590 research outputs found

    Design, manufacture and characterization of compact filter assemblies for radiofrequency applications

    Get PDF
    This paper presents the use of additive manufacturing in the design and fabrication of a non-planar fully 3Dprinted low-pass filter. The process implements stereolithographic 3D printing and copper electroplating to produce the necessary parts and their casing. The filter we produce acts as a demonstrator: we present the possibility of constructing building blocks and combining different elements into a full assembly for system integration. We introduce the "drop-and-screw" concept, which is implemented to mount the parts into a single connectorized assembly without the need for welding. The method we propose may be suitable for building other components by simply changing the building blocks. We pay special attention to the design of the constituent parts of the filter (a 3D conical inductor and a 3D capacitor), exploring new geometries to reduce the size of the final filter prototypes. The results demonstrate the potential of additive manufacturing in the construction of high-performance RF components and assemblies, and we present a modular prototype with a high degree of reconfigurability and multifunctionality

    Innovative micro-NMR/MRI functionality utilizing flexible electronics and control systems

    Get PDF
    Das zentrale Thema dieser Arbeit ist die Entwicklung und Integration von flexibler Elektronik fĂŒr Mikro-Magnetresonanz (MR)-Anwendungen. Zwei wichtige Anwendungen wurden in der Dissertation behandelt; eine Anwendung auf dem Gebiet der Magnetresonanztomographie (MRI) und die andere auf dem Gebiet der Kernspinresonanz (NMR). Die MRI-Anwendung konzentriert sich auf die Lösung der Sicherheits- und ZuverlĂ€ssigkeitsaspekte von MR-Kathetern. Die NMR-Anwendung stellt einen neuartigen Ansatz zur Steigerung des Durchsatzes bei der NMR-Spektroskopie vor. Der erste Teil der Dissertation behandelt die verschiedenen Technologien die zur Herstellung flexibler Elektronik auf der Mikroskala entwickelt wurden. Die behandelten MR-Anwendungen erfordern die Herstellung von Induktoren, Kondensatoren und Dioden auf flexiblen Substraten. Die erste Technologie, die im Rahmen der Mikrofabrikation behandelt wird, ist das Aufbringen einer leitfĂ€higen Startschicht auf flexiblen Substraten. Es wurden verschiedene Techniken getestet und verglichen. Die entwickelte Technologie ermöglicht die Herstellung einer mehrschichtigen leitfĂ€higen Struktur auf einem flexiblen Substrat (50 ÎŒ\mum Dicke), die sich zum Umwickeln eines schlanken Rohres (>0,5 mm Durchmesser) eignet. Die zweite Methode ist der Tintenstrahldruck von Kondensatoren mit hoher Dichte und niedrigem Verlustkoeffizienten. Zwei dielektrische Tinten auf Polymerbasis wurden synthetisiert, durch die Dispersion von TiO2_2 und BaTiO3_3 in Benzocyclobuten (BCB) Polymer. Die im Tintenstrahldruckverfahren hergestellten Kondensatoren zeigen eine relativ hohe KapazitĂ€t pro FlĂ€cheneinheit von bis zu 69 pFmm−2^{-2} und erreichen dabei einen QualitĂ€tsfaktor (Q) von etwa 100. Außerdem wurde eine Technik fĂŒr eine tintenstrahlgedruckte gleichrichtende Schottky-Diode entwickelt. Die letzte behandelte Technologie ist die Galvanisierung der leitenden Startschichten. Die Galvanik ist eine gut erforschte Technologie und ein sehr wichtiger Prozess auf dem Gebiet der Mikrofabrikation. Sie ist jedoch in hohem Maße von der Erfahrung des Bedieners abhĂ€ngig. DarĂŒber hinaus ist eine prĂ€zise Steuerung der Galvanikleistung erforderlich, insbesondere bei der Herstellung kleiner Strukturen, wobei sich die Pulsgalvanik als ein Verfahren erwiesen hat, das ein hohes Maß an Kontrolle ĂŒber die abgeschiedene Struktur bietet. In diesem Zusammenhang wurde eine hochflexible Stromquelle auf Basis einer Mikrocontroller-Einheit entwickelt, um Genauigkeit in die Erstellung optimaler Galvanikrezepte zu bringen. Die Stromquelle wurde auf Basis einer modifizierten Howland-Stromquelle (MHCS) unter Verwendung eines Hochleistungs-OperationsverstĂ€rkers (OPAMP) aufgebaut. Die Stromquelle wurde validiert und verifiziert, und ihre hohe LeistungsfĂ€higkeit wurde durch die DurchfĂŒhrung einiger schwieriger Anwendungen