
博士論文

Diversification Mechanisms for Best-First

Search

(最良優先探索のための探索非局在化手法)

浅井政太郎

Masataro Asai

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTokyo Repository

https://core.ac.uk/display/228324253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii



Abstract

Despite the recent advances in domain-independent planning algorithms, there is

still a large gap between the theory and practice of search algorithms for plan-

ning. In cost-optimal search, despite the major advances in lower bound functions

(heuristic functions), the study of the base algorithm itself is rarely attempted re-

cently. State-of-the-art satisficing search algorithms use complex combinations

of various, ad-hoc search enhancements, making the resulting algorithm difficult

to analyze. The relation between search algorithms guaranteed to find the op-

timal solution and satisficing search technique has also not been investigated in

depth. This dissertation proposes a unified framework for understanding these al-

gorithms, based upon which several new algorithmic enhancements are proposed

to improve the state of the art.

We first analyze and improve the tiebreaking behavior of A*, the standard al-

gorithm for cost-optimal search. We develop a new framework for viewing cost-

optimal search as a series of satisficing search episodes, and show that this new

perspective can be effectively exploited by new tie-breaking strategies which sig-

nificantly improve upon standard tie-breaking strategies.

Having established effective satisficing search as a key component of cost-

optimal search, we then focus on methods for improving satisficing search. We
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unify previous approaches for diversitying satisfying search as instances of or-

thogonal, inter- and intra-plateau diversification. We show that this new per-

spective leads to effective, new combinations of diversification strategies which

improve upon the state-of-the-art diversifciation strategies. We also propose In-

vasion Percolation, a new fractal-inspired diversification method which comple-

ments previous diversification approaches.
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Preface

This thesis is based on author’s past conference and journal publications. Chapter

3-Chapter 5 are published in (Asai & Fukunaga, 2016) and (Asai & Fukunaga,

2017b). Chapter 6-Chapter 7 are published in (Asai & Fukunaga, 2017a).
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Chapter 1

Introduction

Over the years, heuristic search based mehods for automated planning has achieved

significant success and shown its ability to scale to larger and larger problems.

Much of the success can be attributed to the development of increasingly sophisti-

cated heuristic functions, while relatively less attention was paid to the base search

algorithms.

In fact, despite the number of papers which try to push the state of the art

in optimal planning by improving admissible heuristic functions and developing

their theory, much less attention has been paid to the common underlying algo-

rithm, A*, until (Asai & Fukunaga, 2016). Similarly, while there is a large body

of work on satisficing planning algorithms, many algorithms tend to be ad-hoc

and lack theoretical foundation other than completeness. For example, the state-

of-the-art LAMA planner (Richter & Westphal, 2010) incorporates five search

algorithm-related improvements at once and the reason for its success on bench-

mark domains is not yet fully understood.

The contribution of this dissertation is a new framework for understanding
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search algorithm behavior in terms of their behavior on the critical, frontier region

of the search space, and proposals of new algorithms based on the new under-

standing. This dissertation proceeds as follows.

After the introduction and the preliminary background, we first analyze and

discuss the search space topology of various domain-independent planning prob-

lems with regard to f , the admissible lower-bound for the solution cost (Chapter

3). We show that, contrary to the conventional wisdom, these combinatorial prob-

lems contain huge final plateaus, a set of nodes which have the same f value as

the optimal solution cost f ∗. We next investigate the behavior of existing tiebreak-

ing strategy for A∗ algorithm and identify an important class of problems called

Zerocost domains, which are characterized by a huge number of zero-cost edges

and renders existing tiebreaking strategies useless.

In the next chapter (Chapter 4), we propose a notion of depth in a plateau

that explains the behavior of existing tiebreaking strategies in Zerocost domains.

We then propose a new strategy called depth diversification which significantly

outperforms the existing strategies in several zero-cost domains. We analyze the

behavior of depth diversification under some assumptions and verify that the em-

pirical behavior is consistent with expectations. Thus, we show that, in domain-

independent planning, there is still plenty room for improvements in the base

search algorithms that can impact the search performance.

In Chapter 5, based upon the findings in the previous section, we proceed to

show that optimal search can be reduced to satisficing search. We reformulate the

traditional understanding of optimal 1 best-first search algorithms (such as A*) by

dividing the search space into plateaus of increasing f -value, then characterizing

1An optimal search algorithm is guaranteed to return the optimal-cost solution.
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A* as a sequence of satisficing searches on each plateau in the increasing order of

f -value.

Chapter 5 effectively shows that the performance of optimal search algorithms

can be improved by improving the underlying satisficing search which is being

performed in every plateau layer. Thus, the rest of the dissertation focuses on sat-

isficing search. To obtain a deeper understanding of satisficing search algorithm,

in Chapter 6, we investigate two notions in search algorithms, tiebreaking and

exploration, and reformulate them as orthogonal approaches to address the errors

between a heuristic function h and the true cost to goal h∗. We empirically verify

this hypothesis by comparing the search performance between algorithms where

the same diversification mechanism is applied to either tiebreaking or h-value se-

lection, or both.

Since the diversification mechanism in both tiebreaking and exploration are

based on knowledge-free, blind search algorithms, we further conclude that sat-

isficing search algorithms can be ultimately improved by developing the more

sophisticated blind search algorithms. In Chapter 7, we propose a new diversifica-

tion mechanism called Invasion Percolation, which is based on a fractal structure

resulting from the minimum spanning tree on a search graph.

The dissertation concludes by discussing the relationship with related work

and discussing directions for future work.
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Chapter 2

Background

2.1 Classical Planning

Classical Planning has achieved significant advances in recent years due to the

success of heuristic search based methods. The input problem to a Classical Plan-

ning solver (a planner) is a 5-tuple Π = 〈P,O, I,G,A〉 where P defines a set of

first-order predicates,O is a set of symbols called objects, I is the initial state,G is

a set of goal conditions, andA is a set of actions which defines the state transitions

in the search space. A state is an assignment of boolean values to the set of propo-

sitional variables, while a condition is a partial assignment that assigns values only

to a subset of propositions. Each proposition is an instantiation of a predicate with

objects. Lifted action schema a ∈ A is a 5-tuple 〈params, pre, e+, e−, c〉 where

each element denotes the set of parameters, preconditions, add-effects, delete-

effects and the cost, respectively. Parameter substitution using objects in O in-

stantiates ground actions. When c is not specified, it is usually assumed c = 1.

These inputs are described in the Planning Domain Description Language (PDDL)
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(McDermott, 2000) and its extensions.

Figure 2.1.1 shows one possible representation of a state in the 3x3 sliding tile

puzzle (8-puzzle) domain as a First Order Logic formula, and the representation

of the same state using PDDL.

Empty(x0, y0)

∧At(x1, y0, panel6)

∧Up(y0, y1)

∧Down(y1, y0)

∧Right(x0, x1)

∧Left(x1, x0) . . .

(empty x0 y0)

(at x1 y0 panel6)

(up y0 y1)

(down y1 y0)

(right x0 x1)

(left x1 x0)... 1

23

45

6

7

8
 

Figure 2.1.1: One possible state representation of a 3x3 sliding tile puzzle (8-

puzzle) as a first order logic formula and its corresponding PDDL notation. It

contains predicate symbols empty, up, down, left, right, at as well as object sym-

bols such as xi, yi, panelj for i ∈ {0..2} and j ∈ {1..8}.

The task of a planning problem is to find a path from the initial state I to

some goal state s∗ ⊇ G, using the state transition rules in A. A state s can be

transformed into a new state t by applying a ground action a when s ⊇ pre, and

then t = (s \ e−) ∪ e+ (McDermott, 2000). This transition can also be viewed as

applying a state transition function a to s, which can be written as t = a(s).

State-of-the-Art planners solve this problem as a path finding problem on an

implicit graph defined by the state transition rules. They usually employ forward

state space heuristic search, such as A∗ (for finding the shortest path) or Greedy

Best-First Search (for finding a suboptimal path more quickly). Due to a variety of
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When Empty(x, yold)

∧ at(x, ynew, p)

∧ up(ynew, yold);

then ¬Empty(x, yold)

∧ Empty(x, ynew)

∧ ¬at(x, ynew, p)

∧ at(x, yold, p)

(:action slide-up ...

:precondition

(and (empty ?x ?y-old)

(at ?x ?y-new ?p)

(up ?y-new ?y-old))

:effects

(and (not (empty ?x ?y-old))

(empty ?x ?y-new)

(not (at ?x ?y-new ?p))

(at ?x ?y-old ?p)))

1

23

45

6

7

8
 

Figure 2.1.2: One possible action representation of sliding up a tile in 3x3 sliding

tile puzzle in (left) the first order logic formula and (middle) its corresponding

PDDL notation. In addition to Figure 2.1.1, it further contains an action symbol

slide-up.

successful domain-independent heuristic functions (Helmert & Domshlak, 2009;

Sievers, Ortlieb, & Helmert, 2012; Helmert, Haslum, & Hoffmann, 2007; Bonet,

2013; Hoffmann & Nebel, 2001; Helmert, 2004; Richter, Helmert, & Westphal,

2008), current state-of-the-art planners can scale to larger problems which re-

quires to find a plan consisting of more than 1000 steps (Asai & Fukunaga, 2015).

While evaluating performance of a planner, we sometimes measure its “cover-

age”, i.e. the number of instances solved in a particular resource limitation among

a certain set of instances. Coverage is one of the popular metric for measuring the

performance of a planner.
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2.2 Basic Search Algorithms and Notation

A∗ is a standard search algorithm for finding an optimal cost path from an initial

state s to some goal state s∗ ∈ G in a search space represented as a graph (Hart,

Nilsson, & Raphael, 1968). It expands the nodes in best-first order of f(n) up to

f ∗, where f(n) is a lower bound of the cost of the shortest path that contains a

node n and f ∗ is the cost of the optimal path. The value of f(n) is a sum of g(n),

the known shortest path cost so far from the initial node to n, and h(n), the heuris-

tic lower-bound estimate of the cost from n to some goal s∗. h(n) is admissible if

it does not overestimate the true cost to goal h∗(n), which is also called a perfect

heuristic. We omit the argument (n) unless necessary. For domain-independent

classical planning, notable state-of-the-art, admissible heuristic functions are LM-

cut (Helmert & Domshlak, 2009) and Merge-and-Shrink (Helmert, Haslum, Hoff-

mann, & Nissim, 2014).

Greedy Best First Search (GBFS) is a greedy search algorithm that is intended

to find a satisficing solution to the problem as quickly as possible, without explic-

itly trying to minimize the path cost. It expands the nodes in the best-first order

of h(n), i.e. greedily guided by the lower-bound estimate. Since GBFS does

not guarantee the cost optimality (the worst case solution cost is unbounded),

GBFS tends to be used together with an inadmissible heuristic function that may

overestimate the goal. Notable state-of-the-art inadmissible heuristics include FF

heuristic (Hoffmann & Nebel, 2001) and Causal Graph heuristic (Helmert, 2004).

Both search algorithms can be described using a uniform notation, which we

call a sorting strategy. Below, we first present a general Best First Search (BFS)

algorithm template which includes A∗, Dijkstra’s algorithm (1959), Greedy Best-

First Search (GBFS). It uses two sets, OPEN and CLOSED, where unexpanded
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nodes are stored in OPEN and expanded nodes are stored in CLOSED. Three

operations, pop(S), push(n, S) and remove(n, S), are assumed for a node n and a

set S. pop(S) operation tries to select a single node from S, push(n, S) stores the

node n into S and remove(n, S) removes n from S if n is already stored.

Algorithm 1 Best-First Search Algorithm using OPEN/CLOSED list
Input: n0, is goal(·), successors(·)

1: Initialize OPEN = ∅, CLOSED = ∅, g(n0) = 0, (∀n 6= n0; g(n) =∞)

2: push(n0,OPEN)

3: while OPEN 6= ∅ do

4: n = pop(OPEN); push(n,CLOSED)

5: return n if is goal(n) = true

6: for each m ∈ successors(n) do

7: gnew = g(n) + cost(n,m)

8: if gnew < g(m) then

9: g(m) ← gnew; parent(m) ← n; push(m,OPEN);

remove(m,CLOSED)

OPEN is sorted according to a sorting strategy and the node selected by pop(S)

always returns the best node according to the strategy. Each sorting strategy is de-

noted as a vector of several sorting criteria, such as [criterion1, criterion2, . . .,

criterionk], which defines a lexicographic ordering, i.e., from the OPEN list, first,

select a set of nodes using criterion1, and if there are still multiple nodes remaining

in the set, then break ties using criterion2 and so on, until a single node is selected.

The first-level sorting criterion of a strategy is criterion1, the second-level sorting

criterion is criterion2, and so on.1

1This notation corresponds to the command line option format of the Fast Downward planner

8



Using this notation, A∗ without any tie-breaking strategy can be denoted as a

BFS with [f ] and A∗ which breaks ties according to h value is denoted as [f, h].

Unless stated otherwise, we assume the nodes are sorted in the increasing order of

the key value and a BFS always selects the smallest key value.

However, a sorting strategy may only provide a partial ordering, i.e., the sort-

ing strategy may fail to select a single node because some nodes may share the

same sorting keys. For such cases, a BFS algorithm must decide which node to

expand by applying some default tie-breaking criterion criterionk which is guar-

anteed to return a single node, such as fifo (oldest node first: first-in-first-out), lifo

(most recently inserted first: last-in-first-out) or ro (random ordering). For exam-

ple, A∗ using h tie-breaking and fifo default tie-breaking is denoted as [f, h, fifo].

By definition, there is only 1 node which satisfies the default criterion, so strate-

gies with a default criterion guarantee a total ordering among all nodes and are

able to select a single node from the set of nodes. When the default criterion is ir-

relevant to the discussion, we either use a wildcard “*”, e.g. [f, h, ∗], or sometimes

omit it altogether for brevity.

Given a search algorithm with a sorting strategy, a plateau (criterion . . .) is

a set of nodes in OPEN whose elements share the same sort keys according to

non-default sorting criteria and are therefore indistinguishable. In the case of A∗

using tie-breaking with h (sorting strategy [f, h, ∗]), the plateaus are denoted as

plateau (f, h), the set of nodes with the same f cost and the same h cost. We can

also refer to a specific plateau with f = fp and h = hp by plateau (fp, hp).

An entrance to a plateau (criterion . . .) = P is a node n ∈ P , whose current

parent is not in P . The final plateau is the plateau containing the solution found

(Helmert, 2006).
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by the search algorithm. In A∗ using admissible heuristics, the final plateau is

plateau (f ∗) (without tie-breaking), or plateau (f ∗, 0) (with h-based tie-breaking).

Finally, OPEN list alternation (Röger & Helmert, 2010) is a technique to com-

bine multiple sorting strategies in order to improve the robustness of the search

algorithm. Nodes are simultaneously stored and sorted into independent OPEN

lists with different strategies, and node expansion alternates among the OPEN

lists. We denote an alternating OPEN list as alt(X1, X2, . . .) where each Xi is a

sorting strategy.
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Chapter 3

Analysis of Tie-Breaking Strategies

and Plateau Structure for

Cost-Optimal A*

In this chapter, we investigate tie-breaking strategies and plateau structure for

cost-optimal A∗ search. A∗ is a standard search algorithm for finding an optimal

cost path from an initial state s to some goal state g ∈ G in a search space rep-

resented as a graph (Hart et al., 1968). It expands the nodes in best-first order of

f(n) up to f ∗, where f(n) is a lower bound of the cost of the shortest path that

contains a node n and f ∗ is the cost of the optimal path. In many combinato-

rial search problems, the size of the last layer f(n) = f ∗ of the search, called a

final plateau, accounts for a significant fraction of the effective search space of

A∗. Figure 3.0.1 (p.12) compares the number of states in this final plateau with

f(n) = f ∗ (y-axis) vs. f(n) ≤ f ∗ (x-axis) for 1104 problem instances from the

International Planning Competition (IPC1998-2011). For many instances, a large
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Figure 3.0.1: The number of nodes with f = f ∗ (y-axis) compared to the total

number of nodes in the search space (x-axis) with f ≤ f ∗ on 1104 IPC benchmark

problems. This experiment uses a modified Fast Downward with LMcut which

continues the search within the current f after any cost-optimal solution is found.

This effectively generates all nodes with cost f ∗.

fraction of the nodes in the effective search space have f(n) = f ∗: The points are

located very close to the diagonal line (x = y), indicating that almost all states

with f(n) ≤ f ∗ have cost f ∗.

Figure 3.0.2 depicts this phenomenon conceptually. On the left, we show one

natural view of the search space that considers the space searched by A∗ as a

large number of closed nodes with f < f ∗, surrounded by a thin layer of final

plateau f(n) = f ∗. This intuitive view accurately reflects the search spaces of

some real-world problems such as 2D pathfinding on an explicit graph. It has also

served as a model for algorithms such as Frontier Search (Korf, 1999; Korf &
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f = f*
f > f*

Optimal solution(some nodes are expanded by A*)
(all nodes are expanded by A*)f < f*

expansion

Initial
Node

Large final plateau

Goal
  node

expansion

Initial
Node

expansion

expansion

(entire search space, A* never expands outside ellipse)

Figure 3.0.2: (Left) One possible class of search space which is dominated by the

states with cost f < f ∗. (Right) This thesis focuses on another class of search

space, where the plateau containing the cost-optimal goals (f = f ∗) is large, and

it even accounts for most of the search effort required by A∗.

Zhang, 2000), which tries to reduce the memory requirement by discarding the

information associated with states with f < f ∗, an effective strategy when the

number of such states accounts for a large fraction of the memory usage.

However, for many other classes of combinatorial search problems, e.g., the

IPC Planning Competition Benchmarks, the figure on the right is a more accurate

depiction – here, the search space has a large plateau for f = f ∗. In fact, Iterative

Deepening approaches (Korf, 1985) assume this type of search space where this

final frontier is quite large and the overhead of re-evaluating f < f ∗ is limited.

Classical planning problems in the IPC benchmark set are clearly the instances of

such combinatorial search problems.

For the majority of such IPC problem domains where the last layer (f(n) =

f ∗) accounts for a significant fraction of the effective search space, a tie-breaking

strategy, which determines which node to expand among nodes with the same f -

13



cost, can have a significant impact on the performance of A∗. It is widely believed

that among nodes with the same f -cost, ties should be broken according to h(n),

i.e., nodes with smaller h-values should be expanded first. While this is a useful

rule of thumb in many domains, it turns out that tie-breaking requires more careful

consideration, particularly for problems where most or all of the nodes in the last

layer have the same h-value.

We empirically evaluate the existing, commonly used, standard tie-breaking

strategies for A∗ (Section 3.2). We show that:

1. In the experiments on IPC domains, A Last-In-First-Out (lifo) criterion tends

to be more efficient than a First-In-First-Out (fifo) criterion.

2. Tie-breaking according to the heuristic value h, which is frequently men-

tioned in the heuristic search literature, has little impact on the performance

as long as lifo default criterion is used – in other words, a lifo tie-breaking

policy is sufficient for most IPC domains.

3. There are significant performance differences among tie-breaking strategies

when domains include 0-cost actions. This is true even when h-based tie-

breaking is used.

