8 research outputs found

    Revisiting Bounded-Suboptimal Safe Interval Path Planning

    Full text link
    Safe-interval path planning (SIPP) is a powerful algorithm for finding a path in the presence of dynamic obstacles. SIPP returns provably optimal solutions. However, in many practical applications of SIPP such as path planning for robots, one would like to trade-off optimality for shorter planning time. In this paper we explore different ways to build a bounded-suboptimal SIPP and discuss their pros and cons. We compare the different bounded-suboptimal versions of SIPP experimentally. While there is no universal winner, the results provide insights into when each method should be used

    Optimizing the Implementation of the Greedy Algorithm to Achieve Efficiency in Garbage Transportation Routes

    Get PDF
    Until now, the waste problem is still a crucial problem, including in the Banyumas Regency area. The uncontrolled accumulation of garbage at the TPS will of course greatly disturb the comfort of the community around the TPS. As is the case with the accumulation of garbage at TPS (Garbage Disposal Sites) in North Purwokerto District. When searching for this garbage transportation route, the Greedy Algorithm works by finding the smallest weight point by calculating the route passed and calculating the weight depending on the weight of the stages that have been passed and the weight at the stage itself. Based on the results of the system testing that has been made, the shortest route for transporting waste from the starting point of the Banyumas Environment Office is to go to the final disposal site in Tipar, and return to the starting point of the Banyumas Environmental Office. So that the total distance traveled to return to the starting point is 53 km long. Based on the findings and discussions of this research, the results obtained are the determination of the shortest route from node A back to node A. Specifically, the route involves traveling from the DLH Banyumas Regency to TPS Grendeng, TPS Karangwangkal, TPS Pabuwaran, TPS Sumampir, TPS Purwanegara, TPS Bobosan, to TPA Tipar, and then returning to DLH Banyumas Regency. These results have implementable implications in the context of waste management in this area, with a total distance traveled of 53 kilometers

    Rectangle Search: An Anytime Beam Search (Extended Version)

    Full text link
    Anytime heuristic search algorithms try to find a (potentially suboptimal) solution as quickly as possible and then work to find better and better solutions until an optimal solution is obtained or time is exhausted. The most widely-known anytime search algorithms are based on best-first search. In this paper, we propose a new algorithm, rectangle search, that is instead based on beam search, a variant of breadth-first search. It repeatedly explores alternatives at all depth levels and is thus best-suited to problems featuring deep local minima. Experiments using a variety of popular search benchmarks suggest that rectangle search is competitive with fixed-width beam search and often performs better than the previous best anytime search algorithms.Comment: 30 pages, 200+ figure

    Machine Learning for Classical Planning: Neural Network Heuristics, Online Portfolios, and State Space Topologies

    Get PDF
    State space search solves navigation tasks and many other real world problems. Heuristic search, especially greedy best-first search, is one of the most successful algorithms for state space search. We improve the state of the art in heuristic search in three directions. In Part I, we present methods to train neural networks as powerful heuristics for a given state space. We present a universal approach to generate training data using random walks from a (partial) state. We demonstrate that our heuristics trained for a specific task are often better than heuristics trained for a whole domain. We show that the performance of all trained heuristics is highly complementary. There is no clear pattern, which trained heuristic to prefer for a specific task. In general, model-based planners still outperform planners with trained heuristics. But our approaches exceed the model-based algorithms in the Storage domain. To our knowledge, only once before in the Spanner domain, a learning-based planner exceeded the state-of-the-art model-based planners. A priori, it is unknown whether a heuristic, or in the more general case a planner, performs well on a task. Hence, we trained online portfolios to select the best planner for a task. Today, all online portfolios are based on handcrafted features. In Part II, we present new online portfolios based on neural networks, which receive the complete task as input, and not just a few handcrafted features. Additionally, our portfolios can reconsider their choices. Both extensions greatly improve the state-of-the-art of online portfolios. Finally, we show that explainable machine learning techniques, as the alternative to neural networks, are also good online portfolios. Additionally, we present methods to improve our trust in their predictions. Even if we select the best search algorithm, we cannot solve some tasks in reasonable time. We can speed up the search if we know how it behaves in the future. In Part III, we inspect the behavior of greedy best-first search with a fixed heuristic on simple tasks of a domain to learn its behavior for any task of the same domain. Once greedy best-first search expanded a progress state, it expands only states with lower heuristic values. We learn to identify progress states and present two methods to exploit this knowledge. Building upon this, we extract the bench transition system of a task and generalize it in such a way that we can apply it to any task of the same domain. We can use this generalized bench transition system to split a task into a sequence of simpler searches. In all three research directions, we contribute new approaches and insights to the state of the art, and we indicate interesting topics for future work