demonstriert, von denen die wichtigste die Verbesserung der Haftung der im Tintenstrahldruckverfahren gedruckten Startschicht auf flexiblen Substraten ist. Der zweite Teil der Dissertation befasst sich mit interventioneller MRT mittels MR-Katheter. MR-Katheter haben potenziell einen erheblichen Einfluss auf den Bereich der minimalinvasiven medizinischen Eingriffe. Implantierte lĂ€ngliche Übertragungsleiter und Detektorspulen wirken wie eine Antenne und koppeln sich an das MR-Hochfrequenz (HF)-Sendefeld an und machen so den Katheter wĂ€hrend des Einsatzes in einem MRT-Scanner sichtbar. Durch diese Kopplung können sich die Leiter jedoch erhitzen, was zu einer gefĂ€hrlichen ErwĂ€rmung des Gewebes fĂŒhrt und eine breite Anwendung dieser Technologie bisher verhindert hat. Ein alternativer Ansatz besteht darin, einen Resonator an der Katheterspitze induktive mit einer OberflĂ€chenspule außerhalb des Körpers zu koppeln. Allerdings könnte sich auch dieser Mikroresonator an der Katheterspitze wĂ€hrend der Anregungsphase erwĂ€rmen. Außerdem Ă€ndert sich die Sichtbarkeit der Katheterspitze, wenn sich die axiale Ausrichtung des Katheters wĂ€hrend der Bewegung Ă€ndert, und kann verloren gehen, wenn die Magnetfelder des drahtlosen Resonators und der externen Spule orthogonal sind. In diesem Beitrag wird die AbstimmkapazitĂ€t des Mikrodetektors des Katheters drahtlos ĂŒber eine Impulsfolgensteuerung gesteuert, die an einen HF-Abstimmkreis gesendet wird, der in eine Detektorspule integriert ist. Der integrierte Schaltkreis erzeugt Gleichstrom aus dem ĂŒbertragenen HF Signal zur Steuerung der KapazitĂ€t aus der Ferne, wodurch ein intelligenter eingebetteter abstimmbarer Detektor an der Katheterspitze entsteht. WĂ€hrend der HF-Übertragung erfolgt die Entkopplung durch eine Feinabstimmung der Detektorbetriebsfrequenz weg von der Larmor-Frequenz. ZusĂ€tzlich wird ein neuartiges Detektordesign eingefĂŒhrt, das auf zwei senkrecht ausgerichteten Mikro-Saddle-Spulen basiert, die eine konstante Sichtbarkeit des Katheters fĂŒr den gesamten Bereich der axialen Ausrichtungen ohne toten Winkel gewĂ€hrleisten. Das System wurde experimentell in einem 1T MRT-Scanner verifiziert. Der dritte Teil der Dissertation befasst sich mit dem Durchsatz von NMR-Spektroskopie. Flussbasierte NMR ist eine vielversprechende Technik zur Verbesserung des NMR-Durchsatzes. Eine hĂ€ufige Herausforderung ist jedoch das relativ große Totvolumen im Schlauch, der den NMR-Detektor speist. In diesem Beitrag wird ein neuartiger Ansatz fĂŒr vollautomatische NMR-Spektroskopie mit hohem Durchsatz und verbesserter MassensensitivitĂ€t vorgestellt. Der entwickelte Ansatz wird durch die Nutzung von Mikrofluidik-Technologien in Kombination mit DĂŒnnfilm-Mikro-NMR-Detektoren verwirklicht. Es wurde ein passender NMR-Sensor mit einem mikrofluidischen System entwickelt, das Folgendes umfasst: i) einen Mikro-Sattel-Detektor fĂŒr die NMR-Spektroskopie und ii) ein Paar Durchflusssensoren, die den NMR-Detektor flankieren und an eine Mikrocontrollereinheit angeschlossen sind. Ein mikrofluidischer Schlauch wird verwendet, um eine Probenserie durch den Sondenkopf zu transportieren, die einzelnen Probenbereiche sind durch eine nicht mischbare FlĂŒssigkeit getrennt, das System erlaubt im Prinzip eine unbegrenzte Anzahl an Proben. Das entwickelte System verfolgt die Position und Geschwindigkeit der Proben in diesem zweiphasigen Fluss und synchronisiert die NMR-Akquisition. Der entwickelte kundenspezifische Sondenkopf ist Plug-and-Play-fĂ€hig mit marktĂŒblichen NMR-Systemen. Das System wurde erfolgreich zur Automatisierung von flussbasierten NMR-Messungen in einem 500 MHz NMR-System eingesetzt. Der entwickelte Mikro-NMR-Detektor ermöglicht hochauflösende Spektroskopie mit einer NMR-Empfindlichkeit von 2,18 nmol s1/2^{1/2} bei Betrieb der Durchflusssensoren. Die Durchflusssensoren wiesen eine hohe Empfindlichkeit bis zu einem absoluten Unterschied von 0,2 in der relativen PermittivitĂ€t auf, was eine Differenzierung zwischen den meisten gĂ€ngigen Lösungsmitteln ermöglichte. Es wurde gezeigt, dass eine vollautomatische NMR-Spektroskopie von neun verschiedenen 120 ÎŒ\muL Proben innerhalb von 3,6 min oder effektiv 15,3 s pro Probe erreicht werden konnte