3.1 Tie-Breaking Strategies for A∗

A∗ is a standard search algorithm for finding an optimal cost path on a graph. On

a finite graph, A∗ is complete regardless of the tiebreaking strategy (Hart et al.,

1968).

14



It can be defined as a subclass of BFS which uses f -value as the first sort-

ing criterion and returns a cost-optimal solution when h is admissible, i.e., when

∀n;h(n) ≤ h∗(n), where h∗(n) is the optimal distance from n to the nearest goal.

The best-first order of the expansion is the key to guaranteeing solution optimal-

ity. The first solution found by the algorithm is guaranteed to have the optimal

cost f = f ∗ because all nodes with f(n) < k are already expanded when it starts

expanding the nodes with f(n) = k. Thus, the effective search space of A∗ is the

set of nodes with f(n) ≤ f ∗: A∗ expands all nodes with f(n) < f ∗, then expands

some of the nodes with f(n) = f ∗, and never expands the nodes with f(n) > f ∗.

If there are multiple nodes with the same f -cost, A∗ must implement some tie-

breaking strategy (either explicitly or implicitly) which selects from among these

nodes. The early literature on heuristic search seems to have been mostly agnostic

regarding tie-breaking. The original A∗ paper, as well as Nilsson’s subsequent

textbook states: “Select the open node n whose value f is smallest. Resolve ties

arbitrarily, but always in favor of any [goal node]” (Hart et al., 1968, p. 102

Step 2; Nilsson, 1971, p. 69). Pearl’s textbook on heuristic search specifies that

best-first search should “break ties arbitrarily” (Pearl, 1984, p. 48, Step 3), and

does not specifically mention tie-breaking for A∗. To the best of our knowledge,

the first explicit mention of a tie-breaking strategy that considers node generation

order is by Korf in his analysis of IDA*: “If A∗ employs the tie-breaking rule of

’most-recently generated’, it must also expand the same nodes [as IDA*]”, i.e., a

lifo ordering.

In recent years, tie-breaking according to h-values has become “folklore” in

the search community. Hansen and Zhou state that “[i]t is well-known that A∗

achieves best performance when it breaks ties in favor of nodes with least h-cost”
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(Hansen & Zhou, 2007). Holte writes “A∗ breaks ties in favor of larger g-values,

as is most often done” (Holte, 2010). Note that preferring large g is equivalent to

preferring smaller h, since f = g+h. Felner et al. also assume “ties are broken in

favor of low h-values” in describing Bidirectional Pathmax for A∗ (2011). In their

detailed survey/tutorial on efficient A∗ implementations, Burns et al. (2012) also

break ties “preferring high g” (equivalent to low h). Thus, tie-breaking according

to h-values appears to be ubiquitous in practice. However, to our knowledge, an

in-depth experimental analysis of tie-breaking strategies for A∗ is lacking in the

literature.

Although the standard practice of tie-breaking according to h might be suf-

ficient in some domains, further levels of tie-breaking (explicit or implicit) are

required if multiple nodes have the same f as well as the same h values. To date,

the effect of such default tie-breaking has not been investigated in depth. For ex-

ample, although the survey of efficient A∗ implementation techniques by Burns

et al. did not explicitly mention the default tie-breaking (2012), their library code

uses lifo default tie-breaking (Burns, 2012). It first breaks ties according to h,

and then breaks remaining ties according to a lifo criterion (most recently gener-

ated nodes first), i.e., [f, h, lifo]. Although not documented, their choice of a lifo

2nd-level tie-breaking criterion appears to be a natural consequence of the fact

it can be trivially and efficiently implemented in their two-level bucket (vector)

implementation of OPEN. In contrast, the current implementation of the State-of-

the-Art A∗ based planner Fast Downward (Helmert, 2006), as well as the work

by Röger and Helmert (2010) uses a [f, h, fifo] tie-breaking strategy. Although we

could not find a published explanation, this choice is most likely due to their use

of alternating OPEN lists, in which case the fifo second-level criterion serves to
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provide a limited form of fairness.

3.2 Analysis of Standard Strategies

We first evaluated standard tie-breaking strategies for domain-independent cost-

optimal classical planning and analyze their performance differences. In our ex-

periments, all planners are based on Fast Downward, and all experiments are run

with a 5-minute, 4GB memory limit for the search binary (FD translation/pre-

processing times are not included in the 5-minute limit). All experiments were

conducted on Xeon E5410@2.33GHz CPUs. For the randomized configurations,

we took the average of 10 runs. We used two State-of-the-Art heuristic func-

tions LMcut (Helmert & Domshlak, 2009) and M&S (Helmert et al., 2014) as the

primary heuristic functions used for calculating f and h. For M&S, we used the

bisimulation-based shrink strategy, DFP merge strategy, and exact label reduction.

These basic experimental configurations are shared in all performance evaluation

experiments throughout this chapter.

We used 1104 instances from 35 standard IPC benchmark domains: airport

(50 instances), barman-opt11 (20), blocks (35), cybersec (19), depot (22), driver-

log (20), elevators-opt11 (20), floortile-opt11 (20), freecell (80), grid (5), gripper

(20), hanoi (30), logistics00 (28), miconic (150), mprime (35), mystery (30), no-

mystery-opt11 (20), openstacks-opt11 (20), parcprinter-opt11 (20), parking-opt11

(20), pathways (30), pegsol-opt11 (20), pipesworld-notankage(50), pipesworld-tank-

age (50), psr-small (50), rovers (40), scanalyzer-opt11 (20), sokoban-opt11 (20),

storage (30), tidybot-opt11 (20), tpp (30), transport-opt11 (20), visitall-opt11

(20), woodworking-opt11 (20), zenotravel (20).
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3.2.1 Is h-Based Tie-Breaking Necessary?

As noted in Section 3.1, the current standard practice is to use a tie-breaking

criterion which uses the h-value of the nodes. However, to our knowledge, the

need for h-based tie-breaking has not been previously empirically investigated.

In Table 3.2.1, we show the summary results for [f, fifo] and [f, lifo], the A∗

variants which rely on fifo or lifo default tie-breaking only, as well as the standard

[f, h, fifo] and [f, h, lifo] strategies. (Detailed results are in Table 9.1.1 and Table

9.1.2 in the Appendix.) [f, lifo], which simply breaks ties among nodes with the

same f -cost by expanding the most recently generated nodes first (Korf, 1985),

clearly dominates [f, fifo]. Interestingly, the performance of the [f, lifo] strategy is

comparable to [f, h, lifo] and [f, h, fifo]. This may be surprising, considering the

ubiquity of h-based tie-breaking in the search and planning communities.

This is explained by the fact that lifo behaves somewhat similarly to h-based

tie-breaking. lifo expands the most recently generated node n. For any child n′, if

the heuristic function is admissible and f(n′) = f(n), there are only 2 possibilities

: (1) g(n′) > g(n) and h(n′) < h(n), or (2) g(n′) = g(n) and h(n′) = h(n).

Thus, as lifo expands nodes in a “depth-first” manner, the nodes that continue to

be expanded in plateau (f) by lifo usually have non-increasing h-values, much

like in h-based tie-breaking which always searches toward the least h cost. Thus,

although the expansion order of [f, lifo] is not exactly the same as that of h-based

tie-breaking strategies, they perform similarly.
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Sorting Criteria IPC(1104) IPC(1104)

LMcut M&S

[f, fifo] 443 460

[f, lifo] 558 490

[f, ro] 448.9 ± 1.3 460.9 ± 1.6

[f, h, fifo] 558 491

[f, h, lifo] 565 496

[f, h, ro] 558.9 ± 2.1 489.4 ± 1.0

Table 3.2.1: Summary of coverage comparison (5min, 4GB, LMcut heuristics)

among the standard baseline tie-breaking algorithms (details in Table 9.1.1 and

Table 9.1.2, leftmost 2 columns).
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3.2.2 Do Default Strategies Make a Difference?

Next, we compared two commonly used tie-breaking strategies, [f, h, fifo], [f, h, lifo],

which first break ties according to h, and then apply fifo or lifo default tie-breaking,

respectively. Summary results for LMcut and M&S are shown in Table 3.2.1, and

the detailed results are in Table 9.1.1 and Table 9.1.2 (Chapter 9, Appendix). Dif-

ferences in coverage are observed in several domains and [f, h, lifo] outperforms

[f, h, fifo] overall. Thus, the choice of default criterion seems to have a modest but

measurable impact when the first tie-breaking criterion is h.

We also conducted experiments using ro (Random Order) default tie-breaking

because it is another trivial way to break ties. We ran the experiments 10 times

with the different random seeds, then took the average and the standard deviation

of the coverages. The performance of ro is comparable to fifo default tie-breaking

regardless of the primary heuristics, or the presence of h-based tie-breaking.

3.2.3 Plateaus and Tie-Breaking

Figure 3.2.1 provides a more fine-grained analysis by comparing the number of

node evaluations (calls to the expensive LMcut heuristic function) on each in-

stance by the [f, h, lifo] and [f, h, fifo] strategies. The difference in the number of

nodes evaluated can sometimes be larger than a factor of 10 (Openstacks, Cybersec

domains). As noted in Section 3.1, the choice among default criteria has not been

considered very important in the literature, as evidenced by the lack of explicit

descriptions of the default tie-breaking criterion in recent papers. Our results sug-

gest that 2nd-level default tie-breaking can have a surprisingly large effect on the

search performance.
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Figure 3.2.1: The number of LMcut evaluations on various IPC planning bench-

mark domains, with standard fifo vs lifo default tie-breaking, both with h tie-

breaking. lifo evaluates less than 1/10 of the nodes evaluated by fifo in Cybersec

and Openstacks.

21



The effect of the choice of 2nd-level default tie-breaking criteria (lifo vs. fifo)

when the 1st-level tie-breaking criterion is h tie-breaking is limited to each search

plateau plateau (f, h), the set of nodes which share the same f value and h value.

Also, in admissible search, two A∗ implementations using different default tie-

breaking criteria both expand the same set of nodes in the region where f < f ∗.

Furthermore, nodes with h > 0 can not be goal nodes when h is admissible.

Therefore, the effect of default tie-breaking becomes most prominent in the final

plateau, plateau (f ∗, 0).

Counterintuitively, the plateau (f ∗, 0) region can be large enough to cause a

significant performance difference – in fact, this final plateau can even account

for most of the search effort required by A∗. Figure 3.2.2 plots the size of the

final plateau on 1104 IPC benchmark instances. The y-axis represents the number

of nodes in the final plateau (plateau (f ∗, 0)), and the x-axis represents the total

number of nodes expanded so far. This figure suggests that in some domains such

as Openstacks and Cybersec, the planner spends most of the runtime searching

plateau (f ∗, 0) for a solution, even with the help of h tie-breaking.

A natural question is: What makes these two domains (Openstacks and Cyber-

sec) different from all other domains which have much smaller final plateaus?

3.3 Domains with 0-Cost Actions

Openstacks is a cost minimization domain introduced in IPC-2006, where the ob-

jective is to minimize the number of stacks used. One characteristic of Openstacks

is the presence of many actions which have zero cost because they do not increase

the number of stacks. These 0-cost actions create the problem depicted in Fig-
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Figure 3.2.2: The number of nodes in plateau (f ∗, 0) (y-axis), which form the

final plateau for sorting strategy [f, h], compared to the total number of nodes in

the search space with f ≤ f ∗ (x-axis) on 1104 IPC benchmark problems. Note

that Openstacks and Cybersec instances are near the y = x line. These statistics

are obtained by running a modified Fast Downward with LMcut which continues

searching after the solution is found until all nodes with cost f = f ∗ are expanded.
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f < f*
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applying an action does not 
increase the solution cost

(some nodes are expanded)
(all nodes are expanded)

(entire search space, A* never expands outside ellipse)

Figure 3.3.1: Search space of A∗ and its contour according to admissible heuristic

h. (Right) In domains with only positive-cost actions, h-based tie-breaking pro-

vides meaningful guidance. (Left) In domains with 0-cost actions, applying an

action may not increase the cost of the path and the region with h = 0 could be

quite large. With the same mechanism, other heuristic plateaus (e.g. h = 1) also

become larger. Thus, h-based tie-breaking fails to provide meaningful guidance

in this space.

ure 3.3.1. Since 0-cost actions (edges) allow “free” transitions between many

neighboring nodes, the number of neighboring nodes sharing the same h also be-

comes quite large. This creates huge plateaus that share the same h-value, and the

standard h-based tie-breaking criterion can not provide informative guidance for

search within a plateau. Since the g-values of the nodes in these plateaus are all

identical, these plateaus are an instance of g-value plateaus, which are known to

increase the difficulty of search (Benton, Talamadupula, Eyerich, Mattmüller, &

Kambhampati, 2010).

Although most traditional benchmark problems in the planning community

and the combinatorial search community do not have 0-cost actions, we argue
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that such domains are of an important class of models for cost-minimization prob-

lems, i.e., assigning 0-costs makes sense from a practical, modeling perspective.

For example, consider the driverlog domain, where the task is to move packages

between locations using trucks. The IPC version of this domain assigns unit costs

to all actions. Thus, cost-optimal planning on this domain seeks to minimize the

number of steps in the plan. However, another natural objective function would be

the one which minimizes the amount of fuel spent by driving the trucks, assigning

cost 0 to all actions except drive-truck – we believe that for cost-optimal planning,

this is at least as natural as the current IPC model of driverlog in which all actions

are of unit cost.

Similarly, for many practical applications, a natural objective is to optimize

the usage of one key consumable resource, e.g., fuel/energy minimization. In

fact, two of the IPC domains, Openstacks and Cybersec, which were shown to be

difficult for standard tie-breaking methods in the previous section, both contain

many 0-cost actions and are based on industrial applications: Openstacks mod-

els production planning (Fink & Voss, 1999) and Cybersec models Behavioral

Adversary Modeling System (Boddy, Gohde, Haigh, & Harp, 2005, minimizing

decryption, data transfer, etc.).

Therefore we modified various standard domains into cost minimization do-

mains with many 0-cost actions. Specifically, each of our “Zerocost domains” is a

standard domain which has been modified so that all action schema are assigned

cost 0 except for a few (usually one) action schema which consumes some key

resource. The suffixes in the names of these domains indicate the actions with

non-zero costs, e.g., logistics-fuel is a modified logistics domain where only ac-

tions which consume fuel have non-zero cost. Most of the transportation-type do-
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mains are modified to optimize energy usage (logistics-fuel, elevator-up etc.), and

assembly-type domains are modified to minimize resource usage (woodworking-

cut minimizes wood usage, etc.). When no action makes sense from the practical

point of view, we chose an action schema arbitrarily (e.g. mprime-succumb). We

did not include domains which have only a single action schema, or which already

had many 0-cost actions.

The new set of 28 Zerocost domains are: airport-fuel (20 instances), blocks-

stack (20), depot-fuel (22), driverlog-fuel (20), elevators-up (20), floortile-ink (20),

freecell-move (20), grid-fuel (5), gripper-move (20), hiking-fuel (20), logistics00-fuel

(28), miconic-up (30), mprime-succumb (35), mystery-feast (20), nomystery-fuel

(20), parking-movecc (20), pathways-fuel (30), pipesnt-pushstart (20), pipesworld-

pushend (20), psr-small-open (20), rovers-fuel (40), scanalyzer-analyze (20), soko-

ban-pushgoal (20), storage-lift (20), tidybot-motion (20), tpp-fuel (30), woodworking-

cut (20), zenotravel-fuel (20).

While the action costs in the PDDL domain definitions are modified, we did

not modify the PDDL problem definitions. Although some domains (specifically,

blocks, freecell, pipesworld-notankage, miconic) have fewer instances than the orig-

inal domain does, their problem definitions are the evenly sampled subset of the

original set of instances. For example, the original miconic domain has 150 in-

stances, while our version has 30 instances. These 30 instances are selected evenly

from the original set of instances, by picking instances p05, p10, ... p150. The

reason for reducing the number of instances is to avoid the problem of the overall

coverage sums being skewed by the domains with a larger number of instances.

Thus, we did not modify the problem definitions at all, and only modified the

action costs in the domain definitions.
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3.3.1 Difference in Problem Characteristics between IPC and

Zerocost Domains

Domains containing 0-cost operators are known to be difficult for traditional plan-

ners (Thayer & Ruml, 2009; Cushing, Benton, & Kambhampati, 2010; Wilt &

Ruml, 2011; Thayer & Ruml, 2011; Richter, Westphal, & Helmert, 2011). Cush-

ing et al. (2010) and Wilt and Ruml (2011) noted that a large ratio between maxi-

mum and minimum operator costs can pose a challenge to existing planners. They

both addressed this using plan-length heuristics instead of plan-cost heuristics,

which sacrifice the optimality of the solution. In contrast, we investigate meth-

ods for handling 0-cost operators within the framework of admissible search. In

Section 5.3, we show how plan length heuristics can be incorporated into admissi-

ble search. In a parameterized complexity analysis of planning domains, Aghighi

and Bäckström (2015, 2016) showed that domains with 0-cost operators comprise

a complexity class that is harder (para-NP-hard) than the domains with strictly

positive-cost operators (W[2] complete), indicating the inherent difficulty of opti-

mally solving planning problems with 0-cost actions.

Therefore we experimentally evaluate whether our new set of Zerocost bench-

marks based on standard IPC domains pose a new challenge for standard tie-

breaking strategies. Results using the LMcut heuristic are shown in Table 3.3.1.

In each table, the left-hand side shows the results in the original domains and the

right-hand side shows the results for the corresponding Zerocost domains.

We observed a significant performance difference between the original IPC

domains and the Zerocost domains. The coverage in Zerocost domains was lower

in 11 domains while more instances were solved in 5 domains. The coverage

increase in some domains is not surprising, considering that 0-cost actions also
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Figure 3.3.2: The number of nodes in plateau (f ∗, 0) (y-axis), which form the

final plateau under h-based tie-breaking, compared to the total number of nodes

in the search space (x-axis) with f ≤ f ∗ on 620 instances in our Zerocost domains.

The final plateaus tends to account for a larger portion of the entire search space

compared to Figure 3.2.2. These statistics are obtained by running a modified Fast

Downward with LMcut which continues searching after the solution is found until

expanding all nodes with cost f = f ∗.

make some suboptimal paths into cost-optimal paths. However, the coverage de-

creased overall, confirming the difficulty of these domains.