    Machine learning for classical planning : neural network heuristics, online portfolios, and state space topologies

    Get PDF
    State space search solves navigation tasks and many other real world problems. Heuristic search, especially greedy best-first search, is one of the most successful algorithms for state space search. We improve the state of the art in heuristic search in three directions. In Part I, we present methods to train neural networks as powerful heuristics for a given state space. We present a universal approach to generate training data using random walks from a (partial) state. We demonstrate that our heuristics trained for a specific task are often better than heuristics trained for a whole domain. We show that the performance of all trained heuristics is highly complementary. There is no clear pattern, which trained heuristic to prefer for a specific task. In general, model-based planners still outperform planners with trained heuristics. But our approaches exceed the model-based algorithms in the Storage domain. To our knowledge, only once before in the Spanner domain, a learning-based planner exceeded the state-of-the-art model-based planners. A priori, it is unknown whether a heuristic, or in the more general case a planner, performs well on a task. Hence, we trained online portfolios to select the best planner for a task. Today, all online portfolios are based on handcrafted features. In Part II, we present new online portfolios based on neural networks, which receive the complete task as input, and not just a few handcrafted features. Additionally, our portfolios can reconsider their choices. Both extensions greatly improve the state-of-the-art of online portfolios. Finally, we show that explainable machine learning techniques, as the alternative to neural networks, are also good online portfolios. Additionally, we present methods to improve our trust in their predictions. Even if we select the best search algorithm, we cannot solve some tasks in reasonable time. We can speed up the search if we know how it behaves in the future. In Part III, we inspect the behavior of greedy best-first search with a fixed heuristic on simple tasks of a domain to learn its behavior for any task of the same domain. Once greedy best- first search expanded a progress state, it expands only states with lower heuristic values. We learn to identify progress states and present two methods to exploit this knowledge. Building upon this, we extract the bench transition system of a task and generalize it in such a way that we can apply it to any task of the same domain. We can use this generalized bench transition system to split a task into a sequence of simpler searches. In all three research directions, we contribute new approaches and insights to the state of the art, and we indicate interesting topics for future work.Viele Alltagsprobleme können mit Hilfe der Zustandsraumsuche gelöst werden. Heuristische Suche, insbesondere die gierige Bestensuche, ist einer der erfolgreichsten Algorithmen für die Zustandsraumsuche. Wir verbessern den aktuellen Stand der Wissenschaft bezüglich heuristischer Suche auf drei Arten. Eine der wichtigsten Komponenten der heuristischen Suche ist die Heuristik. Mit einer guten Heuristik findet die Suche schnell eine Lösung. Eine gute Heuristik für ein Problem zu modellieren ist mühsam. In Teil I präsentieren wir Methoden, um automatisiert gute Heuristiken für ein Problem zu lernen. Hierfür generieren wird die Trainingsdaten mittels Zufallsbewegungen ausgehend von (Teil-) Zuständen des Problems. Wir zeigen, dass die Heuristiken, die wir für einen einzigen Zustandsraum trainieren, oft besser sind als Heuristiken, die für eine Problemklasse trainiert wurden. Weiterhin zeigen wir, dass die Qualität aller trainierten Heuristiken je nach Problemklasse stark variiert, keine Heuristik eine andere dominiert, und es nicht vorher erkennbar ist, ob eine trainierte Heuristik gut funktioniert. Wir stellen fest, dass in fast allen getesteten Problemklassen die modellbasierte Suchalgorithmen den trainierten Heuristiken überlegen sind. Lediglich in der Storage Problemklasse sind unsere Heuristiken überlegen. Oft ist es unklar, welche Heuristik oder Suchalgorithmus man für ein Problem nutzen sollte. Daher trainieren wir online Portfolios, die für ein gegebenes Problem den besten Algorithmus vorherzusagen. Die Eingabe für das online Portfolio sind bisher immer von Menschen ausgewählte Eigenschaften des Problems. In Teil II präsentieren wir neue online Portfolios, die das gesamte Problem als Eingabe bekommen. Darüber hinaus können unsere online Portfolios ihre Entscheidung einmal korrigieren. Beide Änderungen verbessern die Qualität von online Portfolios erheblich. Weiterhin zeigen wir, dass wir auch gute online Portfolios mit erklärbaren Techniken des maschinellen Lernens trainieren können. Selbst wenn wir den besten Algorithmus für ein Problem auswählen, kann es sein, dass das Problem zu schwierig ist, um in akzeptabler Zeit gelöst zu werden. In Teil III zeigen wir, wie wir von dem Verhalten einer gierigen Bestensuche auf einfachen Problemen ihr Verhalten auf schwierigeren Problemen der gleichen Problemklasse vorhersagen können. Dieses Wissen nutzen wir, um die Suche zu verbessern. Zuerst zeigen wir, wie man Fortschrittszustände erkennt. Immer wenn gierige Bestensuche einen Fortschrittszustand expandiert, wissen wir, dass es nie wieder einen Zustand mit gleichem oder höheren heuristischen Wert expandieren wird.Wir präsentieren zwei Methoden, die diesesWissen verwenden. Aufbauend auf dieser Arbeit lernen wir von einem Problem, wie man jegliches Problem der gleichen Problemklasse in eine Reihe von einfacheren Suchen aufteilen kann