    Full-3D Printed Electronics Fabrication of Radiofrequency Circuits and Passive Components

    Get PDF
    [eng] This doctoral thesis raises the idea that 3D printing can change the paradigm of radio- frequency electronics, which has been traditionally developed mainly conceiving planar topologies. A review on additive manufacturing and the different existing technologies is reported. To focus on the concerning topic, several applications of 3D-printed electronics in the RF field are collected to elaborate the State-of-the-Art. The main objectives of this project is to develop a 3D manufacturing technology for RF electronics passive components and circuits and to generate innovative research about the possibilities of AM in this area. Once the context is exposed, the manufacturing process for 3D-printed electronics developed within the frame of this project is described and characterized. This technology consists of three different steps. First of all, the 3D model of the prototype is designed using a CAD environment with electromagnetic simulation features, hence size parameters are adjusted to fit the specifications. Hereon, the 3D polymer substrate is printed by using either stereolithography or material jetting techniques. Stereolithography is found to be a cheaper AM technology while material jetting offers a better printing resolution and softer surface endings. Finally the object is partially metallized to obtain the conductive layer of the component or circuit using an electrolytic process, such as electroless plating or electroplating. The characterization includes the electromagnetic specifications of the dielectric substrates (i.e. the dielectric constant and the loss tangent) and the quality of the metallization (i.e. the resistivity and the layer thickness). The results of the plating resitivity are found to be competitive compared to the SoA. In order to demonstrate the possibilities of the developed technology, several devices are designed and tested. The key factor of these prototypes is that they would be very difficult, costly or impossible to manufacture using conventional technologies. As a preliminary demonstration, a hello-world circuit to turn on a LED proves that almost any kind of shape can be plated, including vias; both through hole and SMD components can be soldered and that mechanical stress such as USB plugging is resisted by the metal layer. In addition, a study on conical inductors is carried out showing the advantages of these components for broadband applications with compact devices. They offer a larger bandwidth cylindrical solenoids and are more compact than planar coils. As an application example, they are used in the manufacturing of 3D passive filters. The prototypes present agreement with simulations and the ideal response. Slight discrepancies are caused by the manufacturing tolerances. Moreover, 3D filters are also designed as one single-printed part, a new technique for 3D discrete component integration. That permits to reduce the number of components to assembly so that it does not increase with the order of the filter. These single 3D-printed prototypes present improvement in performance and compactness as well. In addition to the lumped circuits, a whole chapter is dedicated to distributed-element devices. A study on helical-microstrip transmission lines is carried out showing an important enhancement