
Gaussian noise model, but under more general noise models. The only assumption that we
need is the convexity and Lipschitz-continuity of E. In addition, we will show that under
some assumptions the CM estimate outperforms the MAP estimate in an appropriate error
measure.

The remainder of the paper is organized as follows. In Section 2 we analyse the difference
between the MAP estimate and the CM estimate, and give an overview of the Bayesian
approach. In Section 3 we provide a cost function for which the MAP estimate is Bayes
estimator. In Section 4 we study the optimality condition for the CM estimate, and give some
suitable cost functions for the CM estimate. In Section 5, we compare the two estimates by
proving that the CM estimate outperforms the MAP estimate when the error is measured
using a cost function that depends on the Bregman distance. The conclusion are drawn in
Section 6.

2 Review of Bayes Cost Formalism

One main focus of Bayesian technique is the determination of the best estimate of an unknown
data. For instance, in the inverse problem defined in (1.1) it would be to find the best
estimation of the original image u, which is corrupted by blur and noise. The Bayesian
estimation of u from the given noisy image f relies on the minimization of a Bayes cost,
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which is defined as follows

BCC(û) :=E[C(u, û)]

=

∫ ∫
C(u, û)p(u, f) du df

=

∫ ∫
C(u, û)p(u|f) du p(f) df,

where C : Rn × Rn → R is a cost functional measuring the distance between u and û. A
Bayes estimator ûC is the estimator minimizing the Bayes cost function BCC(û), that is

ûC := argmin
û

BCC(û). (2.1)

Since û only depends on f and the marginal density p(f) is non-negative, the Bayes estimator
can be also computed by

ûC := argmin
û

∫
C(u, û(f))p(u|f) du.

Therefore, the Bayes estimator is always corresponding to certain cost functions, and it’s very
important to find a suitable cost function.

One of the most common choice for the cost function is the mean squared error, i.e.

C(u, û) = ‖u− û‖22, (2.2)

and the conditional mean estimate ûCM is the corresponding Bayes estimator. Another popular
choice for the cost function is the uniform cost, i.e.

C(u, û) =

{
0, |uk − ûk| < ε for 1 ≤ k ≤ n,
1, otherwise,

where ε > 0 is a small constant. It turns out that the MAP estimate ûMAP is an asymptotic
Bayes estimator for this cost function.

Although it seems intuitively optimal to use the squared Euclidean norm, i.e. variance, as
a Bayes cost functional, there is no real justification in high-dimensional version with a non-
Gaussian prior. Assume e.g. that R is some power of a norm different from the Euclidean one
(e.g. the popular `1- or total variation norm), then effectively R induces the relevant Banach
space geometry on Rn. For increasing n this geometry is very different from the Euclidean one
for large n and in a limit n→∞ one might even converge to a Banach space setting where no
equivalent of the Euclidean norm exists, hence the standard variance becomes questionable.
Hence, in such a setting different cost functionals better adapted to the structure of induced
by R shall be benefitial, both for characterizing the MAP and CM estimate.

Recently, in [5] it has been shown that the MAP estimate is a Bayes estimator for

C(u, û) = ‖K(û− u)‖22 + 2αDq
R(û, u),

where K is the blurring operator, α > 0 is a regularization parameter, and Dq
R(û, u) repre-

sents the Bregman distance between û and u for a convex regularization functional R and a
subgradient q ∈ ∂R(u), which is defined as

Dq
R(û, u) = R(û)−R(u)− 〈q, û− u〉.
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If R is Fréchet differentiable in u, then the subgradient q corresponds to the standard Fréchet
derivative R′. In this paper, we refer to the Bregman distance by omitting q, i.e. DR(û, u).
The Bregman distance has been introduced in [4] and it is a very useful tool in image pro-
cessing, see for instance [6, 7, 13]. Since it is not symmetric and the triangle inequality does
not hold, it is not a distance in the mathematical sense. But some nice properties hold, such
as

• DR(û, u) ≥ 0.

• If R is strictly convex, DR(û, u) = 0 implies û = u.

• DR(û, u) is convex in û.

In [5], all the comparison of the MAP and CM esitmates are under the additive Gaussian
noise model, i.e., E(u;K, f) = ‖Ku− f‖22, and it has been proven that the MAP estimate is
a proper Bayes estimator in this case. In this paper, we will discuss and compare the MAP
and CM esitmates under more general noise models. The main assumption we need is that
the considered noise model leads to a convex data fitting term E(u;K, f). More precisely
we shall assume that the functionals u 7→ E(u;K, f) and R are nonnegative, convex and
Lipschitz-continuous on Rn without further notice. Moreover, we assume that the posterior
is well specified by (1.3), i.e.