Figure 3.3.2 plots the size of the final plateau of the Zerocost instances, with

LMcut heuristics and h tie-breaking. In this plot, each point shows the total num-

ber of nodes in plateau (f ∗, 0) vs the total number of nodes with f ≤ f ∗. Com-

pared to Figure 3.2.2, most Zerocost instances have larger plateaus even with the

help of h tie-breaking. Thus, in these cost-minimization problems, the search

strategy within plateaus, i.e., tie-breaking, becomes even more critical in deter-

mining search performance.
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solved solved (difference)
depot(22) 6 6 depot-fuel(22)
driverlog(20) 13 8 (-5) driverlog-fuel(20)
elevators-opt11(20) 15 7 (-8) elevators-up(20)
floortile-opt11(20) 6 8 (+2) floortile-ink(20)
grid(5) 1 1 grid-fuel(5)
gripper(20) 6 7 (+1) gripper-move(20)
logistics00(28) 20 16 (-4) logistics00-fuel(28)
mprime(35) 21 15 (-6) mprime-succumb(35)
nomystery-opt11(20) 14 10 (-4) nomystery-fuel(20)
parking-opt11(20) 1 0 (-1) parking-movecc(20)
pathways(30) 5 5 pathways-fuel(30)
rovers(40) 7 8 (+1) rovers-fuel(40)
scanalyzer-opt11(20) 10 9 (-1) scanalyzer-analyze(20)
sokoban-opt11(20) 19 18 (-1) sokoban-pushgoal(20)
storage(30) 14 4 (-10) storage-lift(20)
tidybot-opt11(20) 12 16 (+4) tidybot-motion(20)
tpp(30) 6 8 (+2) tpp-fuel(30)
woodworking-opt11(20) 10 5 (-5) woodworking-cut(20)
zenotravel(20) 11 7 (-4) zenotravel-fuel(20)

Table 3.3.1: Assessment of the relative difficulty of Zerocost domains vs. their
corresponding standard domains, for the standard [f, h, fifo] strategy. Coverage
comparison between the original IPC domains and the modified Zerocost domains
are shown, using the same planner configuration and experimental setting (5min,
4GB, LMcut heuristics). This table does not include domains where the total
number of instances in the Zerocost domain and the original domain differ.
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Note that the difficulty posed by these domains sometimes cannot be tackled

by improving the heuristic estimates, or reducing the underestimation of an ad-

missible heuristic function. Due to the existence of 0-cost edges, some non-goal

neighbors of a goal node have h∗ = 0. For those nodes, there is clearly no room

for improving the heuristic estimate; Any positive value causes the heuristics to

be inadmissible.

One approach to improving the search performance in such plateaus produced

by 0-cost edges is to perform an efficient knowledge-free search within plateau; It

may reuse the effort that is already spent to guide the search but without requiring

additional effort to compute multiple heuristics. In the next section, we propose

and evaluate an implementation of such a technique. It turns out that introducing

a notion of depth within a plateau can have a significant impact on the perfor-

mance of knowledge-free search, and can also provide a good understanding of

the behavior of standard tie-breaking strategies.
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Chapter 4

Tiebreaking by Depth

Diversification for A∗ Search

As shown in the previous section, the search spaces of Zerocost domains have

many 0-cost edges, resulting in a large final plateau (plateau (f ∗, 0)). In a final

plateau, all nodes have h = 0, so h-based tie-breaking cannot provide useful

guidance toward a goal. Thus, we need a new metric for discriminating among

nodes in the plateau so that the search algorithm can make progress on the plateau.

We define the depth of a node as an integer representing the distance (number

of steps) from the entrance of the plateau. An entrance of the plateau is the first

node which encountered the plateau along the path from the initial node. These

notions are depicted in Figure 4.0.1 (subfigure 1).

The depth d(n) of a node n is 0 when n and the parent node m are in the

different plateaus, and d(n) = d(m) + 1 when they are on the same plateau. We

omit (n) in d(n) unless necessary, similarly to g and h for g(n) and h(n) (Chapter

2). As defined in Chapter 2, if two nodes are on the same plateau, they share
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Figure 4.0.1: (Subfigure 1) The nodes in a plateau are divided into several layers,

and each layer has a corresponding depth. Since all nodes have f = f ∗, depth does

not affect optimality, so all goals in the final plateau are cost-optimal, regardless of

whether they are in shallow/deep regions. (Subfigure 2) lifo tie-breaking strategy

results in depth-first behavior in a plateau, which could miss solutions if they are

concentrated near the entrance. (Subfigure 3) fifo tie-breaking strategy results in

breadth-first behavior in a plateau, which could fail to reach solutions in deeper

layers within the time limit. (Subfigure 4) Depth-based diversification allows A∗

to search the plateau space in a less biased manner. This balances exploration and

exploitation, avoiding the problems with both lifo (depth-first) and fifo (breadth-

first) behavior.
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the same key values for the sorting strategy. For example, when the strategy is

[f, h, ∗], it means plateau (f(n), h(n)) = plateau (f(m), h(m)), therefore f(n) =

f(m) ∧ h(n) = h(m).

The traditional lifo and fifo tie-breaking strategies search each plateau in the

decreasing and the increasing order of the depth, respectively. Assume we are

using [f, h, ∗] sorting strategy. The lifo strategy always selects the most recently

generated node within plateau (f, h), and the behavior in the plateau is equivalent

to depth-first search. Thus, lifo always selects a node in the largest depth, as

depicted in Figure 4.0.1 (subfigure 2). Similarly, the behavior of fifo strategy in a

plateau is equivalent to breadth-first search. Thus fifo always selects the nodes with

the least depth (subfigure 3). Note that [f, h, lifo] is equivalent to [f, h,−d, lifo] and

[f, h, fifo] is equivalent to [f, h, d, fifo].

The problem with these traditional strategies is that we have no knowledge

regarding whether the goals are located close to or far from the entrance. Recall

that since f = f ∗, all goal nodes in the final plateau are optimal with respect to

solution cost regardless of the depth. However, until we find a solution, we do not

know how the goals are distributed among various depths. In some problem in-

stances the goals can be concentrated around the entrance, while in other problem

instances the goals can be concentrated at some large depth.

In the former case, fifo should perform well because its breadth-first behav-

ior naturally focuses the search around the entrance, favoring the smaller depths.

However, in the latter case, exhaustively searching the shallower depths can result

in not finding any solutions within the time limit because fifo may never reach the

depth where the goals exist. On the other hand, lifo behaves in a depth-fist manner,

so it may reach solutions at deeper depths quickly, but risks missing solutions at
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shallower depths. Thus, both fifo and lifo tie-breaking are prone to failures due to

pathological cases.

4.1 Depth-Based Tie-Breaking for A*

In order to avoid focusing the search at the wrong depths (too shallow/deep), the

safest policy seems to be to simply diversify the depths which are being searched,

in order to avoid any depth-based biases which could lead to pathological behav-

ior. In our proposed depth diversification strategy, the nodes are inserted into

buckets associated with depths, and upon expansion, search effort is distributed

in a more balanced manner among various depths (Section 4.1.2 defines “more

balanced” more precisely). Nodes are not “sorted” according to increasing or de-

creasing order of depth – instead, we try to “diversify” the node expansion within

the plateau. We denote this depth diversification criterion as 〈d〉. For example,

[f, h, 〈d〉] first breaks ties according to h values, then uses the 〈d〉 criterion to

break ties in plateau (f, h).

In order to diversify the expansion among depths, we simply iterate over the

depth buckets (Algorithm 2). This iteration is managed by a Depth-Diversified

Node Selector instance associated with each plateau (e.g. each of plateau (1, 0),

plateau (2, 0), plateau (2, 1) . . .). In order to select a single node from the OPEN

list for expansion, we first select the plateau with the smallest key value, such as

plateau (f = 5, h = 1), as usual. This plateau is now represented by a selector

instance, and we call pop(selector) method on this instance in order to obtain a

node. Each instance holds an index dc, the current depth (bucket index) selected

in the last expansion, initialized to 0. On each call to pop(selector), the counter
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Algorithm 2 Class Definition of Depth-Diversified Node Selector
Initialization of Instance Variables:

Counter dc ← 0, Buckets B = {B0, B1, . . .}, ∀d;Bd = ∅ (instantiated on-

demand)

Method push(node n, selector):

Instantiate Bd(n) if it does not exist

push(n,Bd(n))

Method pop(selector):

1: loop

2: dc ← dc − 1

3: dc ← |B| − 1 if dc < 0

4: if Bdc 6= ∅ then

5: return pop(Bdc) — Note: Actual “pop” method is subject to default

tiebreaking.
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is decremented (dc ← dc − 1) and a node is further popped from dc-th bucket,

which can be a lifo, fifo or ro queue. When dc reaches below 0, then dc is reset to

the current largest depth in the plateau.

In an earlier, conference paper, we used a non-deterministic, randomized im-

plementation of this idea (Asai & Fukunaga, 2016), which does not have this

counter and pops a node from a randomly selected bucket (Brandom()), but we use

a deterministic implementation here because it facilitates the theoretical analysis

below in Section 4.1.2.

Depth-based diversification is significantly different from the ro strategy which

simply selects a random node from the OPEN list. The uniform sampling behavior

of ro behaves very similar to fifo, and is insufficient to achieve the level of diversity

provided by our depth diversification tie-breaking, which is also already evidenced

by the performance similarity between fifo and ro-based tiebreaking strategies (Ta-

ble 3.2.1). This is because at any given point in the search, more nodes will tend to

have shallower depths than deeper depths, and a uniform, random selection will,

therefore, be biased to select a node with shallow depths. For example, imagine

we have 100 nodes at depth d = 1 and a single node at depth d = 2. Since ro

does not consider the depth, the chance of expanding d = 2 is only 1/101. This

probability does not improve until a sufficient number of expansions decreases the

number of nodes in d = 1. In contrast, our depth diversification policy expands

nodes at d = 1 and d = 2 with equal probability.

Depth-based tie-breaking does not affect the order of node expansion when

there are no remaining ties after the higher priority tie-breaking criteria, in which

case all nodes have depth 0. More formally:

Lemma 1. If all edge costs are positive, then d(n) = 0 for every node n expanded
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by A∗ [f, h, 〈d〉, ∗].

Proof. Let n be a child of a node m. Regardless whether the parent m of the node

n is newly assigned, updated, or the old parent is kept in line 10 of Algorithm 1,

the invariant g(n) = g(m) + cost(m,n) > g(m) holds because cost(m,n) > 0,

and therefore f(n)− h(n) > f(m)− h(m). This means that either f(n) 6= f(m)

or h(n) 6= h(m), so d(n) = 0. �

Theorem 1. If all edge costs are positive, then A∗ [f, h, 〈d〉, ∗] expands nodes in

the same order as A∗ [f, h, ∗] (where “∗” is any criterion).

Proof. By Lemma 1, all nodes expanded by A∗ [f, h, 〈d〉, ∗] have depth 0, and all

nodes are in the same depth bucket in Algorithm 2, so A∗ [f, h, 〈d〉, ∗] expands

nodes in the same order as A∗ [f, h, ∗] regardless of the criterion ∗. �

4.1.1 Tie-Breaking within Depth Buckets

Depth diversification cannot be a default tie-breaking by itself. Consider a tie-

breaking strategy such as [f, h, 〈d〉] which applies a depth-diversification tie-breaking.

After the 〈d〉 criterion is applied, there may be multiple nodes within the same

depth bucket, so a default tie-breaking criterion is still necessary to break ties

among them. Thus, we should, for example, apply one of lifo, fifo or ro (random

order) criteria after the 〈d〉 criterion.

There are two concerns about this default tie-breaking criteria. First, the de-

fault tie-breaking behavior is still susceptible to accidental biases, e.g., names /

orders of action schema in the PDDL domain definition (Vallati, Hutter, Chrpa, &

McCluskey, 2015). Second, in addition to accidental biases, there may be some

nontrivial biases that require sophisticated algorithms to be removed.

37



Domain Configuration and Tiebreaking

Recently, Vallati et al. showed that the performances of satisficing planners were

significantly affected by PDDL domain configurations, which include the name /

ordering of actions, propositions, and objects in the PDDL input file (2015). They

conjectured that performance variations caused by different domain configura-

tions are due to the impact that the naming/ordering of objects has on tiebreaking.

In Fast Downward, action names can affect search performance, because FD sorts

the action schemas according to the dictionary order of the schema names, which

affects the order of applicable ground actions, which in turn affects the node in-

sertion order into OPEN. We discuss this in Section 4.2.2.

Other Non-trivial Biases

In addition to accidental biases, there may be other nontrivial biases such as some

form of symmetry among states which can be removed using some tie-breaking

criterion X . Such a criterion can be applied after the depth criterion but before

the default criterion, resulting in a sorting strategy [f, h, 〈d〉, X, fifo]. Candidates

for X may be related to pruning techniques such as Symmetry Breaking (Fox

& Long, 1998; Pochter, Zohar, & Rosenschein, 2011; Domshlak, Katz, & Sh-

leyfman, 2013) or Partial Order Reduction (Hall, Cohen, Burkett, & Klein, 2013;

Wehrle, Helmert, Alkhazraji, & Mattmüller, 2013). While these are usually de-

scribed as “pruning techniques”, they can also be interpreted as strong bias re-

moval mechanisms because they seek to prune redundant nodes, and redundancy

causes a biased search effort. For example, imagine we have a set of nodes

S = {a1, a2, a3, a4, b, c, d} where A = {a1, a2, a3, a4} are “redundant” accord-

ing to some measure (e.g. by Symmetry, Partial-Order). If a search algorithm
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expands S by random selection, it favors the group A by giving 4 times larger

chance of expansion than each of b, c or d. Despite this similarity, search diver-

sification is weaker than pruning methods because diversification can only delay

the expansion of nodes sharing the similar attributes (such as depth), not prune

the nodes.

4.1.2 Theoretical Characteristics of the Depth Distribution

We give further insight into the search behavior of our implementation of depth-

based diversification. In depth-based diversification, although it is possible to se-

lect from a randomly selected depth bucket, as was done in an earlier conference

paper (Asai & Fukunaga, 2016), the implementation used in this thesis performs a

deterministic, round-robin sampling from the available depth buckets as described

in Algorithm 2. We are particularly interested in how the nodes selected for ex-

pansion are distributed among the various depths in a plateau region. Assume

that a search algorithm is searching a plateau region P . The precise definition of

P depends on the higher-level sorting strategy e.g. [f, h, 〈d〉] or [f, 〈d〉]. Using

a simplified model where this P forms a forest (a set of disjoint trees), we can

analyze the number of expansions in a particular depth can be represented by a

simple formula.

In the discussion below, we first assume that P forms a forest of a fixed branch-

ing factor w ≥ 2 (forest assumption), rather than a graph with an indefinite num-

ber of successor nodes. In the later experiments, we show this is a fairly accurate

model. We also assume that no depth bucket is exhausted due to the expansion

(no-exhaustion assumption). This implies that there are a sufficiently large num-

ber of nodes in depth d = 0 so that depth 0 is not exhausted, which may cause fifo
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default tiebreaking to fail due to the heavy bias to the shallow depth. We provide

a condition for this assumption to hold within this section. An example of running

depth diversification with w = 3 is depicted in Figure 4.1.2.

D=0 D=1

w=3

D=2

Many initial nodes in d=0 due to
 no-exhaustion assumption

(causing FIFO to fail)

Iteration 1 Iteration 2

Two nodes

are expanded

Figure 4.1.1: Depth Diversification applied to a plateau with forest assumption

and no-exhaustion assumption.

Let D ≥ 0 be the current largest depth of the nodes found in P so far. This is

equal to |B|−1 in Algorithm 2, the size of the buckets in Depth-Diversified Node

Selector instance. An expansion of a node at depth D results in w more nodes

with depth D + 1 on the same plateau P . These children are all newly generated

because by the forest assumption, each child has a single incoming edge. Since the

expansion is diversified by a sequence of iterations from the current largest depth

to 0, when the current largest depth of the plateau is D, the number of iteration

executed so far is also D because at the beginning of each iteration the largest

depth is increased by 1. Therefore, at the end of the D’th iteration, each depth d

has been expanded exactly D − d times, with D(D − 1) expansions in total. In
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Figure 4.1.2, after iteration 2, depth d = 0 is expanded twice and depth d = 1 is

expanded once.

It also means that a sufficient condition for no-exhaustion assumption to hold

until the end of the D’th iteration is that the initial number of nodes in depth 0

is at least D. If there are at least D nodes in depth 0, depth 0 is trivially never

exhausted until the D’th iteration. Also, no depth buckets in depth d > 0 will

be exhausted because each bucket has w(D − d + 1) generated nodes in total

(i.e. OPEN+CLOSED) while the expansion has happened only D − d times. The

number of nodes in each bucket (w(D − d + 1)) follows from the fact that depth

d− 1 is expanded D − (d− 1) times in the preceding D iterations. Since w ≥ 2,

w(D − d+ 1) ≥ 2(D − d) + 2 > D − d.

All nodes in
d < D-1 are
expanded

Some nodes
in depth D-1

are expanded

No node in
depth D are
expanded

d=Dd=D-1 d=Dmaxd=k

FIFO
LIFO

A single node is
expanded per depth

Exponential
number of 
expansion

Figure 4.1.2: FIFO and LIFO applied to a plateau with forest assumption and

no-exhaustion assumption.
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If there are no solutions, every depth-selection criterion, including least depth

selection (fifo) or largest depth selection (lifo), expands the same set of nodes and

results in the same distribution as depth diversification. For example, if the num-

ber of nodes in depth 0 is D, each d is expanded Dwd times. However, their

online characteristics are different (Figure 4.1.2). Under our assumptions, the

D − d distribution of depth diversification is an invariant which holds at any

point in the search until the solution is found. In contrast, in fifo, all nodes with

d < D − 1 are expanded, depth d = D − 1 can take an arbitrary number of ex-

pansions e ∈ [0, DwD−1] and d ≥ D are not expanded at all. In lifo, for some

k ∈ [0, Dmax] (assuming the forest has a finite maximum depth Dmax), there can be

a situation where all depths d ∈ [0, k] get only 1 expansion each while all nodes

in depths d ∈ [k + 1, Dmax] are expanded. In this case, the number of expansions

in d ∈ [k,Dmax] is exponential to Dmax − k (
∑i=Dmax

i=k wi−k = 1−wDmax−k+1

1−w ) while

the number of expansions in d ∈ [0, k − 1] is linear to k (i.e. k − 1). Such an

imbalance during the search causes the pathological behavior mentioned above.

4.2 Evaluating Depth-Based Tie-Breaking

We compared the performance of standard tie-breaking methods to depth-based

tie-breaking methods. These all use h as the second-level sorting criterion and

either fifo, lifo or ro (random order) default tie-breaking criterion. The only differ-

ence is the presence of the third, depth-diversification criterion.

Experiments are conducted on 1104 standard IPC benchmark instances from

35 domains and 620 Zerocost instances from 28 domains (see Section 3.2 and

Section 3.3 for full lists of these domains). The basic experimental settings are
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the same as the previous ones: Each experiment uses the Fast Downward planner

using A∗ search and either the LMcut heuristic or M&S heuristic. Each exper-

iment is run for 5 minutes excluding SAS translation time, with 4GB memory

constraints.

We first show the summary results of these experiments (Table 4.2.1). Over-

all, depth-based tie-breaking tends to show larger coverages than the standard tie-

breaking strategies. Interestingly, when the depth diversity criterion 〈d〉 is used,

the performance relationship between lifo and fifo seems to flip: fifo tends to per-

form better than lifo in Zerocost domains for both LMcut and M&S heuristics

(299 vs 279 for LMcut, 317 vs 303 for M&S). Also, ro (random order) outper-

forms both fifo and lifo. In the following, we describe and discuss each experiment.

Detailed data tables are in the Appendix (Section 9).

Table 9.2.1 and Table 9.2.2 show the number of Zerocost instances (out of

620) solved by LMcut and M&S heuristics. In these Zerocost domains, our pro-

posed method outperforms the traditional tie-breaking methods in both heuristics.

Significant improvements were observed in 10 domains when using LMcut, and 7

domains when using M&S.