for line segment miniaturization. Hereon, they are implemented on the design of impedance transformers, which also benefit from bandwidth broadening. Another proposed device is the hybrid branch-line coupler, which, besides the implementation of helical lines, it has been designed conceiving a capacitively loaded folded structure. This coupler gives very interesting results in compactness improvement, without significant reduction of the bandwidth. The prototypes have been compared to the conventional topology as well as to other designs found within the SoA. Finally, helical-microstrip coupled-line couplers have also been designed, fabricated and studied. They offer a good enhancement in terms of compactness though it goes in slight detriment of the coupling factor due to the manufacturing tolerances.[cat] Aquesta tesi doctoral proposa la idea que la impressiĂł 3D pot canviar el paradigma de l’electrĂČnica de radiofreqĂŒĂšncia. S’hi anomenen i expliquen les tecnologies de manufactura additiva existents. Per centrar-se en el principal tema d’interĂšs, s’exposa un compendi d’aplicacions d’electrĂČnica impresa en 3D en el camp de la RF amb el qual s’ha confeccionat l’estat de la qĂŒestiĂł. Un cop exposat el context, el procĂ©s de manufactura per a electrĂČnica impresa en 3D que s’ha desenvolupat en el marc d’aquest projecte Ă©s descrit i caracteritzat. Aquesta tecnologia consisteix en la impressiĂł en 3D d’un substrat de polĂ­mer utilitzant tĂšcniques basades, o bĂ© en estereolitografia, o bĂ© en material jetting. Posteriorment, el component o circuit es metal·litza parcialment mitjançant un procĂ©s electrolĂ­tic ja sigui electroless plating o electroplating. La caracteritzaciĂł inclou les especificacions electromagnĂštiques del substrat dielĂšctric i la qualitat de metal·litzaciĂł, que s’han resultat ser competitives relaciĂł amb l’estat de la qĂŒestiĂł. Amb l’objectiu de demostrar les possibilitats de la tecnologia desenvolupada, s’han dissenyat i testejat dispositius electrĂČnics de RF, concebent-los en l’espai tridimensional. El punt clau Ă©s que els dispositius dissenyats serien molt difĂ­cils, costosos o directament impossibles de fabricar usant tecnologies convencionals. A remarcar, s’ha dut a terme un estudi sobre inductors cĂČnics, mostrant els avantatges d’aquests components per a aplicacions de banda ampla amb dispositius compactes. Aquests inductors shan fet servir per a la fabricaciĂł de filtres passius en 3D. A mĂ©s, a mĂ©s, s’han dissenyat filtres 3D per ser impresos en una sola part, una tĂšcnica nova que per produir circuits 3D amb components discrets integrats. A part dels circuits d’elements discrets, s’ha dedicat un capĂ­tol sencer als dispositius d’elements distribuĂŻts. S’ha dut a terme un estudi sobre lĂ­nies de transmissiĂł microstrip helicoidals, les quals aporten una millora important de miniaturitzaciĂł dels segments de lĂ­nia. Partint d’aquĂ­, aquestes lĂ­nies s’han implementat en el disseny de transformadors d’impedĂ ncia, que tambĂ© milloren en termes d’ample de banda, acobladors hĂ­brids de tipus branch-line i acobladors basats en lĂ­nies acoblades. Aquests dispositius han resultat tenir millores importants de compacitat respecte els dissenys convencionals fabricats en estructures planars

    Integrated Passives for High-Frequency Applications

    Get PDF

    AA size power converter for wireless applications.