∫

Rn

exp(−E(u;K, f)− αR(u)) du <∞.

3 Cost Function for the MAP Estimate

To propose a cost function for the MAP estimate, we first show that the posterior distribution
in (1.3) can be rewritten in a MAP-centred form by using the optimality condition of the MAP
estimate.

Since the MAP estimate ûMAP ∈ Rn is a maximizer of the posterior defined in (1.3), it
satisfies the optimality condition

K>q̂MAP + αp̂MAP = 0, (3.1)

where q̂MAP ∈ ∂uE(ûMAP;K, f) and p̂MAP ∈ ∂R(ûMAP). Then, we can obtain the following
result.

Lemma 3.1. The posterior in (1.3) can be rewritten in a MAP-centred form

p(u|f) ∝ exp(−Dq̂MAP
E (u, ûMAP)− αDp̂MAP

R (u, ûMAP)), (3.2)

where Dq̂MAP
E (u, ûMAP) (resp. Dp̂MAP

R (u, ûMAP)) indicates the Bregman distance between u and
ûMAP.

Proof. First, we would like to point out that we are allowed to ignore the terms independent
of u, since the minimization problem in (1.4) is only on u. Then, based on the definition of
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Bregman distance, we have

exp(−DE(u, ûMAP)− αDR(u, ûMAP))

∝ exp(−E(u;K, f) + 〈q̂MAP,Ku−KûMAP〉 − αR(u) + α〈p̂MAP, u− ûMAP〉)
= exp(−E(u;K, f)− αR(u) + 〈K>q̂MAP + αp̂MAP, u− ûMAP〉)
= exp(−E(u;K, f)− αR(u))

∝ p(u|f),

(3.3)

where q̂MAP ∈ ∂E(ûMAP;K, f), p̂MAP ∈ ∂R(ûMAP), and the last equality follows directly from
the optimality condition in (3.1).

Now, we suggest a cost function for which the MAP estimate is a Bayes estimator. For sim-
plicity of notation we omit writing the subgradient as a superscript in the Bregman distance,
since due to the Lipschitz-continuity of the involved functionals the subgradient contains a
single element almost everywhere.

Theorem 3.2. Under the decay assumption

lim
r→∞

∫

∂Br(0)
p(u|f)ds = 0, (3.4)

for the posterior defined by (1.3), the MAP estimate minimizes the Bayes cost with cost
functional

C(û, u) = DE(û, u) + αDR(û, u). (3.5)

Proof. Based on the definition in (2.1), ûMAP is a Bayes estimator for the cost function C(û, u),
if it satisfies

ûMAP ∈ arg min
û

∫
C(û, u)p(u|f) du.

Using the elementary identity for the Bregman distance

DR(û, u) = DR(û, ûMAP) +DR(ûMAP, u) + 〈p̂MAP − p, û− ûMAP〉

with p̂MAP ∈ ∂R(ûMAP), p ∈ ∂R(u) and ignoring the terms independent on û, we have

C(û, u) = DE(û, ûMAP) + αDR(û, ûMAP)

+ 〈q̂MAP,Kû−KûMAP〉+ α〈p̂MAP, û− ûMAP〉
− 〈q,Kû−KûMAP〉 − α〈p, û− ûMAP〉

= DE(û, ûMAP) + αDR(û, ûMAP)− 〈q,Kû−KûMAP〉 − α〈p, û− ûMAP〉,

where q̂MAP ∈ ∂E(ûMAP;K, f), p̂MAP ∈ ∂R(ûMAP), q ∈ ∂E(u;K, f) and p ∈ ∂R(u). Note that
the last equality holds due to the optimality condition in (3.1). Now, by using the fact that∫
p(u|f)du = 1, we have

∫
C(û, u)p(u|f) du = DE(û, ûMAP) + αDR(û, ûMAP)

−
∫

(〈q,Kû−KûMAP〉+ α〈p, û− ûMAP〉) p(u|f) du.