    最良優先探索のための探索非局在化手法

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 Fukunaga Alex, 東京大学教授 山口 和紀, 東京大学准教授 田中 哲朗, 東京大学准教授 金子 知適, 東京大学准教授 森畑 明昌University of Tokyo(東京大学

    Search behavior of greedy best-first search

    Get PDF
    Greedy best-first search (GBFS) is a sibling of A* in the family of best-first state-space search algorithms. While A* is guaranteed to find optimal solutions of search problems, GBFS does not provide any guarantees but typically finds satisficing solutions more quickly than A*. A classical result of optimal best-first search shows that A* with an admissible and consistent heuristic expands every state whose f-value is below the optimal solution cost and no state whose f-value is above the optimal solution cost. Theoretical results of this kind are useful for the analysis of heuristics in different search domains and for the improvement of algorithms. For satisficing algorithms, a similarly clear understanding is currently lacking. We examine the search behavior of GBFS in order to make progress towards such an understanding. We introduce the concept of high-water mark benches, which separate the search space into areas that are searched by GBFS in sequence. High-water mark benches allow us to exactly determine the set of states that GBFS expands under at least one tie-breaking strategy. We show that benches contain craters. Once GBFS enters a crater, it has to expand every state in the crater before being able to escape. Benches and craters allow us to characterize the best-case and worst-case behavior of GBFS in given search instances. We show that computing the best-case or worst-case behavior of GBFS is NP-complete in general but can be computed in polynomial time for undirected state spaces. We present algorithms for extracting the set of states that GBFS potentially expands and for computing the best-case and worst-case behavior. We use the algorithms to analyze GBFS on benchmark tasks from planning competitions under a state-of-the-art heuristic. Experimental results reveal interesting characteristics of the heuristic on the given tasks and demonstrate the importance of tie-breaking in GBFS

    Speedy Versus Greedy Search

    No full text
    In work on satisficing search, there has been substantial attention devoted to how to solve problems associated with local minima or plateaus in the heuristic function. One technique that has been shown to be quite promising is using an alternative heuristic function that does not estimate cost-to-go, but rather estimates distance-to-go. Empirical results generally favor using the distance-to-go heuristic over the cost-to-go heuristic, but there is currently little beyond intuition to explain the difference. We begin by empirically showing that the success of the distance-to-go heuristic appears related to its having smaller local minima. We then discuss a reasonable theoretical model of heuristics and show that, under this model, the expected size of local minima is higher for a cost- to-go heuristic than a distance-to-go heuristic, offering a possible explanation as to why distance-to-go heuristics tend to outperform cost-to-go heuristics
    corecore