    Get PDF
    Lee Ming Ho.Thesis (M.Phil.)--Chinese University of Hong Kong, 2004.Includes bibliographical references (leaves 78-80).Abstracts in English and Chinese.Chapter Chapter 1 --- Introduction --- p.1Chapter 1.1. --- Background on development of AA size micro power generator --- p.1Chapter 1.1.1. --- Brief introduction --- p.1Chapter 1.1.2. --- Proposed micro power generator for wireless applications --- p.2Chapter 1.2. --- Literature survey --- p.3Chapter 1.2.1. --- Comparison of other energy sources --- p.3Chapter 1.2.2. --- An overview of research on electromagnetic micro power generator --- p.5Chapter Chapter 2 --- Principle of Micro Power Generator --- p.7Chapter 2.1 --- Design objective ofAA size micro power generator --- p.7Chapter 2.2 --- Faraday Ž۩s Law of induced current --- p.9Chapter 2.3 --- Modal for the micro power generator system --- p.10Chapter 2.4 --- Design of the micro power generator --- p.13Chapter 2.5 --- Integrated power cell --- p.20Chapter Chapter 3 --- MEMS Resonator --- p.23Chapter 3.1. --- Design of the micro resonator --- p.23Chapter 3.1.1. --- Introduction to micro resonator --- p.23Chapter 3.1.2. --- Selection of material --- p.24Chapter 3.1.3. --- Different modes of vibration --- p.25Chapter 3.2. --- Laser Micro-machining --- p.26Chapter 3.3. --- MEMS Fabricated Spring --- p.28Chapter 3.3.1. --- Introduction of SU-8 based electroplating technique --- p.28Chapter 3.3.2. --- Fabrication process --- p.31Chapter Chapter 4 --- Characteristic of AA Size Micro Power Generator --- p.33Chapter 4.1. --- Experiment on a single micro power transducer --- p.36Chapter 4.1.1. --- Testing a single transducer without loading --- p.37Chapter 4.1.2. --- Testing a single transducer connected with a power management circuit --- p.38Chapter 4.1.3. --- Testing a single transducer with power management circuit and a 100kΩ resistor --- p.39Chapter 4.1.4. --- Summary of experiments on the micro power transducer --- p.40Chapter 4.2. --- Experiment on finding a way to increase power output --- p.41Chapter 4.3. --- Experiment for connecting two micro power transducers --- p.43Chapter 4.3.1. --- Testing on two micro power transducers connected in series --- p.44Chapter 4.3.2. --- Testing on combined micro power transducers with power management circuit --- p.47Chapter 4.4. --- Experiment on the integrated AA size micro power generator --- p.49Chapter 4.4.1. --- Interaction of magnetic dipole between two micro power transducers --- p.50Chapter 4.4.2. --- AA size micro power generator under varying input vibration frequencies --- p.52Chapter Chapter 5 --- Simulation and Analysis --- p.55Chapter 5.1. --- FEA Modeling of the MEMS Resonators --- p.55Chapter 5.2. --- Micro power generator system modeling --- p.57Chapter 5.3. --- Optimization --- p.60Chapter Chapter 6 --- Applications --- p.63Chapter 6.1. --- Wireless Temperature Sensing System --- p.64Chapter 6.2. --- Measurement of car vibration for noval applications --- p.70Chapter 6.2.1. --- Measurement of car vibration in stationary condition --- p.71Chapter 6.2.2. --- Measurement of car vibration traveling in The Chinese University of Hong Kong (CUHK) --- p.72Chapter 6.2.3. --- Measurement of car vibration traveling in rough pattern road (Tai Po Road) --- p.73Chapter 6.3. --- Human motion analysis --- p.74Chapter Chapter 7 --- Conclusion --- p.76Reference --- p.78Appendix --- p.8