Table 9.2.3 shows the number standard IPC benchmark instances (out of 1104)

solved by the configuration using LMcut heuristics. Depth-based tie-breaking

(〈d〉) achieves impressive results on Openstacks (fifo : 2 → 8, lifo : 3 → 12, ro :

3.9 → 10) and Cybersec (fifo : 11 → 18, ro : 11.7 → 18) because these domains

contain many instances of 0-cost edges (See Figure 3.2.2). Most other instances

are unaffected by depth-based tie-breaking. Thus, depth-based tie-breaking yields

better performance in the domains with 0-cost actions, without sacrificing perfor-

mance in other domains.
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Sorting Criteria Zerocost(620) Zerocost(620) IPC(1104) IPC(1104)

LMcut M&S LMcut M&S

Standard

[f, h, fifo] 256 280 558 491

[f, h, lifo] 279 301 565 496

[f, h, ro] 261.9 ± 1.4 287.7 ± 3.2 558.9 ± 2.1 489.4 ± 1.0

Depth-based

[f, h, 〈d〉, fifo] 284 302 571 487

[f, h, 〈d〉, lifo] 264 288 575 487

[f, h, 〈d〉, ro] 288.1 ± 1.6 308.1 ± 2.1 571.4 ± 1.7 485.6 ± 1.5

Table 4.2.1: Main summary results: Coverage comparison (number of instances

solved in 5min, 4GB, LMcut/M&S heuristics) between standard tie-breaking and

depth-based tie-breaking (〈d〉). When LMcut is used, 〈d〉 outperforms standard

strategies both in IPC instances (1104 problems total) and Zerocost instances (620

problems total). When M&S is used, 〈d〉 outperforms standard strategies in Zero-

cost instances. Bold shows the best configuration.

In contrast, Table 9.2.4 shows that depth-based tie-breaking degrades the per-

formance of the configuration using M&S when applied to 1104 standard IPC

benchmark instances. This result can be explained as follows. First, similar

to the case of LMcut, Openstacks coverage improved for fifo (15 → 19) and ro

(15.4 → 19), which is expected according to our analysis of Zerocost domains.

Although there was no improvement on Cybersec, this is because the coverage

of Cybersec is 0 in all M&S configurations, regardless of tie-breaking. Thus, the
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positive contribution of depth diversification to the overall score was limited for

M&S compared to LMcut.

Second, with M&S, performance degraded across a wide range of domains

due to the low-level overhead of depth-based tie-breaking (i.e., updates to the

depth-based bucket data structures). As shown in Figure 4.2.1, when depth-based

tie-breaking was used, the node evaluations rate significantly decreased with the

M&S heuristic, while node evaluation rate decreased much less for LMcut. This

is because the M&S heuristic is implemented as an efficient table lookup, and

M&S is able to evaluate an order of magnitude larger number of nodes compared

to LMcut. Thus, even the relatively small overhead incurred by depth bucket

updates decreases the node evaluation rate enough to noticeably degrade M&S

performance. Figure 4.2.2 shows a cumulative coverage plot which shows the

number of node evaluations required to solve IPC instances. According to Fig-

ure 4.2.2, the number of evaluations required to solve IPC instances for [f, h, ∗]

and [f, h, 〈d〉, ∗] were almost identical, which is expected because IPC instances

mostly consist of instances with only positive-cost actions which are unaffected by

depth-based tie-breaking (as predicted by our analysis in Section 4.1). This shows

that the coverage degradation on IPC instances when using depth diversification

is caused by the low-level overhead.

Finally, the per-domain results for Zerocost domains (Tables 9.2.1 - 9.2.2)

show that 〈d〉 can cause both improvement and degradation (despite the total cov-

erage improvement). This is natural considering that depth-diversification is de-

signed to be a conservative, domain-independent strategy which is designed to

avoid worst-case pathological behaviors. Overall, 〈d〉 tends to perform well, but

the best-performing strategy on particular domain varies — for example, fifo is the

45



 0

 100

 200

 300

 400

 500

 600

 700

 800

-1  0  1  2  3  4  5

co
un

t

x40000 node/sec

Node evaluation per seconds (node/sec) 
 with h=LMcut

[f,h,<d>,fifo]
[f,h,fifo]

 0

 50

 100

 150

 200

 250

-1  0  1  2  3  4  5  6  7  8  9

co
un

t

x40000 node/sec

Node evaluation per seconds (node/sec) 
 with h=Merge and Shrink

[f,h,<d>,fifo]
[f,h,fifo]

Figure 4.2.1: Histogram comparing the node evaluation ratio (node/sec) between
standard tie-breaking ([f, h, fifo]) and depth-based tie-breaking ([f, h, 〈d〉, fifo]) on
LMcut and M&S heuristics in IPC and Zerocost instances. x-axis shows the num-
ber of nodes expanded per seconds, and y-axis shows the number of problem in-
stances. (See Appendix Figure 9.3.1 for the data on [f, h, lifo] vs. [f, h, 〈d〉, lifo].)
On M&S, compared to LMcut, node evaluation rate more often becomes slower
when depth is enabled. This is because the node evaluation of M&S is an or-
der of magnitude faster than LMcut, and the overhead of managing depth-based
tie-breaking queue becomes significant.
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axis), on IPC instances solved by both [f, h, ∗] and [f, h, 〈d〉, ∗] where h = M&S.

Left: fifo, Right: lifo.
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best in airport-fuel with LMcut, while lifo is the best in freecell-move with LMcut.

An adaptive tie-breaking which selects the tie-breaking strategy for a given do-

main is discussed in Section 5.5.4.

4.2.1 Search Behavior Within a Plateau

To understand the behavior of depth-based policies, we plotted histograms of the

depths of search nodes evaluated by several tie-breaking strategies in the final

plateau plateau (f ∗, 0) until the solution is found. We plotted a depth-based strat-

egy [f, h, 〈d〉, fifo], as well as the standard strategies [f, h, fifo], [f, h, lifo] and a

single run of randomized strategy [f, h, ro].

In order to obtain the data for the strategies which do not use depth-based tie-

breaking ([f, h, fifo], [f, h, lifo], [f, h, ro]), we added some instrumentation to these

strategies so that, the depth of each of the expanded nodes is computed, although

they do not affect the search behavior. Note that this instrumentation, which adds

some runtime overhead, was not used in the performance comparison experiments

above, and were only used for this experiment, which analyzes search behavior.

Figure 4.2.3 (as well as Figures 9.4.1 - 9.4.2 in the Appendix) show the results

on exemplary instances from various Zerocost domains. We do not show some

domains where we did not observe any depths greater than 3, in which case both

the depth metric and lifo/fifo/ro have a negligible impact on search performance.

We observed very similar results across a wide range of domains as shown in the

figures. This indicates that the depth metric accurately describes the behavior of

each tie-breaking criterion.

For example, consider the first figure, which plots depths searched on depot-

fuel, p07. The [f, h, lifo] plot shows that the depth-first behavior results in deeper
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search (≈ 103), while only a handful of nodes are expanded at intermediate depths

(usually once). Thus, lifo’s depth-first behavior is prone to missing the key branch

at intermediate depths that may lead to solutions earlier. On the other hand, the

breadth-first behavior of [f, h, fifo] often gets stuck spending an excessive amount

of time searching around the plateau entrance (expanding ≈ 103 nodes at depth

10).

Also, we noticed that the node distribution of the global randomization [f, h, ro]

is very similar to [f, h, fifo]. This shows that ro actually behaves very similar to

fifo, which is consistent with the previous performance comparisons in Section 3.2

and our observation regarding ro in Section 4.1. Thus, the overall behavior of ro

tends to be similar to fifo, and naive randomization does not solve the problem of

heavy bias for shallower depth nodes.

In contrast, [f, h, 〈d〉, fifo] is balancing the search at various depths. The yellow

curve representing [f, h, 〈d〉, fifo] tends to be almost flat at shallow depths while

gradually decreasing the number of nodes at larger depths. Moreover, its node

distribution almost accurately follows D − d, a theoretical model from Section

4.1.2 which applies the simplified assumption that the plateau is a forest with a

fixed branching factor. D denotes the largest depth of the unexpanded nodes in

the final plateau, which is 1 larger than the largest depth of the expanded nodes.

The discrepancy of the [f, h, 〈d〉, fifo] curve from the theoretical prediction

D − d can be caused by the following factors: First, the outdegree of each node

in the graph may not be uniform across the search space. Second, some depth

buckets could be exhausted, as depicted in the [f, h, fifo] line which shows that all

nodes in the shallower depths are expanded while the line is still below D − d.

Since [f, h, fifo] exhaustively expands the nodes in shallower depth, the number of
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expansion by [f, h, fifo] in the shallower depths constitutes an upper bound, which

may be below D − d.

Next, Figure 4.2.4 shows the same results on the standard IPC Openstacks

and Cybersec domains. The Openstacks results were similar to those of the Ze-

rocost domains. In Cybersec, we found that the performance improvement was

not due to the number of nodes in plateau (f ∗, 0), because all tie-breaking strate-

gies have generated only a small number of such nodes before the solution was

found. Instead, we observed a large difference in the depth distributions in non-

final plateaus plateau (f ∗, h) , h 6= 0 caused by the difference of tie-breaking.

Note that depth diversification is always applied regardless of f or h values. This

suggests that most children of the nodes in plateau (f ∗, h) have f value larger

than f ∗ or stays in plateau (f ∗, h), and the planner is struggling to find nodes with

better h. Due to the unbiased search, the depth-based strategy has a better chance

of improving h values, finding a node in plateau (f ∗, 0) more quickly. This shows

that considering depth can also help the search in non-final plateaus to find the

nodes in the next plateau. Similar phenomena were observed in several other in-

stances and domains, e.g., depot-fuel, driverlog-fuel, zenotravel-fuel, floortile-ink,

mprime-succumb, storage-lift (Figure 9.5.1 in Appendix).

Note that the small number of nodes in plateau (f ∗, 0) in this experiment does

not contradict the results in Figure 3.2.2, which shows that the number of such

nodes is quite large. This is because, while in Figure 3.2.2 the search continues

until expanding all nodes in the final plateau, in this experiment the search stops

when the first solution is found – Figure 3.2.2 was intended to show the size of

the entire final plateau, while Figures 4.2.3 - 4.2.4 were meant to show the actual

search behavior. If we continue the search until exhausting the final plateau, all
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tie-breaking strategies will expand the same set of nodes (in different orders),

so we would obtain plots similar to Figure 3.2.2 regardless of the tie-breaking

strategy.

4.2.2 The Effect of Domain Mangling

We tested the robustness of the standard [f, h, lifo] and [f, h, fifo] strategies, as well

as [f, h, 〈d〉, ro], with respect to biases introduced by domain configuration (action

naming) in the PDDL domain definition. We created 3 different sets of domains

in which the original names of action schema are mangled into random strings.

We ran each of the 3 strategies on each set of mangled domains, three times each

with different random seeds, resulting in 9 runs per strategy.

The results are shown in Table 4.2.2. We statistically analyzed the results for

[f, h, 〈d〉, ro] to see if any of the 4 sets of domains significantly outperformed the

others. Fligner-Killeen’s non-parametric test could not reject the homogeneity of

variances (p = 0.75 for IPC, p = 0.26 for Zerocost), so we then applied the non-

parametric Kruskal-Wallis test, which showed that the mean differences were not

significant (p = 0.28 for IPC, p = 0.44 for Zerocost), i.e., action name mangling

did not significantly affect performance.

Thus, in contrast to the results for satisficing search by (Vallati et al., 2015),

the effect of action ordering seems to be relatively weak for cost-optimal search

using A∗. This may be because compared to the satisficing, best-first search al-

gorithms evaluated in (Vallati et al., 2015), the behavior of admissible search is

more constrained.
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Figure 4.2.3: Number of nodes (y-axis) expanded per depth (x-axis) in the final

plateau with different tie-breaking strategies. Both axes are in logarithmic scale.
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Figure 4.2.4: Depth distribution of Openstacks and Cybersec instances in the final
(plateau (f ∗, 0)) and non-final plateaus (plateau (f ∗, h) , h 6= 0). In Cybersec p06,
although the number of nodes generated in plateau (f ∗, 0) is small, fifo and ro
behaved poorly on plateau (f ∗, 1), and also lifo behaved poorly on plateau (f ∗, 5).
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Domain [f, h, fifo] [f, h, lifo] [f, h, 〈d〉, ro]

(n: number of runs)

Mangled IPC 1 (1104) 556 564 571.7±0.9 (n = 3)

Mangled IPC 2 (1104) 557 568 571.3±0.9 (n = 3)

Mangled IPC 3 (1104) 557 568 573.0±1.6 (n = 3)

Original IPC (1104) 558 565 570.6±1.5 (n = 10)

Mangled Zerocost 1 (620) 256 277 288.7±3.7 (n = 3)

Mangled Zerocost 2 (620) 256 277 285.0±0.8 (n = 3)

Mangled Zerocost 3 (620) 256 279 286.7±0.9 (n = 3)

Original Zerocost (620) 256 279 287.2±2.4 (n = 10)

Table 4.2.2: Total coverages of [f, h, fifo], [f, h, lifo] and [f, h, 〈d〉, ro] (with three

seeds). Each row represents the original set of domains or its three action-mangled

variants. The effect of action ordering is small enough for [f, h, 〈d〉, ro] to con-

stantly perform better than the traditional tiebreaking methods. Note: We used

the randomized version of 〈d〉 in this experiment.
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Chapter 5

New Perspective: Optimal Search as

a Sequence of Satisficing Searches

So far, we have shown that by carefully analyzing search within an f -cost plateau,

we were able to develop an effective knowledge-free, depth-based tie-breaking

method which can significantly improve search performance on domains with 0-

cost actions (Table 4.2.1). We now propose a more general framework which

underscores the importance of tie-breaking in A∗. Cost-optimal search can be

seen as a series of satisficing searches on each plateau. In this framework, the

problem of tie-breaking can be reduced to a satisficing search.

While A∗ requires the first sorting criterion f to use an admissible heuristic

in order to find an optimal solution, there are no requirements on the second or

later sorting criterion. This means that the search within the same f plateau can

be an arbitrary satisficing search1 without any cost minimization requirement. For

1This refers to any algorithm which seeks a satisficing solution, as opposed to the “satisficing”

track setting in IPC which also seeks to minimize the plan cost with anytime algorithms

55



example, if we ignore the first sorting criterion in the standard admissible strategy

[f, h, fifo], we have [h, fifo], which is exactly the same configuration as a Greedy

Best First Search (GBFS) using fifo default tie-breaking. This means that within a

particular f -cost plateau, [f, h, fifo] is performing a satisficing GBFS. As another

example, the reason for the poor performance of [f, fifo] is clearly that it is running

[fifo], an uninformed satisficing breadth-first search in the plateau.

From this perspective, we can reinterpret A∗ as in Algorithm 3: A∗ expands

the nodes in best-first order of f value. When the heuristic function is admissible

and consistent, the f values of the nodes expanded by A∗ never decreases during

the search process. Thus, the entire process of A∗ can be considered as a series of

search episodes on each plateau (f). The search on each plateau terminates when

the plateau is proven to contain no goal nodes (UNSAT), or when a goal is found

(SAT). When the plateau is UNSAT, then the search continues to the plateau with

the next smallest f value. Figure 5.0.1 also illustrates this framework.

Algorithm 3 Reinterpretation of A∗ as iterations of satisficing search on plateaus
loop

Search plateau (f) for any goal state, using satisficing search algorithm

if plateau (f) contains some goal (Plateau is SAT) then

return solution

else

Increase f

This is somewhat similar to the standard approach to model-based planning

using SAT/IP/CP solvers (Kautz & Selman, 1992; van den Briel & Kambhampati,

2005), based on an iterative strategy where a planning problem is converted to a

corresponding constraint satisfaction problem with a finite horizon t (plan length
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f=0 : UNSAT
Initial
Node

Goal
Node

f=1 : UNSAT

f=2 : UNSAT f=3 : SAT

Figure 5.0.1: The concept of A∗ as a sequence of satisficing searches.

/ makespan). The search starts from the horizon 0 and tests if the problem is

satisfiable. If not, then it increases the horizon, add constraints excluding solu-

tions below t, and retests the same problem with additional constraints for a new

horizon t+ 1.

It is also reminiscent of the behavior of iterative deepening A∗ (Korf, 1985),

which executes a series of satisficing searches with an f -cost limit which increases

on each iteration. However, “A∗-as a sequence of satisficing search” differs from

IDA* in that IDA*, in order to achieve linear memory usage, repeats previous

work on each iteration. Instead of searching a particular plateau in each iteration,

IDA* searches through the union of several plateaus.

The framework of “A∗ as a series of satisficing searches” suggests that we can

directly apply satisficing search techniques to optimal search using A∗, especially

for each f -cost plateau search. In the following two subsections, as well as in

the next section, we show that this framework (1) provides a better understanding

of depth-diversification (Section 5.1), (2) allows us to prove the completeness of
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A∗ on infinite graph depending on the tie-breaking methods (Section 5.2), and (3)

allows us to improve the performance of A∗ on Zerocost domains (Section 5.3).

5.1 Depth Diversification as Satisficing Search

Within this framework, the implementation of depth diversification can be viewed

as a variant of the Type-based diversification approach (Xie, Müller, Holte, &

Imai, 2014), specifically tailored for Zerocost domains.

Xie et al. proposed type based buckets, an implementation of the OPEN

list which partitions the nodes into buckets according to some set of key val-

ues (types). They proposed several types such as 〈1〉, 〈g〉, 〈h〉 or 〈g, h〉. At each

type-based expansion, a randomly selected node from a randomly selected single

bucket is selected. For example, with type 〈g, h〉, a node with g = 5 and h = 3 is

put into a bucket 〈5, 3〉. This mechanism diversifies the search so that it tries to ex-

pand the nodes with various distances from the initial state and various distances

from a goal state.

They then proposed Type-GBFS, which alternates the expansion between nor-

mal GBFS with a [h, fifo] sorting criteria and type-based expansion. This alter-

nating framework addresses a weakness of GBFS: GBFS is solely guided by the

heuristic function h, and heuristic errors in h can easily misguide GBFS to spend

all of its time in the wrong part of the search space – GBFS can become trapped

due to heuristic error and cannot recover from the wrong decision until expanding

all nodes in that branch. In the worst case, on infinite graphs, GBFS is not com-

plete because it can be misdirected by the heuristic guidance forever (Valenzano

& Xie, 2016). In contrast, in Type-GBFS, the alternation with type-based expan-
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sion introduces exploratory behavior of nodes with low g and high h, offering

the possibility of escaping from heuristic error traps. As a result, Type-GBFS is

probabilistically complete on infinite graphs (Valenzano & Xie, 2016).

Type-GBFS was primarily evaluated in the context of satisficing search with

no consideration of plan quality, and performance is solely evaluated according

to coverage. Thus, Xie et al adopted a unit-cost domain model: All action costs

are ignored and replaced with unit costs in their experiments in order to boost

coverage (Xie et al., 2014). This is a commonly used technique for satisficing

search which is also used in the first iteration of LAMA2011 (Richter et al., 2011).