(3.6)
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Based on
〈q,Kû〉+ α〈p, û〉 = 〈K>q + αp, û〉 = 〈∇u log p(u|f), û〉,

up to some terms independent on û, we have

min
û

∫
C(û, u)p(u|f) du

⇐⇒min
û
DE(û, ûMAP) + αDR(û, ûMAP)−

∫
(〈q,Kû〉+ α〈p, û〉) p(u|f) du

⇐⇒min
û
DE(û, ûMAP) + αDR(û, ûMAP)−

∫
〈∇u log p(u|f), û〉p(u|f) du. (3.7)

By the assumption (3.4), we have
∥∥∥∥
∫
∇up(u|f) du

∥∥∥∥ = lim
r→∞

∥∥∥∥
∫

Br(0)
∇u(p(u|f))du

∥∥∥∥

= lim
r→∞

∥∥∥∥
∫

∂Br(0)
p(u|f) · n ds

∥∥∥∥

≤ lim
r→∞

∫

∂Br(0)
p(u|f)ds

= 0,

where the second equality follows the Gauss’s theorem and n indicates the outward unit
normal to the surface. By using the logarithmic derivative ∇up(u|f) = (∇u log p(u|f)) p(u|f),
we obtain ∫

〈∇u log p(u|f), û〉p(u|f) du =

〈∫
∇u log p(u|f)p(u|f) du, û

〉

=

〈∫
∇up(u|f) du, û

〉
.

= 0.

Back to (3.7), we get

min
û

∫
C(û, u)p(u|f) du⇐⇒ min

û
DE(û, ûMAP) + αDR(û, ûMAP).

Since DE(û, ûMAP) +αDR(û, ûMAP) reaches to minimal at û = ûMAP, we have proved that the
MAP estimate is a Bayes estimator for C(û, u).

We finally mention that the cost function defined in [5] for the case of additive Gaussian
noise is indeed a special case of (3).

4 Cost Functions for the CM Estimate

The CM estimate has been proved as a Bayes estimator for the mean squared error (2.2)
independently on the noise model. In this section, we will show that there exist other cost
functions for which the CM estimate is Bayes estimator. The proposed cost functions are the
sum of the Bregman distances of any convex functions, and they are independent on the prior
probability density and the noise model as well.
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4.1 Optimality condition of the CM estimate

In [5, Sect. 3.3], under the additive Gaussian noise model it has been proved that the CM
estimate fulfils an optimality condition “on average”, i.e. with respect to the average gradient
p̂CM = E[∂R(u)] =

∫
p p(u|f) du with p ∈ ∂R(u), we have

K>(KûCM − f) + αp̂CM = 0.

In the following theory, we prove that under more general noise models the CM estimate does
not always fulfill the optimality condition “on average”, and with some assumptions on the
posterior, this optimality condition can be strictly positive.

Theorem 4.1. Assume that the decay assumption (3.4) holds, the operator K is positive,
that E is differentiable with respect to u, and the maps u 7→ ∂uiE(u;K, f), i = 1, . . . , n are
concave for every u. Then we have

q̂CM + αp̂CM ≥ 0, (4.1)

where q̂CM ∈ ∂E(ûCM;K, f). The equality in (4.1) holds if and only if q is linear or a constant
with respect to u.

Proof. Based on the forward model in (1.1), the data fidelity term E is composed of Ku
and f . For convenience, we also use the notation E(Ku; f) instead of E(u;K, f), when the
operator K plays an important rule.

According to the linearity of K and the definition of ûCM, we have

K>∂E(KûCM; f) = K>∂E(KE[u]; f) = K>∂E(E[Ku]; f)

By Jensen’s inequality, if φ is concave we have

φ(E(x)) ≥ E(φ(x)),

and the equality holds if and only if φ is a constant or a linear function. Thus, by the positivity
condition on the operator K, we have

K>∂E(KûCM; f) + αp̂CM = K>∂E(E[Ku]; f) + αp̂CM

≥ K>E[∂E(Ku; f)] + α

∫
p p(u|f) du

= E[K>∂E(Ku; f)] + α

∫
p p(u|f) du

=

∫
K>∂E(Ku; f)p(u|f) du+ α

∫
p p(u|f) du

=

∫
∇u log p(u|f)p(u|f) du =

∫
∇up(u|f) du = 0.

(4.2)

Note that in this paperK indicates the blurring operator, therefore the positivity condition
is always satisfied.
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Example 4.2. In this example, we consider the Poisson noise model. The corresponding
data fidelity term is given in (1.2), which is convex, so Theorem 4.1 can be apply to it. Based
on the definition in (1.2), we have

q = K>v and vi = 1− fi
(Ku)i

+ gi ∈ Rn,

where g ∈ ∂I{i:(Ku)i≥0}(u) and I{i:(Ku)i≥0}(u) denotes the indicator function. Since q is
concave with respect to u, based on Theorem 4.1 we can conclude that

q̂CM + αp̂CM > 0.