    Developments of thick-metal inductors and applications to reactive lumped-element low-pass filter circuits

    Get PDF
    Strong demands for smaller, cheaper, and multifunction wireless systems have put very stringent requirements on passive devices, such as inductors and capacitors. This is especially true considering the size and weight of most radio frequency (RF) transceivers are mainly due to passives. RF micro-electro-mechanical-systems (MEMS) passives are addressing this issue by offering lower power consumption and losses, higher linearity and quality (Q)-factors, potential for integration and miniaturization, and batch fabrication. These advantages position RF MEMS passives as good candidates to replace conventional passives. Further, they also open an opportunity for using the passives as building blocks for lumped element-based RF circuits (e.g. Flters, couplers, etc.) which could replace the more-bulky distributed-element circuits. This thesis presents the design, simulation, fabrication using the deep X-ray lithography process, and testing of thick-metal RF inductors and their applications to lumped-element low-pass Filter (LPF) circuits. The 70-um tall single-turn loop inductors are structurally compatible to a pre-existing RF MEMS capacitor concept and allow the two device types to be fabricated together. This compatibility issue is crucial if they would be used to construct more complex RF circuits. At a 50-Ohm inductive reactance point, test results show Q-factors of 17- 55, self-resonant frequencies (SRF) exceeding 11 GHz, and nominal inductances of 0.4- 3 nH for 1-loop inductors and Q-factors of 11- 42, SRFs of 4- 22 GHz, and inductances of 0.8- 5.5 nH for 2-loop inductors. Further, test results reveal that high conductivity metals improve the Q-factors, and that low dielectric-constant substrates increase the SRFs. In terms of LPFs, measurements show that they demonstrate the expected third-order Chebyshev response. Two nickel Filters on a quartz glass substrate show a 0.6-dB ripple with 3-dB frequencies (f-3dB) of 6.1 GHz and 11.9 GHz respectively. On an alumina substrate, they exhibit a 1.4-dB ripple with f-3dB of 5.4 GHz and 10.6 GHz respectively. The filters are 203- 285 um tall and feature 6- 6.5 um wide capacitance air gaps. These dimensions are different than the original designs and the filter performances were shown to be somewhat sensitive to these discrepancies. Compared to a distributed approach, the lumped-element implementations led to an area reduction of up to 95%

    Three-dimensional micromachined on-chip inductors for high frequency applications

    Get PDF
    Demands for wireless communication are ever-escalating for consumer and military communication applications. The requirements of portability, more functionality and lower cost have been driving forces toward smaller, more sophisticated and flexible wireless devices with lower power consumption. To meet these requirements, monolithically integrated passive inductors with high Q-factors and high self-resonant frequencies are desirable. Q-factor and self-resonant frequency of an inductor are significantly degraded at high frequencies due to conductor ohmic loss, magnetically induced eddy current in the conductive substrate, and lower self-resonant frequency from capacitance between conductive substrate and conductors. In this dissertation, novel three-dimensional arch-like solenoid and dome-shaped spiral inductors are designed, fabricated, and characterized. MEMS-based fabrication techniques such as copper electroplating through voids in thick SU-8 photoresist molds and EAGLE2100 conformal photoresist molds on sacrificial arch-like or dome-shape SJR5740 photoresist mounds are utilized. An air gap between the inductor and the silicon substrate is used to reduce the degradations of inductor performance. According to the Sonnet electromagnetic simulations, 30 ÎŒm air-gap suspension over the substrate is an adequate choice for these inductors. Suspended arch-like solenoid copper inductor has flat bottom conductor connected to arch-like top conductor with an air core in between. This design has only 2 contact points per inductor turn to minimize series resistance. Suspended domeshaped spiral copper inductor is fabricated on a sacrificial photoresist dome with the outer end connected to one probe pad, and the inner end connected to the other probe pad through vias and an air-bridge. The sidewalls of spiral turns in this design overlap less with each other thereby reducing inter-turn capacitances. Fabricated inductors are characterized and modeled at high frequencies from Sparameter measurements. ABCD-parameters, derived from the S-parameters are translated into a simplified physical π-model. The resulting arch-like suspended inductors with 2-5 turns have inductances between 0.62 to 0.79 nH, peak Q-factor values between 15.42 to 17 at peak-Q frequencies between 4.7 GHz to 7.0 GHz, and self-resonant frequencies between 47.6 GHz to 88.6 GHz. The 3-turn dome-shaped spiral inductor has inductance of 3.37 nH, peak Q-factor of 35.9 at 1.65 GHz, and self-resonant frequency at 18.74 GHz