In our framework of A∗ as a sequence of satisficing searches, depth diver-

sification after h tie-breaking ([f, h, 〈d〉]) can be viewed as the combination of

(1) an implicit transformation of all 0-cost edges within a single plateau (f, h) to

unit-cost edges, and (2) a pure type-based exploration within that plateau (unlike

Type-GBFS, which alternates GBFS and type-based buckets).

The notion of depth counts the number of 0-cost actions, which does not

change the f value and h value, on the path from the entrance to the current

plateau, to the current node. Thus, depth-diversification treats the problem of

finding an exit from a particular plateau as a unit-cost satisficing search problem

– the depth is analogous to a g-value which is calculated with unit costs and is

restricted to a particular plateau.

Depth diversification for tie-breaking in admissible A∗ has a different purpose

and context from Type-GBFS for satisficing search, and differs as follows. First,

depth diversification is focused on finding a satisficing plan within a single plateau

and on solving domains with 0-cost actions. Therefore, depth diversification is

applied after the sorting by h. In contrast, type buckets are global — type buckets
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have no preceding sorting criteria, and all open nodes are stored in these buckets.

Type-GBFS then alternates type buckets and sorting by h, not applying them in a

cascade manner.

Nevertheless, the close relationship between depth diversification for admis-

sible A∗ and Type-GBFS for satisficing search is important. It shows that if we

apply our framework of “A∗ as a series of satisficing searches”, we can directly

use ideas which have been previously proposed for satisficing search within each

f -cost plateau search.

5.2 Completeness of A∗ on an Infinite Graph

Similarly, we can use this framework for analyzing the completeness of A∗ on in-

finite graphs with respect to various tie-breaking criteria. First, A∗ is complete on

finite graphs regardless of the tie-breaking strategy (Hart et al., 1968). However,

if the graph is infinite, the completeness of the algorithm depends on tie-breaking.

We consider several cases depending on which plateau is infinite. We only need to

consider plateaus for f ≤ f ∗ becauseA∗ does not expand the nodes in plateau (f)

for f > f ∗.

Definition 1. A graph is infinite when the number of nodes in the graph has no

upper bound.

Proposition 1. If any plateau (f) for f < f ∗ is infinite, then A∗ does not termi-

nate.

Proof. Algorithm 3 requires proving the UNSAT-isfiability (that there is no solu-

tion) of all non-final plateaus, plateau (f) (∀f < f ∗), so if any of them are infinite,

A∗ does not terminate. �
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The remaining cases assume that the following two conditions hold: plateau (f)

is finite ∀f < f ∗, and plateau (f ∗) is infinite. Under this assumption, the com-

pleteness of A∗ using tie-breaking [f, criterion2, . . . criterionk] depends on the

completeness of the satisficing search algorithm corresponding to [criterion2, . . . criterionk]

on plateau (f ∗). For the standard tie-breaking criteria, we can apply previously

known results.

Theorem 2 (Valenzano and Xie (2016)). ε-greedy node selection (Valenzano,

Schaeffer, Sturtevant, & Xie, 2014) is probabilistically complete on an infinite

graph, i.e., the probability of finding a solution approaches to 1 when the number

of expansion t approaches∞.

Corollary 1. A∗ with Random Order tiebreaking [f, ro] is probabilistically com-

plete on an infinite graph when plateau (f) is finite for all f < f ∗.

Proof. [f, ro] is an instance of A∗ using [ro] as a satisficing algorithm for plateau-

search. Since [ro] is a special case of ε-greedy node selection with ε = 1, [ro] is

also probabilistically complete on an infinite plateau (f ∗). �

Breadth-first search is complete when the graph has a finite branch factor be-

low the solution depth. Since FIFO tiebreaking [f, fifo] applies breadth-first search

to plateau (f ∗), it follows that

Proposition 2. A∗ with FIFO tiebreaking [f, fifo] is complete on an infinite graph

when plateau (f) is finite ∀f < f ∗ and the maximum outdegree of the nodes is

finite in plateau (f ∗) below the solution depth.

LIFO tie-breaking behaves equivalently to a depth-first search with duplicate

detection (DFS-dup) on plateau (f ∗). Assuming a fixed successor ordering, we

get the following:
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Proposition 3. A∗ with LIFO tiebreaking [f, lifo] is complete on an infinite graph

iff plateau (f) is finite for all f ≤ f ∗.

Proof. If plateau (f ∗) is infinite, then either the maximum depth or the maximum

outdegree of the nodes is infinite (has no upper bound). If the maximum depth

has no upper bound, DFS-dup requires an arbitrary longer runtime before the first

backtracking unless the solution is found before it. If the maximum outdegree has

no upper bound, there is a successor ordering which forces DFS-dup to search all

subtrees that do not contain solutions, and the size of the subtrees has no upper

bound. If both the maximum depth and the maximum outdegree are finite, then

plateau (f ∗) is finite and DFS-dup is complete. Combined with Proposition 1,

LIFO tie-breaking requires a finite plateau (f) for all f ≤ f ∗. �

Finally, we show the completeness of our iteration-based depth diversification

in Algorithm 2.

Theorem 3. A∗ with Depth Diversification [f, 〈d〉, ∗] is complete when plateau (f)

is finite ∀f < f ∗ and the maximum outdegree of the nodes is finite in plateau (f ∗)

for depths below the solution depth.

Proof. Any solution must have a finite depth d∗ on plateau (f ∗). On every iter-

ation of the pop method of Algorithm 2 from the largest depth D to the depth 0,

each depth is expanded once. Since the maximum outdegree is finite, every node

with depth d ≤ d∗ will be expanded in a finite number of iterations. �
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5.3 Tie-Breaking Using Distance-to-Go Estimates

In the previous section, we proposed a framework which views cost-optimal A∗

search as a series of satisficing searches on each f -cost plateau, and argued that

the problem of tie-breaking can be reduced to a satisficing search. We showed that

the depth diversification tie-breaking criterion, which is highly effective on Zero-

cost domains, is in fact a case where a previously studied technique for satisficing

search (type-based exploration) turns out to be highly effective when applied to

tie-breaking. In this section, we push this insight further and propose another ap-

proach to improving the search performance in plateaus produced by Zerocost do-

mains – using inadmissible distance-to-go estimates (heuristics) as a tie-breaking

criterion within an admissible A∗ search.

Distance-to-go estimates are a class of heuristics which treat all actions as

if they have unit cost. Even when 0-cost actions are present, these estimates can

predict the number of operations required to reach a goal. In general, the estimates

are inadmissible (unless the estimates are guaranteed to underestimate the number

of required actions and all actions in the original domain have unit cost). Previous

work on distance-to-go-heuristics has focused on their use for satisficing planning.

A∗ε (Pearl & Kim, 1982) is one of the earliest algorithms that combines distance-

to-go estimates with the cost estimates. It is a bounded-suboptimal search which

expands nodes from the focal list, the set of nodes with f(n) ≤ w · fmin where

weight w serves as a suboptimality bound, similar to weighted A∗, and fmin is the

minimum f value in the OPEN list. While f is based on an admissible heuristic

function, the nodes in the focal list are expanded in increasing order of an inad-

missible distance-to-go estimate ĥ. Since the search does not follow the best-first

order according to f , it is not admissible, and is instead w-admissible. One ex-
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ception is the case of w = 1 where the focal list is equivalent to the f plateau and

the expansion order in the focal list corresponds to the tie-breaking on plateaus.

In our notation, this algorithm can be written2 as a BFS with the following sorting

criteria:

[d f

w · fmin
e, ĥ, ∗]

This notation is derived from the fact that the focal list “blur”s f up to w · fmin.

For example, when w = 2, fmin = 5 and f(n) = 5, 9, 11, then d f
w·fmin
e = 1, 1, 2

respectively.

Continuing this line of work, Thayer and Ruml (2009, 2011) evaluated var-

ious distance-to-go configurations of Weighted A∗, Dynamically Weighted A∗

(Pohl, 1973) and A∗ε , where some configurations use distance-to-go as part of

tie-breaking. This work focused on bounded-suboptimal search rather than cost-

optimal search. Cushing et al. (2010) pointed out the danger of relying on cost

estimates in a satisficing search by investigating “ε-cost traps” and other pitfalls

caused by cost estimators for search guidance. Finally, the FD/LAMA2011 sat-

isficing planner incorporates distance-to-go estimates in its iterated search frame-

work (Richter et al., 2011). The first iteration of LAMA uses distance-to-go esti-

mates combined with various satisficing search enhancements.

Benton et al. (2010) proposed an inadmissible technique for temporal planning

where short actions are hidden behind long actions and do not increase makespan.

Such actions cause “g-value plateaus”, which are similar to the large plateaus

caused by 0-cost actions in sequential planning. They implemented an inadmissi-

ble heuristic function combined with distance-to-go estimates as an extension of

Temporal Fast Downward (Eyerich, Mattmüller, & Röger, 2009).

2 However, an actual implementation may differ due to dynamic updates to fmin.
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5.4 Embedding Distance-to-Go in Admissible Search

Although previous work on distance-to-go estimates assume a satisficing context,

we show that distance-to-go estimates can be useful for cost-optimal search. Since

the admissibility of the sorting strategy and the optimality of the solution are not

affected by the second or later levels of sorting criteria, it is possible to use an

inadmissible distance-to-go estimate in these subsequent sorting criteria without

sacrificing the optimality of the solution found. This means inadmissible heuris-

tics can be used for tie-breaking.

Let h be an admissible heuristic function, and ĥ be a distance-to-go variation

of h, i.e., ĥ uses essentially the same algorithm as h, except that while h uses

the actual action costs for the problem domain, ĥ replaces all action costs with

1. Since h is admissible, multi-heuristic sorting strategies such as [g + h, h, ĥ] or

[g + h, ĥ] are admissible.

Moreover, we can even use a multi-heuristic strategy which uses an inadmissi-

ble heuristic for tie-breaking which is unrelated to the primary, admissible heuris-

tic h. For example, [g + hLMcut, ĥFF] is an admissible sorting strategy because the

first sorting criterion f = g + hLMcut uses an admissible LMcut heuristic. Its sec-

ond sorting criterion, the distance-to-go FF heuristic (Hoffmann & Nebel, 2001),

does not affect the admissibility of this entire sorting strategy.

A potential problem with sorting strategies which use multiple heuristics is the

cost of computing additional heuristic estimates. For example, [g + hLMcut, ĥFF]

requires more time to evaluate each node compared to a standard tie-breaking

strategy such as [g + hLMcut, hLMcut] because computing the ĥFF heuristic incurs

significant overhead per node while the results of hLMcut can be reused by a caching

mechanism. When the inadmissible heuristic for tie-breaking is ĥ, i.e. a distance-
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to-go (unit cost) variant of the primary, admissible heuristic h, it may be possible

to reduce this overhead to some extent by implementing h and ĥ so that they share

some of the computation – this is a direction for future work.

5.4.1 Distance-to-Go Estimates with Default Tie-Breaking

Tie-breaking using distance-to-go estimates can still leave a set of nodes which are

equivalent up to the distance-to-go criterion (multiple nodes can have the same f ,

h, and ĥ values), so additional level(s) of tie-breaking are necessary in order to

select a single node. By adding a standard default criterion such as fifo, lifo, ro, we

obtain a sorting strategy that imposes a total order. For example, [fLMcut, ĥFF, fifo]

applies fifo after the distance-to-go estimate ĥFF.

5.4.2 Distance-to-Go Estimates with Depth Diversification

Furthermore, it is possible to combine depth diversity based tie-breaking with

distance-to-go estimates by applying the depth-diversity criterion after the distance-

to-go estimate. For example, [fLMcut, ĥFF, 〈d〉, fifo] applies depth diversification

criterion after the ĥFF distance-to-go estimate. As we shall see below, a sort-

ing strategy which performs tie-breaking using both distance-to-go estimates and

depth diversity results in the best performance overall.
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5.5 Evaluation of Distance-to-Go Estimates as Tie-

Breaking Criteria for Admissible Search

We tested various admissible sorting strategies on IPC domains and Zerocost do-

mains. The configurations are listed in Table 5.5.1. In all configurations, the first

sorting criterion is the f = g + h value where h is an admissible heuristic (either

LMcut or M&S) using the actual action-cost based cost calculation. As the sec-

ond (and third) criteria, we used ĥ, the distance-to-go version tested of the original

heuristic function h, as well as a distance-to-go variation of FF heuristic (ĥFF). We

also added configurations with the depth metric within plateau
(
f, ĥFF

)
. A sum-

mary of the results is shown in Table 5.5.2. Detailed per-domain results are shown

in Tables 9.6.1 - 9.6.4.

(1) [h+ g, h, ∗] (2) [h+ g, h, ĥ, ∗] (3) [h+ g, ĥ, ∗]

(4) [h+ g, ĥFF, ∗] (5) [h+ g, h, 〈d〉, ∗] (6) [h+ g, ĥFF, 〈d〉, ∗]

Table 5.5.1: Configurations compared in this section. h is either LMcut or M&S.

5.5.1 Evaluation on Zerocost Domains

In Zerocost domains, we see that ĥ tie-breaking outperforms h tie-breaking for

both LMcut (e.g. 256→ 295 with fifo) and M&S (e.g. 280→ 308 with fifo). Also,

combining h and ĥ can further improve performance when the heuristic is LMcut

(e.g. 295 → 305 with fifo). The results of combining h and ĥ were comparable

to ĥ when the main heuristic function h is M&S. Yet more surprisingly, using

ĥFF further improved the performance for both LMcut (e.g. [f, h, ĥ, fifo] : 305 →
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Sorting Criteria Zerocost(620) Zerocost(620) IPC (1104) IPC (1104)
h = LMcut h = M&S h = LMcut h = M&S

Baselines
[f, h, fifo] 256 280 558 491
[f, h, lifo] 279 301 565 496
[f, h, ro] 261.9 ± 1.4 287.7 ± 3.2 558.9 ± 2.1 489.4 ± 1.0
[f, h, 〈d〉, fifo] 284 302 571 487
[f, h, 〈d〉, lifo] 264 288 575 487
[f, h, 〈d〉, ro] 288.1 ± 1.6 308.1 ± 2.1 571.4 ± 1.7 485.6 ± 1.5

Distance-to-Go
[f, ĥ, fifo] 295 308 534 477
[f, ĥ, lifo] 303 305 534 475
[f, ĥ, ro] 301.0 307.3 ± 1.5 534 ± 2.1 470.4 ± 0.9
[f, h, ĥ, fifo] 305 307 536 476
[f, h, ĥ, lifo] 309 306 535 475
[f, h, ĥ, ro] 305.9 ± 2.1 307.8 ± 1.4 534.7 ± 1.5 470.9 ± 0.9
[f, ĥFF, fifo] 337 336 564 458
[f, ĥFF, lifo] 340 331 562 457
[f, ĥFF, ro] 341 ± 2.2 337.9 ± 2.1 563.7 ± 1.4 457 ± 1.3

Distance + Depth
[f, ĥFF, 〈d〉, fifo] 340 (> 337) 337 (> 336) 563 457
[f, ĥFF, 〈d〉, lifo] 342 (> 340) 333 (> 331) 560 457
[f, ĥFF, 〈d〉, ro] 344.3 ± 1.8 337.6 ± 1.3 561.9 ± 1.4 456.8 ± 1.2

Table 5.5.2: Summary Results: Coverage comparison (the number of instances
solved in 5min, 4GB) between several sorting strategies. For comparison, we also
include the results of configurations evaluated in the previous sections.
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[f, ĥFF, fifo] : 337) and M&S (e.g. [f, h, ĥ, fifo] : 307 → [f, ĥFF, fifo] : 336). Thus,

when the depth diversity criterion is not used, the best configurations are those

which use ĥFF.

The reason for the good performance of [fLMcut, ĥFF, ∗] is not surprising: ĥFF

is by itself known to be a powerful inadmissible heuristic function for satisficing

GBFS, and if we ignore the first sorting criterion, [fLMcut, ĥFF, ∗] is a GBFS with

[ĥFF, ∗].

Adding the depth diversity criterion further improves the performance of the

ĥFF-based strategies, although the impact was small. The coverage increased in

both h = hLMcut (fifo: 337 → 340, lifo: 340 → 342, ro: 341 → 344.3) and

h = hM&S (fifo: 336 → 337, lifo: 331 → 333). When the default tie-breaking

was ro and the heuristic is M&S, [f, ĥFF, 〈d〉, ro] performed slightly worse than

[f, ĥFF, ro], but the difference was very small (337.9 → 337.6) and 〈d〉 made the

performance slightly more robust (smaller standard deviation: 2.1→ 1.3).

5.5.2 Evaluation on Standard IPC Domains

For the standard IPC benchmark instances, the overhead due to the additional

computation of ĥ or ĥFF tends to harm the overall performance. Therefore, the

best configuration using LMcut was [f, h, 〈d〉, lifo] which uses depth and does

not impose the cost of additional heuristics, and the best result using M&S was

[f, h, lifo] which imposes no overhead including the depth.

If we look further into the detail, we observed the following: In Cybersec,

distance-to-go variants (e.g. [fLMcut, ĥFF, lifo]:5) improve upon the standard strat-

egy (e.g. [fLMcut, hLMcut, lifo]:3), but does not improve upon depth (e.g. [f, h, 〈d〉, lifo]:

12). When h = hM&S, all coverages are zero. Overheads by ĥFF also slightly de-
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grade the performance in Openstacks (e.g. [fLMcut, hLMcut, lifo]:18, [fLMcut, ĥFF, lifo]:17,

[fLMcut, hLMcut, 〈d〉, lifo]: 18; Also, [fM&S, hM&S, lifo]:19, [fM&S, ĥFF, lifo]:18, [fM&S, hM&S, 〈d〉, lifo]:

19). Thus, in these two domains, although there are some improvements in search

efficiency due to the guidance by ĥFF or ĥ, the runtime overhead of computing the

distance-to-go heuristics outweighed the benefit.

In the domains with only positive cost actions (all IPC domains except Open-

stacks and Cybersec), ĥ or ĥFF only harm the overall performance due to the over-

head. When the primary heuristics is LMcut, we do not observe a significant dif-

ference between single-heuristics strategies except for the fractional difference in

the configurations using ro. When the primary heuristic is M&S, [fM&S, hM&S, lifo]

performs slightly better than other default tie-breaking strategies; It also outper-

forms the depth-based variants as we already discussed in Section 4.2.

5.5.3 Summary of the Evaluation

Table 5.5.3 summarizes the overall conclusions of our performance evaluations.

We conclude that although the performance gain by depth diversification and

distance-to-go heuristics depend on the domain characteristics, they provide a

promising overall performance enhancement.

5.5.4 Simple Dynamic Configuration for Overall Performance

In practice, the performance degradation when using multi-heuristic strategy in

domains with only positive cost actions does not pose a problem. We can easily

avoid the overhead incurred by the distance-to-go heuristics in those domains by

applying the following simple policy: If there are any 0-cost actions, use a multi-
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Primary

Heuristics

Zerocost domains Zerocost IPC Positive-cost IPC

(Cybersec, Openstacks)

LMcut [f, ĥFF, 〈d〉, ro] [f, h, 〈d〉, lifo] [f, h, ∗] or [f, h, 〈d〉, ∗]

(any default tie-

breaking)

M&S [f, ĥFF, ro] or

[f, ĥFF, 〈d〉, ro],

but the latter has a

smaller variance.