In [5], under the Gaussian noise model we have

q = K>(Ku− f),

which is linear with respect to u, Therefore, based on Theorem 4.1 the optimality condition
“on average” is satisfied.

4.2 Cost function for the CM estimate

The CM estimate has been proved as a Bayes estimator for the mean squared error (2.2)
independently on the noise model. In the following theory, we prove that for any linear com-
binations of Bregman distances as cost functions the CM estimate is also a Bayes estimator.

Theorem 4.3. The CM estimate is a Bayes estimator for any cost function, which is a linear
combination of Bregman distances of convex functions, i.e.

CCM (û, u) =
N∑

i=1

Dq̂i
Fi

(u, û), (4.3)

where F1, . . . , FN are convex functions with finite expectation under p(·|f) and q̂i ∈ ∂Fi(û).

Proof. Based on the definition of Bayes estimator, we need prove that

ûCM ∈ arg min
û

∫
CCM (û, u)p(u|f)du.

By expanding the Bregman distance and collecting constant terms independent of û, we have

∫
CCM (û, u)p(u|f) du =

∫ ( N∑

i=1

Dq̂i
Fi

(u, û)

)
p(u|f) du

=

∫ [ N∑

i=1

(Fi(u)− Fi(û)− 〈q̂i, u− û〉)
]
p(u|f) du

=

N∑

i=1

(−Fi(û)− 〈q̂i, ûCM − û〉) + const

=

N∑

i=1

Dq̂i
Fi

(ûCM, û) + const.

Obviously, it attains the minimal value at û = ûCM.
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In [5], it has been shown that the cost function for the CM estimate can be independent
on the prior under the additive Gaussian noise model. In Theorem 4.3 we give a much
more general result. We have proved that the cost function for the CM estimate can be
completely independent on the posterior density, i.e., independent on the noise model and
also prior density. However, in Theorem 3.2 we have shown that the cost function for the
MAP estimate depends on the likelihood and the prior density. In the end of this section, we
list a few examples of cost functions for ûCM.

Example 4.4. From Theorem 4.3, we have the following functions that are suitable cost
functions for the CM estimate,

C1
CM (û, u) = E(u;K, f)− E(û;K, f)− ∂E(û;K, f)(Ku−Kû) = DE(u, û)

C2
CM (û, u) = DR(u, û)

C3
CM (û, u) = DE(u, û) + αDR(u, û).

Remark 4.5. Note that C3
CM (û, u) resembles the form of the cost function for the MAP

estimate in (3.5), but is different since the Bregman distance is not symmetric, except for the
case of Gaussian posterior, when MAP and CM estimate coincide.

5 Comparison of the CM and MAP Estimates

In [5, Thm. 2], it has been shown that under the additive Gaussian noise model the CM
estimate performs better than the MAP estimate when the error is measured in a quadratic
distance, ‖L(u−û)‖22 with any linear operator L. But if the error is measured by the Bregman
distance DR(û, u), the MAP estimate outperforms the CM estimate. In this section, based
on the results in Theorem 4.3, we give another comparison result under more general noise
models, for instance the Laplacian noise or the Poisson noise.

Theorem 5.1. The CM estimate outperforms the MAP estimate when the error is measured
in the Bregman distance DR(u, û), i.e.

E[DR(u, ûCM)] ≤ E[DR(u, ûMAP)].

This inequality directly follows from the fact that ûCM is a Bayes estimator for C2
CM (û, u).

Note that the above result is exactly the opposite of Theorem 2 in [5] under the additive
Gaussian noise model, but with flipped û and u in the definition of cost function.

6 Conclusions

In this paper, based on image restoration problem with the more general noise models instead
of additive Gaussian noise, we study the two typical point estimators for the posterior prob-
ability density: the conditional mean (CM) estimate and the maximum a posteriori (MAP)
estimate. The only assumption that we need is that the considered noise model has to lead to
a convex data fidelity term. Based on the Bregman distance, we propose new cost functions
for which the MAP and the CM estimate are Bayes estimators. Further, we give a new com-
parison result on these two estimates. In addition, we give the posterior in a MAP-centred
form and study the optimality condition on average of the CM estimate.
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