    Microfluidically Cryo-Cooled Planar Coils for Magnetic Resonance Imaging

    Get PDF
    High signal-to-noise ratio (SNR) is typically required for higher resolution and faster speed in magnetic resonance imaging (MRI). Planar microcoils as receiver probes in MRI systems offer the potential to be configured into array elements for fast imaging as well as to enable the imaging of extremely small objects. Microcoils, however, are thermal noise dominant and suffer limited SNR. Cryo-cooling for the microcoils can reduce the thermal noise, however conventional cryostats are not optimum for the microcoils because they typically use a thick vacuum gap to keep samples to be imaged to near room temperature during cryo-cooling. This vacuum gap is typically larger than the most sensitive region of the microcoils that defines the imaging depth, which is approximately the same as the diameters of the microcoils. Here microfluidic technology is utilized to locally cryo-cool the microcoils and minimize the thermal isolation gap so that the imaging surface is within the imaging depth of the microcoils. The first system consists of a planar microcoil with microfluidically cryo-cooling channels, a thin N2 gap and an imaging. The microcoil was locally cryo-cooled while maintaining the sample above 8°C. MR images using a 4.7 Tesla MRI system shows an average SNR enhancement of 1.47 fold. Second, the system has been further developed into a cryo-cooled microcoil system with inductive coupling to cryo-cool both the microcoil and the on-chip microfabricated resonating capacitor to further improve the Q improvement. Here inductive coupling was used to eliminate the physical connection between the microcoil and the tuning network so that a single cryocooling microfluidic channel could enclose both the microcoil and the capacitor with minimum loss in cooling capacity. Q improvement was 2.6 fold compared to a conventional microcoil with high-Q varactors and transmission line connection. Microfluidically tunable capacitors with the 653% tunability and Q of 1.3 fold higher compared to a conventional varactor have been developed and demonstrated as matching/tuning networks as a proof of concept. These developed microfluidically cryo-cooling system and tunable capacitors for improving SNR will potentially allow MR microcoils to have high-resolution images over small samples

    Fabrication of 3D Air-core MEMS Inductors for High Frequency Power Electronic Applications

    Get PDF
    AbstractWe report a fabrication technology for 3D air-core inductors for small footprint and very-high-frequency power conversions. Our process is scalable and highly generic for fabricating inductors with a wide range of geometries and core shapes. We demonstrate spiral, solenoid, and toroidal inductors, a toroidal transformer and inductor with advanced geometries that cannot be produced by wire winding technology. The inductors are embedded in a silicon substrate and consist of through-silicon vias and suspended windings. The inductors fabricated with 20 and 25 turns and 280-350 Όm heights on 4-16 mm2 footprints have an inductance from 34.2 to 44.6 nH and a quality factor from 10 to 13 at frequencies ranging from 30 to 72 MHz. The air-core inductors show threefold lower parasitic capacitance and up to a 140% higher-quality factor and a 230% higher-operation frequency than silicon-core inductors. A 33 MHz boost converter mounted with an air-core toroidal inductor achieves an efficiency of 68.2%, which is better than converters mounted with a Si-core inductor (64.1%). Our inductors show good thermal cycling stability, and they are mechanically stable after vibration and 2-m-drop tests.</jats:p
    • 

    corecore