[f, h, lifo] or

[f, h, 〈d〉, ∗] (any

default tie-breaking)

[f, h, lifo]

Table 5.5.3: Summary of the performance evaluation: Best tie-breaking strategy

for each group of domains and each primary heuristic function.

heuristic strategy; Otherwise, use a single-heuristic strategy.

Since the impact of such a check on the total runtime is negligible, we can

extrapolate the result of applying this rule based on the previously obtained re-

sults. Coverage results in Table 5.5.4 show the total coverage of Zerocost and IPC

benchmark domains. The bottom two rows, labeled as dynamic configuration,

are the extrapolated results when the switching policy is applied – this dynamic

configuration achieves the highest overall coverage.

When the configuration rule is applied to standard IPC instances, the domains

with 0-cost actions are Cybersec and Openstacks only. They are solved using a

multi-heuristic strategy while other domains are solved in the best performing

single-heuristic strategy. In Zerocost instances, all domains are solved using the
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multi-heuristic strategy.

Overall, these results also strengthen our claim that one should not necessarily

rely upon h-based tie-breaking in some domains, as already discussed in Section

3.2.1. In Zerocost domains, using a distance-to-go version of an inadmissible

heuristic function for tie-breaking is more effective. Also, combining the depth

metric with such an inadmissible heuristics is also effective.

We only tested this relatively simple dynamic configuration that switches be-

tween two strategies based on the presence of 0-cost operators. However, as

noted in Section 4.2, domain-specific solvers (as opposed to domain-independent

solvers, which are the main focus of this thesis) can benefit from fine-tuning the

tiebreaking strategy so that it is most suited to the target domain.
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h = LMcut h = M&S

Single-heuristic strategies

[f, h, lifo] 844 797

[f, h, 〈d〉, fifo] 855 789

[f, h, 〈d〉, lifo] 839 775

[f, h, 〈d〉, ro] 859.5 793.7

Multi-heuristic strategies

[f, ĥFF, 〈d〉, fifo] 903 794

[f, ĥFF, 〈d〉, lifo] 902 790

[f, ĥFF, 〈d〉, ro] 906.2 794.4

Dynamic Configuration

If a problem contains zerocost actions:

Then [f, ĥFF, 〈d〉, ro] ; Else [f, h, 〈d〉, lifo] 911.9

If a problem contains zerocost actions:

Then [f, ĥFF, 〈d〉, ro] ; Else [f, h, lifo] 832.3

Table 5.5.4: Summary Results: Coverage comparison, the total num-

ber of instances in IPC and Zerocost domains (1724), solved in 5min,

4GB, with several sorting strategies, plus a dynamic configuration strategy.

[f, h, fifo], [f, h, ro], [f, ĥ, ∗], [f, h, ĥ, ∗], [f, ĥFF, ∗] are not shown because they

achieve smaller coverage.
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Chapter 6

Search Diversification for Satisficing

Search Algorithms: Intra-vs-Inter

Plateau Diversification

Many search problems in AI are too difficult to solve optimally, and finding even

one satisficing solution is challenging. Greedy Best-First Search (GBFS) is a

best-first search variant where the expansion priority of node n is based only on

a heuristic estimate of the node h(n). GBFS has been shown to be quite useful

when it is necessary to find some satisficing solution quickly, and GBFS has been

the basis for state-of-the-art domain-independent planners.

Despite the ubiquitous use of GBFS for satisficing search, previous work has

shown that GBFS is susceptible to being easily trapped by undetected dead ends

and huge search plateaus. On infinite graphs, GBFS is not even complete (Valen-

zano & Xie, 2016) because it could be misdirected by the heuristic guidance for-

ever. These pathological behaviors are caused by the fact that the search behavior
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of GBFS strongly depends on the quality of the heuristic function.

Previous approaches to this problem can be classified into two classes. The

first class of methods focuses on an issue arising with inadmissible heuristics,

which can incorrectly label nodes which are close to the goal (low h∗, the op-

timal cost to goal) as unpromising (overestimation: h > h∗), causing GBFS to

delay expanding them until all other open nodes with smaller h-values have been

expanded. Several approaches have been proposed for alleviating this problem,

including DBFS (Imai & Kishimoto, 2011), ε-GBFS (Valenzano et al., 2014) and

Type-GBFS (Xie et al., 2014). These approaches diversify the search by occasion-

ally expand nodes which do not have the lowest h-value, and provide an opportu-

nity to expand nodes that are mistakenly overlooked due to heuristic errors.

The second class of methods focuses on a different issue which arises in both

admissible and inadmissible heuristics: A node that is far from the goal (high

h∗) can be mislabeled as promising (underestimation: h < h∗), causing GBFS

to have larger plateaus and expand unnecessary nodes. Techniques which address

this issue include plateau escaping (Coles & Smith, 2007), local exploration (Xie,

Müller, & Holte, 2014) or tiebreaking (Asai & Fukunaga, 2016).

All of these methods share the objective of removing some bias, thereby en-

couraging exploration by the search process and adding diversity in decision-

making process. In this thesis, we use the terms “exploration”, “diversity”, and

“bias removal” interchangeably. Previous work lacked a common framework

which unified these various approaches to diversification/exploration/bias removal.

Furthermore, as shown later, the current state-of-the-art methods are based on di-

versification with respect to search depth (distance from the start / goal / plateau

entrance), so the bias among the set of nodes with the same search depth is not
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removed.

In this chapter, we first show that the above two classes of approaches to

diversification are orthogonal and should be combined for better performance.

We show that a recently proposed depth-based tie-breaking strategy for A∗ (Asai

& Fukunaga, 2016) also improves the performance of GBFS by diversifying the

depth within each h-plateau. Both depth diversification strategy and Type-GBFS

are shown to be instances of a type-based diversification strategy (Xie et al.,

2014): Depth diversification applies type-based diversification within a plateau,

and Type-GBFS applies it between plateaus. We compare their empirical per-

formance and show that their improvements are complementary – They improve

the performance in different domains, and a configuration using both methods,

achieves the best overall coverage. This effectively shows that inter-plateau and

intra-plateau diversification are two orthogonal usages of diversification, and both

modes should be used if possible.

Next, we propose and evaluate a new diversification strategy called IP-diversification

which addresses diversity with respect to breadth. We evaluate this new diversifi-

cation strategy both for intra-plateau and inter-plateau exploration. Complemen-

tary effects on intra/inter-plateau exploration were similarly observed. In addition,

IP-diversification outperforms the Type-based diversification strategy. Finally, we

show that by combining several intra/inter plateau exploration strategies, we can

improve upon state-of-the-art planners in terms of coverage.
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6.1 Background

6.1.1 Exploration Mechanisms

One class of improvements to GBFS seeks to introduce exploration (diversity) to

the search process, as exemplified by DBFS (Imai & Kishimoto, 2011), ε-GBFS

(Valenzano et al., 2014), Type-GBFS (Xie et al., 2014). These algorithms address

the problem of GBFS getting stuck due to heuristic errors. GBFS will not expand

a node n until it expands all nodes with a lower h-value than n. Thus, search

progress can be delayed when a good (low-h∗) node is mistakenly assigned a poor

(high) h-value (overestimation), or bad (high-h∗) nodes are assigned promising

h-values (low-h, underestimation). These exploration strategies allow the search

to escape local minima by relaxing the h-based best-first node expansion order.

KBFS(k) (Felner, Kraus, & Korf, 2003) attempts to address this problem by

expanding k nodes at a time. ε-GBFS (Valenzano et al., 2014) selects a random

node from OPEN with some fixed probability ε < 1. This is a randomized and

weighted alternating OPEN list using [h, ∗] and [ro] (no sorting criteria). If ε =

1/2, the behavior is similar to a deterministic alternation strategy, alt([h, ∗], [ro]).

While ε-GBFS relies on a pure randomization strategy to escape traps and in-

troduce exploration, Type-GBFS (Xie et al., 2014) explicitly seeks to remove bias

and diversify the search by categorizing OPEN according to several key values,

such as [g, h] for each state. Each node is assigned to a bucket according to its

key value. The search then selects a random node in a random bucket, avoiding

the cardinality bias among buckets. Since Type-GBFS does not sort the buckets

according to the key vector, we use a different notation 〈. . .〉, such as 〈g, h〉 denot-

ing type buckets whose key values are g and h. In the implementation evaluated
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by Xie et al. (2014), Type-GBFS alternates the exploitative (standard best-first

order) expansion and the exploratory (randomized) expansion. We denote this as

alt([h, ∗], [〈g, h〉, ro]).

DBFS (Imai & Kishimoto, 2011) diversifies the search based on g and h val-

ues, but with several key differences from the above two algorithms: First, the

exploratory selection is not uniformly random, but is subject to a particular dis-

tribution function based on h, g, hmin and gmax. Second, it uses a local search

with a bounded number of expansions equal to h, which dynamically balances the

exploration and exploitation — it does more GBFS when h is large (far from the

goal), and less GBFS near the goal (h is small).

GBFS with Local Exploration (GBFS-LE) introduces a 2-level search archi-

tecture which runs GBFS until it detects that no improvements have been made for

a while, and then runs a local GBFS (GBFS-LS) or random walk (GBFS-LRW)

in order to find an exit to a more promising region of the search space (Xie et al.,

2014).

6.1.2 Tiebreaking

For GBFS, to our knowledge, there is currently no well-established tie-breaking

policy analogous to h-based tie-breaking forA∗. Presumably, this is because while

A∗ has access to three cost values (f , g, and h), GBFS is guided solely by the

heuristic value h.1 As a consequence, improvements to GBFS have been primarily

achieved by addressing other aspects, such as modifying the evaluation scheme

1Tie-breaking based on g is sometimes used, but this is motivated as a means to find higher-

quality solutions. To our knowledge, in a satisficing context, tie-breaking strategies for reducing

search effort have not been explicitly motivated or evaluated.
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(Richter & Westphal, 2010, lazy evaluation), queue alternation (multiple heuristic

functions), preferred operators (Hoffmann & Nebel, 2001), and diversification.

6.2 Intra- and Inter-plateau Diversification

Previous work on exploration for GBFS address the problem of heuristic errors by

occasionally expanding nodes with high h. Since this type of diversification oper-

ates across different search plateaus, we refer to these as inter-plateau exploration.

However, we propose another type of exploration, which we call intra-plateau ex-

ploration, which works within a particular plateau. This type of exploration only

changes expansion order among the nodes within a plateau. We use this new term

rather than tiebreaking in order to emphasize its relationship to plateaus.

Existing inter-plateau exploration can be understood as a diversification ap-

plied to h∗ plateau. Consider a hypothetical 2-dimensional histogram (Figure

6.2.1) of the number of nodes for each pair h, h∗. If both axes were h∗ (i.e., h

is a perfect heuristic), all nodes would be on the diagonal line x = y. However,

in reality, h has errors relative to h∗, as would be shown if we projected the his-

togram to the x-axis. Since low-h∗ nodes may have high-h values, it is sometimes

reasonable to expand high-h nodes depending on the distribution defined by the

problem characteristics and the heuristic function.

However, the converse can also be true – not only can a single h∗-plateau

consists of nodes with different h values, a single h-plateau consists of nodes with

different h∗ values, as would be shown by projecting the histogram to the y-axis in

Figure 6.2.1. This leads to an observation that in the worst case, a naive algorithm

may keep expanding bad (high-h∗) nodes within an h-value plateau.

79



 2
 4

 6
 8

 10

x=h
 6  8  10  12  14

y=h*

Figure 6.2.1: A conceptual view of the node distribution with regard to h∗ and in-

admissible h. The peak line on the surface is on x = y. Projection to x-axis shows

the distribution of h values, while projection to y-axis shows the distribution of h∗

values.

More precisely, the node selection algorithm of a diversified GBFS variant can

be described as follows:

Definition 2. An inter-plateau diversification strategy for GBFS is a method for

selecting the next h-value.

Definition 3. An intra-plateau diversification strategy for GBFS is a method for

selecting the next node in the plateau selected by an inter-plateau strategy.

This view cleanly separates the effects of two strategies, providing a firm basis

for the observation that their effects are orthogonal and should be combined for

the better performance. It is straightforward to see that, given an OPEN list state

and an inter-plateau diversification strategy, the next h-plateau to select a node

from is independent of intra-plateau strategy. Likewise, given a set of nodes with

the same h-value and an intra-plateau (tiebreaking) strategy, the next expanded

node is independent of inter-plateau strategy.

Intra-plateau diversification is similar to local exploration (Xie et al., 2014;

Xie, Müller, & Holte, 2015), but is more restrictive. Local exploration is targeted
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for uninformative heuristic region (UHR), which includes both plateaus and local

minima. In fact, GBFS-LS does not restrict the local exploration by the h-value,

thus it may eventually expand a different plateau as the side effect. Similarly, some

existing inter-plateau strategies such as ε-greedy GBFS have some intra-plateau

side-effects because they may distort the expansion order within a plateau.

6.2.1 Type-Based Diversification

The notion of inter-vs-intra plateau exploration allows us to discuss and compare

depth diversification (Asai & Fukunaga, 2016) and Type-GBFS (Xie et al., 2014)

within a unified framework – it turns out that they share essentially the same basic

idea, while being applied to different contexts (inter-vs-intra plateau, satisficing-

vs-optimal search), using different parameters (type systems).

Lelis, Zilles, and Holte (2013) define a general framework for adding explo-

ration to search using “type systems”:

Definition 4. A Type system (Lelis et al., 2013) is a function from a node to a

vector, T : node → Zk, T (n) = 〈t1(n) . . . tk(n)〉, where each function ti(n)

returns an integer for each node n.

Xie et al. proposed a node selection technique based on type systems.

Definition 5. Type-Based Node Selection (Xie et al., 2014) with a type system

T (·) of k types maintains a k-dimensional matrix of sets of nodes, where each set

Sv is associated with a vector v = 〈v1, . . . , vk〉. Each node n is stored in ST (n).

For dequeueing, it randomly selects a non-empty set from all sets, and a random

node in the set is dequeued.
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The reason for selecting a set at random is to try to allocate the search effort

among a diverse set of nodes. Some sets could contain a large number of nodes

while others are only scarcely populated. Type-based node selection tries to re-

move this cardinality bias among buckets. Because type-based node selection has

this diversification as an explicit goal and is best understood as a diversification

strategy, we call it type-based diversification in the rest of this thesis.

Type-GBFS (Xie et al., 2014) uses type-based diversification with type sys-

tem 〈g, h〉 for inter-plateau exploration. Their inter-plateau exploration is imple-

mented by queue alternation (Röger & Helmert, 2010) between standard Best-

First queue and type-based diversification queue.

Depth diversification (Asai & Fukunaga, 2016) originally addressed the issue

of zero-cost actions in admissible search with A∗, and the configuration was de-

noted as [f, h, 〈d〉] using the type system notation for a single element d, where

f = g+h and d is a number of steps from the current node to the nearest ancestor

that has the different h-value. In order to use 〈d〉 for GBFS, the resulting con-

figuration is [h, 〈d〉]. This configuration is considered an instance of intra-plateau

type-based diversification because it uses type-based diversification 〈d〉 for diver-

sifying the search within plateaus defined by h.

6.3 Empirical Comparison of Intra- and Inter-Plateau

Exploration

Since depth-diversification and Type-GBFS turned out to be instances of the same

strategy applied for different purposes (intra/inter-plateau), we use these as exem-

plars to compare the impact of intra/inter-plateau exploration. In the following
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experiments, we empirically show that they achieve complementary performance

improvements. This indicates that inter/intra-plateau exploration in fact addresses

orthogonal issues of incorrect and insufficient information, respectively. We then

show that intra/inter-plateau exploration can be successfully combined in a single

search algorithm.

We compare the performance of the following configurations for Greedy best-

first search using the Fast Forward heuristic hFF (Hoffmann & Nebel, 2001) and

Causal Graph heuristic hCG (Helmert, 2004).

• h: baseline GBFS (eager evaluation).

• hd: Depth diversification (Asai & Fukunaga, 2016) – intra-plateau type-

based diversification, [h, 〈d〉].

• hD: Type-GBFS (Xie et al., 2014) – inter-plateau type-based diversification,

alt([h], [〈g, h〉, ro]),

• hdD: A combined configuration of intra- and inter-plateau type-based di-

versification, alt([h, 〈d〉], [〈g, h〉, ro]).

Experiments are conducted on a Xeon E5-2666 @ 2.9GHz, HyperThreading

and TurboBoost disabled. We used IPC 2011 and 2014 instances with a 4GB

memory limit and 5 minutes time limit. Since IPC 2011 and IPC 2014 contain

duplicate domains, we removed duplicates from the 2011 set, keeping the 2014

versions. All implementations are based on FastDownward (Helmert, 2006) and

unless specified, all configurations use fifo default tiebreaking (FastDownward de-

fault). Following previous work (Valenzano et al., 2014; Xie et al., 2014), all

configurations are evaluated under unit cost transformation because we focused
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on the coverage (number of problems solved within resource limit) for purely sat-

isficing search. Each experiment is run 10 times, and the means are shown in

Table 6.3.1.

First, intra-plateau exploration hd increases coverage for both heuristics hCG

(187 → 194.2) and hFF (192 → 223.9). This shows that intra-plateau explo-

ration successfully allows GBFS to avoid being trapped in h-value plateaus. Inter-

plateau exploration hD also increases coverage for both heuristics, confirming the

results in (Xie et al., 2014). It is worth mentioning that the performance of hd

is comparable to hD, showing that intra-plateau exploration is no less important

than inter-plateau exploration which previous work focused on.

Second, the data shows that the effects of inter/intra-plateau exploration are

complementary, as would be expected since they are designed to address orthogo-

nal issues. In most cases, when hd improves upon h then hdD improves upon hD,

and when hD improves upon h then hdD improves upon hd. As a result, for both

hCG and hFF heuristics, the hdD configuration had higher coverage (hCG:215.8,

hFF:223.9) than the hd (hCG:194.2, hFF:208) and hD (hCG:206.1, hFF:207.4) con-

figurations. This shows that combining intra/inter-plateau exploration methods

which address orthogonal issues results in better overall performance than either

type of exploration by themselves.

Based on these results, we conclude that Inter- and intra-plateau exploration

address orthogonal issues and have complementary performance, and combining

inter- and intra-plateau exploration can result in better performance than either

exploration alone.

These observations imply that satisficing search can also be reduced to blind

search, similar to what we claimed in the previous chapters (optimal search can
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be reduced to satisficing search). This is because the diversification strategies

work independently from the heuristic functions (i.e. knowledge-free) and thus

are essentially the blind search variants regardless of how it is applied, i.e. either

as an intra-plateau or inter-plateau diversification method. As long as we use a

single heuristic function h, any search strategy can be described by its behavior

on the aforementioned two-dimensional error space, (h, h∗), which is determined

by the diversification method = blind search.

Therefore, when the heuristic function being used is fixed, all we need to im-

prove the satisficing search performance is a better blind search algorithm that can

be used for inter-plateau and intra-plateau diversification. In the next chapter, we

propose a new, randomized blind search algorithm based on Minimum Spanning

Tree and fractals.
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hCG hFF

h hd hD hdD h hd hD hdD
intra inter both intra inter both

total 187 194.2 206.1 215.8 192 208 207.4 223.9

IP
C

11
w

/o
du

pl
ic

at
es elevators 9 8 8.7 9.7 19 14 15.9 13.7

nomystery 7 6 15.4 15.1 9 7 16.6 17
parcprinter 20 20 19.4 18.7 20 20 20 20
pegsol 20 20 20 20 20 20 20 20
scanalyzer 20 20 19.9 20 15 15.1 18 18.6
sokoban 16 16 16.9 17 19 19 17.4 17.4
tidybot 16 18 18.7 18.6 16 16 16 16.7
woodwork 2 2 2.7 7.7 2 2 4 7.2

IP
C

14

barman 0 0 0 0 0 0 1.5 1
cavediving 7 7 7 7 7 7 7 7.2
childsnack 1 6 0.1 1.5 0 4 0 0.3
citycar 0 0 7.8 4.7 0 0 7.2 7.1
floortile 0 0 2 2 2 2 2 2.1
ged 0 0 9.6 9.7 19 19 14 13.8
hiking 18 16.9 19.5 19.7 20 20 19.8 20
maintenance 16 16 16.1 15.8 11 8 10.7 11.1
openstacks 0 3.5 0 0.5 0 12.6 0 7
parking 7 9.7 1.2 4.1 4 7.5 1.4 5.7
tetris 18 17.1 12.4 14.3 1 5.8 3.2 4.9
thoughtful 5 5 5 5 8 9 12.7 13.1
transport 5 3 3.7 4.7 0 0 0 0
visitall 0 0 0 0 0 0 0 0

Table 6.3.1: Number of solved instances (5 min, 4GB RAM), mean of 10
runs. h: baseline GBFS. hd/hD: intra/inter-plateau type-based diversification
[h, 〈d〉] and alt([h], [〈g, h〉, ro]) (Type-GBFS), hdD: A combined configuration,
alt([h, 〈d〉], [〈g, h〉, ro]). Bold indicates that (improvements vs. baseline)> 0.5.
Blue indicates that hdD improvement correlates with hd (intra-plateau) improve-
ment, red indicates that hdD improvement correlates with hD (inter-plateau) im-
provement, and orange indicate that both intra/inter-plateau schemes as well as
the combined hdD scheme improved. Thus, intra- vs. inter-plateau scheme have
complementary effects that improve hdD.
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Chapter 7

Invasion Percolation: Fractal-based

Search Diversification

A limitation of type-based diversification based on path distance is that it does not

diversify with respect to breadth – nodes with equal estimated distance from goals

(h), initial states (g) or plateau entrance (d) are put in a single set. This makes

it susceptible to pathological behavior on graphs where some nodes have many

more children than others.

Consider a blind search on the directed acyclic graph shown in Figure 7.0.1.

The graph consists of two large components, high-b and low-b branches, and

their entries H1, L1. The initial search node is I and the goal node is L4. Both

branches have maximum depth D, and the high-b branch has maximum width B.

Both B and D are very large. This graph presents a pathological case for all of

the previously described methods (lifo, fifo, ro and type-based diversification), de-

pending on successor ordering. lifo performs a DFS, and if lifo first searches H1

and the high-b branch due to successor ordering, it must explore the entire high-b
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2 ≦ d ≦ D, 1 ≦ b ≦ B

2<d<D

High-b component Hd,b

I

Low-b component Ld

L4L2 L3

H3 H4,1 

H2,2

H2,1

H1

L1

Figure 7.0.1: An example case exhibiting the large bias in the branching factor

depending on the subgraph.
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Figure 7.0.2: fifo, lifo, ro, 〈d〉 all exhibit a pathological behavior due to the large

number of successors and the large depth.
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branch before expanding L1 and low-b branch. fifo performs Breadth-First Search

(BreadthFS), and will therefore suffer from the high branching factor at depth 2 of

the high-b branch, getting stuck before reaching L4. Although randomization can

allow ro to be better off than the behavior of fifo/BreadthFS, the effect is limited:

For example, while expanding depth 2, ro may occasionally expand depth 3 be-

cause it uniformly randomly selects a node from OPEN. However, the probability

of expanding nodes at depth 3 is initially only 1/(B+1) and continues to be small

until most of the nodes at depth 2 are expanded, because OPEN is mostly popu-

lated with the nodes from depth 2. Depth-based diversification addresses the depth

bias of BreadthFS. However, even though it distributes the effort among various

depths, the probability of expanding L2, L4 at depths 2 and 4, is only 1/(B + 1)

each, which is very low when B is very large.

We propose Invasion Percolation-based diversification (IP-diversification), a

new diversification strategy for satisficing search that addresses this type of bias.

IP-diversification combines randomization and Prim’s method (Prim, 1957) for

Minimum Spanning Tree (MST).

7.1 Invasion Percolation

Invasion Percolation (Wilkinson & Willemsen, 1983) simulates the distribution

of fluid slowly invading porous media, e.g., water replacing the air in a porous

rock. We focus on a variant called bond IP (BIP), where “bonds” indicate edges

in a lattice, and present the graph-based description by Barabási (1996). Given

initial node(s) and a graph whose edges are assigned independent random values,

BIP iteratively marks the nodes. Once assigned, the random value on each edge
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Figure 7.1.1: Invasion Percolation on 2-dimensional lattice. Picture in courtesy of

(Monnerot-Dumaine, 2006).

never changes. The initial nodes are marked by default. In each iteration it marks

an unmarked node to which the least-value outgoing edge leads. Marked nodes

represent the porous sites whose air is replaced by the water (invader). Barabási

(1996) showed that this algorithm is equivalent to applying Prim’s method for

MST (Prim, 1957) on a randomly weighted graph: Prim’s method constructs an

MST by iteratively adding a neighboring edge with the least edge costs to the

existing tree.

Figure 7.1.1 illustrates a 2-D lattice after running BIP for a while. The initial

nodes are at the leftmost edge of the rectangular region, i.e. the fluid percolates

from the left. The resulting structure has holes of various sizes that the fluid has

not invaded, due to the high-valued edges surrounding the neighbors of the holes,

which serve as an embankment preventing the water from invading. Since the

random value on each edge is fixed, the algorithm does not mark the nodes inside

the hole until it marks all nodes with smaller random values in the entire space

outside the embankments (Figure 7.1.2). This behavior is critical to forming a

fractal structure.
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Figure 7.1.2: Embankment effect

7.2 Invasion Percolation for Search Diversification

We adapt the BIP model as an exploration mechanism for best-first search. Previ-

ous work on BIP was on physical simulations with relatively small graphs, and to

our knowledge, this is the first application of BIP to complex implicit graphs.

The actual implementation of BIP is quite simple: A function rBIP returns a

randomly selected value for each search edge that caused the node to be evaluated.

For each edge, the function should always return the same value once a random

value is assigned to that edge. This requires storage whose size is linear in the

number of edges that are explored.

For intra-plateau exploration, rBIP is used to break ties in a plateau induced by

the primary heuristic function h, i.e. [h, rBIP, ∗]. Since nodes are sorted in increas-

ing order of the memoized random value attached to each edge, the node expan-

sion order within a plateau follows that of Prim’s method. For inter-plateau ex-

ploration, we alternate the expansion between standard GBFS and a queue sorted

by rBIP: alt([h], [rBIP]), just as in Type-GBFS.

Consider applying BIP to the DAG in Figure 7.0.1. There is a non-negligible
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probability that the search finds the solution without expanding high-b branch

(Figure 7.2.1): This occurs when the value v(H1) ofH1 is higher than the value of

any ofL1 . . . L4, whose probability is 1/5 (follows from
∫ 1

0
dv(H1)Pr(∀i; v(Li) ≤

v(H1)) =
∫ 1

0
x4dx). In this case, node H1 is acting as an embankment, causing

nodes in the low-b branch to be expanded. In contrast, the opposite case is very

unlikely: L1 could be expanded after expanding all of Hd,b for 1 ≤ d ≤ 4 and

1 ≤ b ≤ B, but the probability of this, 1/(2B + 3), is very small (assuming large

B).
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IH1 value is higher
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L1 to be 

expanded

H2,2, H2,4, H3 ... form
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0.3 0.5 0.3

Figure 7.2.1: Examples where BIP successfully prevents the expansion of high-B

branch.

Also consider the case when H1 is expanded with probability 4/5. Even if this

embankment is broken, H3 could act as another embankment again with probabil-

ity 1/5. Moreover, it also avoids expanding a large number of nodes inH2,i whose

values are higher than L1 . . . L4. B/5 of the nodes are not expanded on average

because each node is not expanded with the same probability 1/5.

Thus, at every possible “bottleneck” in the search space that forms an embank-

ment, BIP tends to start looking at the other branches. Since this is affected by the

least width of a subgraph rather than the maximum, it is less likely to suffer from

the pathological behavior exemplified by Figure 7.0.1.
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Node expansion order according to rBIP differs significantly from that of ro

(pure random selection). ro is equivalent to performing a random sort and select

the first node, i.e., ro essentially assigns a new random value to all nodes at every

single expansion. In contrast, rBIP assigns a value to each edge only once, which

develops embankments and allows unexplored “holes” to have longer lifetimes.

Consider what would happen if we switch the behavior from rBIP to ro starting

from the state shown in Figure 7.1.1. Since all nodes are assigned a new random

value at each expansion, the embankment nodes are more likely to be expanded,

filling the holes more quickly. Thus, running ro results in a more solid, denser

expansion biased to the left, near the initial nodes.

There is one difference between the assumptions made by BIP/Prim (Barabási,

1996) and classical planning. The search spaces of classical planning are di-

rected while BIP/Prim assumes undirected graphs. Thus, although Prim’s method

finds the minimum spanning tree on an undirected graph, it may not return the

minimum-weight tree on a directed graph. This, however, does not affect the

completeness of our search algorithm because it just changes the order of ex-

pansion (BIP-based search diversification does not prune any nodes). Adopting

algorithms for minimum spanning arborescence for directed graphs (Chu & Liu,

1965; Edmonds, 1967; Tarjan, 1977; Gabow, Galil, Spencer, & Tarjan, 1986) to

search diversification is a direction for future work.

7.3 Search Behavior of IP-diversification

We analyze the basic search behavior of IP-diversification by applying a blind

search on IPC satisficing instances. We ran four configurations, namely Type-
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based diversification with depth d (hd:[〈d〉]) and IP-diversification (hb:[rBIP]), as

well as BreadthFS (h:[fifo]) and random search (ro:[ro]). All solvers were given a

3 min/4GB resource limit.

We plotted the depth of the nodes expanded by these algorithms on two repre-

sentative runs (visitall-sat11-p20, tidybot-sat11-p08) in Figure 7.3.1. As expected,

ro behaves similarly to BreadthFS/fifo (search is biased to the shallow depths) and

Depth-diversification shows a flat distribution because it is specifically designed

to achieve the fair allocation among depths. Compared to BreadthFS/fifo and ro,

the increase of nodes-per-depth by IP-diversification is much slower, supporting

our observation that IP is controlled by the least width in the search graph. Com-

pared to Type-based diversification which shows linear nodes-per-depth, IP still

exhibits exponential behavior because IP has no explicit mechanism for balancing

the search efforts with regard to depths. However, IP expands the smaller number

of nodes in the shallower region. Similar figures were obtained for other domains.
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Figure 7.3.1: Distribution of the evaluated nodes per depth.

We also compared their performance on IPC instances. Table 7.3.1 shows that

both (hd) and (hb) improves upon blind BreadthFS while not strictly dominat-
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ing each other: (hb) shows better performance than (hd) on the Tidybot domain.

Comparison between ro and hb indicate that the blind performance of IP is better

than that of ro in tidybot and pegsol.

h hb hd ro

ipc2014 sum 14 15 22 15

hiking 2 2 7 2

tetris 0 1 3 1

ipc2011 sum 30 48 50.8 35

pegsol 17 18.5 19 17

scanalyzer 4 4 6 4

sokoban 3 3 3.8 3

tidybot 2 17.5 14 6

visitall 0 0 3 0

Table 7.3.1: Problems solved with 3 minutes/4GB RAM (average of 10 runs)

among 560 instances, using uninformed (blind) diversified search. Best results are

in bold. We do not show the domains with no differences between configurations.

7.4 Intra- and Inter-Plateau Diversification on a State-

of-the-Art Planner

Up to this point, we have evaluated intra/inter-plateau exploration on greedy best-

first search in order to cleanly isolate their effect. Next, we evaluate the combined

effect of intra/inter-plateau exploration when applied to a state-of-the-art planner,

the LAMA2011 configuration in the current version of FastDownward, which in-
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corporates a number of search enhancement techniques such as lazy evaluation,

multi-heuristic search and preferred operators. In order to focus on coverage, we

only run the first iteration (unit-cost GBFS) of LAMA, denoted as

alt([hFF], pref
(
hFF) , [hLC], pref

(
hLC)),

where hLC denotes the landmark-count heuristic and pref (X) denotes the pre-

ferred operator queue with sorting strategy X .

We apply the methods proposed in this thesis incrementally. We first add a sin-

gle exploration strategy to LAMA. (d, b) augments [h] with type-based and IP di-

versification for intra-plateau exploration ([h, 〈d〉] and [h, rBIP]), respectively. (D,

B) incorporates inter-plateau exploration by adding
〈
g, hFF

〉
and [rBIP] to LAMA’s

alternation queue, respectively. LAMA+D is equivalent to Type-LAMA (Xie

et al., 2014). Next, we combine intra/inter-plateau diversification methods: (dD)

applies both changes in (d) and (D), and similarly (bB) applies both changes in

(b) and (B).

Finally, (db2DB) incorporates all 4 methods into LAMA. Let db denote alt(〈d〉, rBIP),

alternation between depth and IP based diversification for intra-plateau explo-

ration, and let DB denote alt(
〈
g, hFF

〉
, rBIP), alternation between type-based and

IP based diversification for inter-plateau exploration. The resulting configuration,

LAMA-db2DB, incorporates all of the ideas proposed in this thesis:

alt
(
[hFF, db], pref

(
hFF) , [hLC, db], pref

(
hLC) , DB).

This configuration alternates between type-based and IP diversification in each it-

eration. It allocates 1/5 of the entire search time to inter-plateau exploration (same

as the frequency with which Type-LAMA selects from
〈
g, hFF

〉
), so it spends 1/10
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of the time on [rBIP] and 1/10 of the time on
〈
g, hFF

〉
). Adopting more sophisti-

cated approaches for determining exploration frequency (Schulte & Keller, 2014;

Nakhost & Müller, 2009) is a direction for future work.

Table 7.4.1 shows the number of solved instances. Each single diversification

improved the overall performance of LAMA except LAMA+B. For combinations

of two methods (dD and bB), complementary effects by intra-/inter-plateau diver-

sification similar to Table 6.3.1 are observed. Although LAMA+B did not result

in improvement, adding B to LAMA+b resulted in larger coverage in LAMA+bB.

Finally, bd2BD outperformed all other methods. We observed complementary

effects from dD and bB, each addressing different diversity criteria.

7.5 Evaluation of IP-Diversification

Given the performance of blind search, IP-diversification is a good candidate

for improving the performance of diversified heuristic search. We compared

the performance of (h), the standard GBFS, with the combined Type-based di-

versification (hdD) from Section 6.3 as well as intra-plateau IP-diversification

(hb:[h, rBIP]), inter-plateau IP-diversification (hB:alt([h], [rBIP])), and combined

intra/inter-plateau IP diversification (hbB:alt([h, rBIP], [rBIP])).

Results are shown in Table 7.5.1. IP-diversification, applied to both intra-

and inter-plateau exploration, resulted in improvements on both the hFF and hCG

heuristics. Complementary effects similar to Table 6.3.1 are observed between hb

and hB, and hbB outperforms both hb and hB. This provides additional empirical

evidence for the hypothesis that intra/inter-plateau exploration are complemen-

tary, and that they can be combined to yield superior performance.
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Planners Based on the Latest FastDownward
LAMA +d +D +dD +b +B +bB +db2DB

total 293.2 296.5 294.3 295.4 293.3 287.6 297.6 304.5
IP

C
11

w
/o

du
pl

ic
at

es elevators 20 19.3 19 19.2 20 19.4 19.9 19.6
nomystery 10 9.9 17.4 16.4 9.8 10.4 9.7 16.1
parcprinter 20 18.4 19.9 19.7 18.2 19.5 18.3 19.3
pegsol 20 19 20 20 19.4 20 20 20
scanalyzer 19 19.3 19.1 19.2 19.5 19.6 19.5 19.2
sokoban 17 16.9 16.9 16.6 16.4 17 16.9 16.2
tidybot 16 17 15.8 15.8 14.8 15.7 16.5 16.5
woodwork 20 20 20 20 20 20 20 20

IP
C

14

barman 15 13.6 9.5 10.4 12.1 16 14.2 14
cavediving 7 7 7.1 7.1 6.8 6.9 6.7 7
childsnack 0 9.3 0.1 0 0.2 0.3 0.1 0
citycar 2 1 5.5 4.4 4.5 4.2 4.1 4.4
floortile 2 2 2.1 2 2 2 2 2
ged 20 20 20 20 20 20 20 20
hiking 18.5 18.7 17.5 18.7 19.1 17.5 19.6 18.8
maintenance 1 1 5.5 5.6 1 1 1 3.6
openstacks 20 20 20 20 20 20 20 20
parking 19.1 19.8 16.7 18.7 19.6 18.1 18.7 19.6
tetris 9.3 7.1 7.4 7.1 12.4 4.7 15.3 14.2
thoughtful 14 14.5 15.1 15.4 13.1 14.5 12.9 14.6
transport 3.3 3.8 2.6 3.8 4.4 3.7 3.8 3.5
visitall 20 18.9 17.1 15.3 20 17.1 18.4 15.9

Table 7.4.1: Number of solved instances in 5min,4GB RAM. LAMA’s
sorting strategy is alt([hFF], pref

(
hFF
)
, [hLC], pref

(
hLC
)
). For each heuris-

tic h = hFF and h = hLC in LAMA, (d,b) augments [h] with type-based
and IP diversification for intra-plateau exploration ([h, 〈d〉] and [h, rBIP],
respectively). (D,B) applies inter-plateau exploration by adding

〈
g, hFF

〉
and [rBIP] to LAMA’s alternation queue, respectively. D corresponds to
Type-LAMA (Xie et al., 2014). (dD) includes both changes in (d) and
(D) (similarly for (bB), (b) and (B)). Finally, (db2DB) combines all methods:
alt
(
[hFF, alt(〈d〉, rBIP)], pref

(
hFF
)
, [hLC, alt(〈d〉, rBIP)], pref

(
hLC
)
, alt(

〈
g, hFF

〉
, rBIP)

)
.

The same highlighting rules as Table 6.3.1 are applied. LAMA+db2DB combines
improvements from 4 diversification strategies and achieved the best overall
coverage.
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hCG hFF

h hb hB hbB hdD h hb hB hbB hdD
intra inter both both intra inter both both

total 187 187.2 206.8 208.7 215.8 192 207.8 232.9 237.7 223.9

IP
C

11
w

/o
du

pl
ic

at
es

elevators 9 9.2 12.6 13.3 9.7 19 18.2 18.5 19.4 13.7
nomystery 7 6.4 5.5 5.6 15.1 9 6.6 7.6 6.6 17
parcprinter 20 19.6 13.7 12.4 18.7 20 20 19.9 18.9 20
pegsol 20 20 19.7 19.8 20 20 20 20 20 20
scanayzer 20 20 20 20 20 15 16.6 19.1 19.1 18.6
sokoban 16 15.9 15.8 15.2 17 19 18.6 18.5 18.4 17.4
tidybot 16 17.3 17.5 17.5 18.6 16 15 16.4 16.3 16.7
woodworking 2 1.8 14 12.8 7.7 2 1.5 14.8 15.7 7.2

IP
C

14

barman 0 0 0 0 0 0 0 7.6 6.5 1
cavediving 7 7.1 7 6.9 7 7 7 7 7 7.2
childsnack 1 0 0.1 0 1.5 0 0 0.1 0 0.3
citycar 0 0.2 1.1 0.4 4.7 0 0 3 3.8 7.1
floortile 0 0 0.5 0.2 2 2 2 2.1 2 2.1
ged 0 0 4.8 4.6 9.7 19 19.2 12.8 13 13.8
hiking 18 15.9 18.7 18.8 19.7 20 17.6 19.9 20 20
maintainance 16 14.6 14.9 14.1 15.8 11 6.7 10 5.8 11.1
openstacks 0 0.1 2.5 2.4 0.5 0 15.7 11.7 14.5 7
parking 7 10.4 7.6 10.9 4.1 4 5.4 2.3 4.8 5.7
tetris 18 19.7 17.6 19.4 14.3 1 8.6 7 11.1 4.9
thoughtful 5 4.9 5.2 5.2 5 8 9.1 11.2 11 13.1
transport 5 4.1 6 7.1 4.7 0 0 0 0 0
visitall 0 0 2 2.1 0 0 0 3.4 3.8 0

Table 7.5.1: Number of solved instances (5 min, 4Gb RAM), mean of 10
runs. h: baseline GBFS. hb/hB: intra / inter-plateau IP diversification [h, rBIP]
and alt([h], [rBIP]), hbB: A combined IP configuration alt([h, rBIP], [rBIP]), hdD:
alt([h, 〈d〉], [〈g, h〉, ro]) (same as hdD from Table 6.3.1) . The same highlighting/-
coloring rules as Table 6.3.1 are applied, showing that intra/inter-plateau schemes
based on IP are complementary. bold shows the improvements by hdD. Although
hbB and hdD are comparable overall, per-domain comparison shows hbB and
hdD are complementary.
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Overall, hbB performs comparably to hdD. However, note that some domains

were improved by Type-based but not by IP (e.g. nomystery, sokoban, child-

snack) or vise versa (transport, visitall). These results indicate that Type-based

and IP diversification are orthogonal, addressing different diversity criteria (depth

vs breadth).
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Chapter 8

Related Work

Previous work on escaping search space plateaus has focused on non-admissible

search. DBFS (Imai & Kishimoto, 2011) adds stochastic backtracking to Greedy

Best First Search (GBFS) to avoid being misdirected by the heuristic function.

Type based buckets (Xie et al., 2014) classify plateaus in GBFS according to

the [g, h] pair and distributes the effort.1 Marvin (Coles & Smith, 2007) learns

plateau-escaping macros from the Enhanced Hill Climbing phase of the FF plan-

ner (Hoffmann & Nebel, 2001). Hoffmann gives a detailed analysis of the struc-

ture of the search spaces of satisficing planning (2005, 2011).

Benton et al. (2010) proposed an inadmissible technique for temporal planning

where short actions are hidden behind long actions and do not increase makespan.

Wilt and Ruml (2011) also analyzes inadmissible distance-to-go estimates. To

our knowledge, plateaus have not been previously investigated for cost-optimal

search. Admissible and inadmissible search differ significantly in how non-final

plateaus (plateaus with f < f ∗) are treated: Inadmissible search can skip or es-

1The relationship between Type-GBFS and our work is discussed in detail in Section 5.1.
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cape plateaus whenever possible, while admissible search cannot, unless it is the

plateau with f = f ∗ where the goals can immediately be found.

Some real-time search algorithms like ARA∗ (Likhachev, Ferguson, Gordon,

Stentz, & Thrun, 2008) are able to prune some states in the final plateau using the

knowledge acquired in the previous iterations of suboptimal searches. ARA∗ uses

a sequence of WA∗ ([g + wh]) with decreasing weights w, with the final round

of iterations being optimal A∗ with an uninflated heuristic value (i.e. w = 1).

When f = g + wh reaches the cost of best path found so far by the previous

suboptimal iterations, it can safely terminate the search maintaining the current

bounded optimality guarantee w, that is, w = 1 in the final iteration. Thus, in an

iterated, real-time search setting, this could largely avoid the problem of searching

the final plateau if the previous suboptimal searches happen to have found the

optimal solution already.

In their work on combining multiple inadmissible heuristics in a planner,

Röger and Helmert (2010) considered a tie-breaking approach which works as

follows: When combining two heuristics h1 and h2, h1 is used as the primary cri-

terion, and h2 is used to break ties among nodes with the same h1 — [h1, h2, fifo].

This did not perform well in their work on satisficing planning compared to the

approaches based on alternation queues and Pareto-optimal queue selection. Since

their focus is on how to combine multiple heuristics, this tie-breaking-based ap-

proach was positioned as just one instance of various implementations of OPEN

lists. In contrast, this thesis provides a focused, in-depth investigation of various

tie-breaking strategies, and shows how tie-breaking enables the efficient search on

the plateau created by the earlier levels of sorting criteria.

A∗ with lookahead (AL∗) (Stern, Kulberis, Felner, & Holte, 2010) extends A∗
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by performing a cost-bounded depth-first lookahead from each node as it is gen-

erated. Upon the normal expansion of a node n in A∗, lookahead search performs

a depth-first search with cost bound f(n) +k rooted at n. As a special case, under

the cost bound k = 0 (AL∗0 in their notation), depth-first lookahead expands only

the children with the same f -value. AL∗, or AL∗0 in particular, is similar to [f, lifo]

in that the lookahead is a depth-first search. However, there are both conceptual

and algorithmic differences: First of all,AL∗0 does not specify the intermediate tie-

breaking (such as h-based tie-breaking) for its main A∗, and depth-first lookahead

does not perform best-first expansion, so the tie-breaking is irrelevant. Thus, the

problems and the solutions addressed in these approaches are different. Second,

AL∗ propagates the maximum and the minimum f values found in the lookahead

search, which allows for more pruning.

Another relevant line of work, which is similar in spirit to Zerocost domains, is

the Preference Track in the deterministic part of IPC4 (Gerevini, Saetti, & Vallati,

2009). One difference between our Zerocost domains and these domains is that

the latter allows a more complex semantics such as multiplication. More recently,

Wray et al. (2015) proposed a model called conditional lexicographic preferences

with slack in the context of planning under uncertainty. Lexicographic preferences

allow the problem to have multiple preference criteria evaluated individually. The

solution quality is determined by the first preference, breaking ties by the second

preference and so on. Slack refers to a constant amount of error from the optimal

value. With slack, one can model a situation where the goal is to optimize the

first preference, but the difference up to a certain amount is ignored and ties are

broken according to the second preference. An example of a planning problem

with such lexicographic preferences with slack would be a transportation problem
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where the first optimization objective is the amount of fuel usage, allowing a slack

up to 5 liters, and the second optimization target is the makespan of the plan. In

this case, a plan with 100 liters of fuel usage and a plan with 105 liters of fuel

usage are considered equally preferable in the first criterion, and the better plan is

the one with a shorter makespan. Since slack allows multiple values (e.g. 100 and

105) to have the same preference, it should introduce larger plateaus. Applying

our techniques to problems with slack is an avenue of future work.

We theorized that we can understand the diversification of GBFS with respect

to two orthogonal error axes of inter-plateau and intra-plateau errors. Recently,

another group of ideas for understanding the GBFS behavior, namely high water

marks (Wilt & Ruml, 2014) and benches (Heusner, Keller, & Helmert, 2017), was

proposed. Analyzing the interaction between these ideas and our framework is

future work.

While this thesis investigated Bond-IP (the variant of Invasion Percolation

which fixes random values to edges), the dual variant which fixes values on nodes

is called Site IP. Analysis of SIP is a direction for future work as they could have

different fractal characteristics (Sheppard, Knackstedt, Pinczewski, & Sahimi,

1999). Valenzano et al. (2014, Section 4.3) evaluated a baseline, knowledge-

free heuristic which assigns a random h-value to a node. By itself, this would

behave similarly to the ro baseline strategy, if heuristic values are reevaluated for

reopened nodes (the default behavior in FastDownward2). However, Valenzano

et al. disabled node-reopening in all their experimental configurations, which, in

effect, fixes the random value for each node and makes them behave similarly to

SIP.

2http://hg.fast-downward.org/file/df227b467100/src/search/search_engines/

eager_search.cc#l202
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Chapter 9

Conclusion and Future Work

In this thesis, we investigated the cost-optimal search using A∗ and the diversifi-

cation strategies for satisficing search based on GBFS.

Our contributions are as follows: First, we showed that tie-breaking has a

significant role in the cost-optimal search using A∗ (Chapter 3). We empirically

showed that most IPC benchmark instances have large plateaus with regard to

f , and most of the search effort is spent in the final plateau with f = f ∗. We

then showed that the commonly used tie-breaking policy based on h value fails

to provide guidance in the plateau when problem instances have 0-cost actions

and have large plateaus with regard to h. We empirically showed that most of the

search effort can be spent in the final plateau with f = f ∗, h = 0 in some domains,

and noted that in such a plateau, the search is controlled solely by the default tie-

breaking fifo, lifo or ro. We proposed a new set of benchmark instances for cost-

optimal planning, called Zerocost domains, which contain many 0-cost actions.

We showed that Zerocost versions of IPC benchmark domains tend to have larger

final plateaus with f = f ∗, h = 0 and pose a new challenge to traditional search
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algorithms.

As one approach to improving search performance in Zerocost domains, we

proposed a depth metric which measures the distance from the entrance to the

plateau (Chapter 4). Using this metric, we described the pathological behaviors

of fifo, lifo and ro, proposed a new diversification strategy, theoretically and em-

pirically showed that it avoids the pathological behavior and achieves a better

performance.

We then introduced a new interpretation of cost-optimal A∗ search as a se-

ries of satisficing searches among f -cost plateaus of an increasing order of f

(Chapter 5). This perspective led to another approach for effective tie-breaking

in Zerocost domains, the use of inadmissible distance-to-go estimates as part of

a multi-heuristics tie-breaking strategy. Combination of depth diversification and

distance-to-go estimates results in the best overall performance. Although there is

an additional cost to compute multiple heuristic values, the overhead can be elim-

inated by a simple case-based configuration which only uses multiple heuristics

when 0-cost actions are present in the problem instance.

We then focused on improving the satisficing search performance, motivated

by the result that satisficing search can speed up cost-optimal search (while being

also important in its own regard). In such an attempt, we introduced the notion

of Intra- and Inter-plateau exploration in satisficing heuristic search (Chapter 6).

While previous work on exploration focused on inter-plateau exploration, we ar-

gued that intra-plateau exploration addresses orthogonal issues, and showed that

the type-based diversification framework originally developed for inter-plateau

diversification could be used to unify intra- and inter-plateau diversification. We

then showed empirically that these two modes of diversification have orthogonal,
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complementary effects when implemented as diversification strategies for GBFS,

and showed that it is possible to combine intra/inter-plateau diversification, re-

sulting in a better performance than either class of strategy alone is used. Fur-

thermore, by proposing the inter/intra-plateau framework for understanding the

diversification methods for GBFS, we effectively showed that satisficing search

can be reduced to blind search because the methods for either of the two modes

of diversification are all knowledge-free, blind search algorithms.

Next, we showed that type-based diversification is not sufficient for bias avoid-

ance in graphs where nodes have a largely varying number of neighbors, and

proposed IP-diversification, a new breadth-aware diversification strategy which

addresses this issue (Chapter 7). We then showed that IP-diversification can be

used as either intra- or inter-plateau exploration strategy, i.e., IP is a dual-mode

diversification strategy unlike depth-diversification and 〈g, h〉 type-based diversi-

fication, which are specialized for either intra- or inter-plateau exploration. This

chapter showcased an example of improving the satisficing search performance in

a less ad-hoc manner, i.e., by simply devising a better blind search algorithm. Fi-

nally, we showed that incorporating these new ideas (performing both intra / inter-

plateau exploration, and both type-based (depth) / IP (breadth) diversification) into

FD/LAMA yields state-of-the-art performance on IPC benchmark instances.

Overall, through a series of in-depth theoretical and empirical analyses, we

showed that various search algorithms can be understood in a simpler, unified

framework. This framework allowed us to transfer the knowledge in satisficing

search to cost-optimal search, or to exploit a single blind search method in two

modes of diversification. The results obtained in this dissertation lead to two

interesting and independent directions for future work.
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The first direction is to evaluate the applicability of a much broader variety

of satisficing algorithms in the context of optimising search, leveraging our refor-

mulation of A∗ as a sequence of satisficing searches. Although we evaluated only

one relatively simple, satisficing configuration (ĥFF) in the experiments, many

techniques which have previously been developed for satisficing planning can be

applied to enhance tie-breaking (plateau-search) in cost-optimal search, including

lazy evaluation (Richter & Westphal, 2010), alternating/Pareto open list (Röger &

Helmert, 2010), helpful actions (preferred operators) (Hoffmann & Nebel, 2001),

random walk local search (Nakhost & Müller, 2009), macro operators (Botea,

Enzenberger, Müller, & Schaeffer, 2005; Chrpa, Vallati, & McCluskey, 2015),

factored planning (Amir & Engelhardt, 2003; Brafman & Domshlak, 2006; Asai

& Fukunaga, 2015) and exploration-based search enhancements (Valenzano et al.,

2014; Xie et al., 2014; Valenzano & Xie, 2016).

The second direction for future work is to reformulate the existing satisficing

search algorithms into the simpler blind search algorithms, instead of trying to em-

bed them directly as the subroutines for optimal search. Since existing satisficing

methods tend to be ad-hoc, integrating them into the standard Best-First Search

framework may not be straightforward. However, reformulating existing satisfic-

ing search algorithms into blind search algorithms would greatly simplify their

applications and analyses. Also, their diversification ability could be sometimes

constrained in a single mode of diversification (inter/intra-plateau). By identify-

ing their blind-search reformulations, we could find a way to expand their ability

to the other mode that was not addressed in the original algorithm.
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Appendix: Detailed Data

This Appendix contains some detailed figures and data which are referenced from

the text in the previous sections.
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9.1 Detailed Data for Table 3.2.1

Domain [f, fifo] [f, lifo] [f, ro] [f, h, fifo] [f, h, lifo] [f, h, ro]
IPC benchmark (1104) 443 558 448.9 ± 1.3 558 565 558.9 ± 2.1

airport(50) 18 26 18 ± 0 27 26 25.7 ± 0.5
barman-opt11(20) 0 0 0 ± 0 0 0 0 ± 0

blocks(35) 26 26 26 ± 0 28 28 28 ± 0
cybersec(19) 0 3 0 ± 0 2 3 3.9 ± 1.1

depot(22) 5 5 5 ± 0 6 6 6 ± 0
driverlog(20) 12 13 12 ± 0 13 13 13 ± 0

elevators-opt11(20) 14 15 14 ± 0 15 15 15 ± 0
floortile-opt11(20) 6 6 6 ± 0 6 6 6 ± 0

freecell(80) 8 9 8.7 ± 0.5 9 9 9 ± 0
grid(5) 1 1 1 ± 0 1 1 1 ± 0

gripper(20) 6 6 6 ± 0 6 6 6 ± 0
hanoi(30) 12 12 12 ± 0 12 12 12 ± 0

logistics00(28) 16 18 16 ± 0 20 20 20 ± 0
miconic(150) 68 140 68 ± 0 140 140 140 ± 0

mprime(35) 20 22 19.9 ± 0.3 21 21 20.9 ± 0.3
mystery(30) 15 16 15 ± 0 16 16 15.2 ± 0.4

nomystery-opt11(20) 12 13 12 ± 0 14 14 14 ± 0
openstacks-opt11(20) 11 18 11.2 ± 0.4 11 18 11.7 ± 0.5
parcprinter-opt11(20) 12 13 12 ± 0 13 13 13 ± 0

parking-opt11(20) 1 1 1 ± 0 1 1 1 ± 0
pathways(30) 4 5 4 ± 0 5 5 5 ± 0

pegsol-opt11(20) 17 17 17 ± 0 17 17 17 ± 0
pipesworld-notankage(50) 13 13 13 ± 0 14 14 14.6 ± 0.5

pipesworld-tankage(50) 7 8 8 ± 0 8 8 8 ± 0
psr-small(50) 48 48 48 ± 0 48 48 48 ± 0

rovers(40) 7 7 7 ± 0 7 7 7 ± 0
scanalyzer-opt11(20) 4 10 5.4 ± 0.7 10 10 10 ± 0

sokoban-opt11(20) 19 19 19 ± 0 19 19 19 ± 0
storage(30) 14 14 14 ± 0 14 14 14 ± 0

tidybot-opt11(20) 11 12 11 ± 0 12 12 12 ± 0
tpp(30) 6 6 6 ± 0 6 6 6 ± 0

transport-opt11(20) 6 6 6 ± 0 6 6 6 ± 0
visitall-opt11(20) 9 10 9.4 ± 0.5 10 10 10 ± 0

woodworking-opt11(20) 6 9 8.2 ± 0.4 10 10 10 ± 0
zenotravel(20) 9 11 9 ± 0 11 11 11 ± 0

Table 9.1.1: Coverage comparison (the number of instances solved in 5min, 4GB,
LMcut heuristics) among the standard baseline tie-breaking algorithms. We high-
light the best results when the difference between the maximum and the minimum
coverage exceeds 2.

110



Domain [f, fifo] [f, lifo] [f, ro] [f, h, fifo] [f, h, lifo] [f, h, ro]
IPC benchmark (1104) 460 490 460.9 ± 1.6 491 496 489.4 ± 1.0

airport(50) 9 9 9 ± 0 9 9 9 ± 0
barman-opt11(20) 4 4 4 ± 0 4 4 4 ± 0

blocks(35) 21 22 21 ± 0 22 22 22 ± 0
cybersec(19) 0 0 0 ± 0 0 0 0 ± 0

depot(22) 5 6 5 ± 0 6 6 5 ± 0
driverlog(20) 12 12 12 ± 0 12 12 12 ± 0

elevators-opt11(20) 13 13 13 ± 0 13 13 13 ± 0
floortile-opt11(20) 5 6 5 ± 0 6 6 6 ± 0

freecell(80) 15 16 15 ± 0 17 17 16 ± 0
grid(5) 2 2 2 ± 0 2 2 2 ± 0

gripper(20) 8 20 8 ± 0 20 20 20 ± 0
hanoi(30) 14 14 14 ± 0 14 14 14 ± 0

logistics00(28) 20 20 20 ± 0 20 20 20 ± 0
miconic(150) 68 73 68.3 ± 0.7 73 73 73.2 ± 0.4

mprime(35) 23 23 22 ± 0 23 24 23.7 ± 0.5
mystery(30) 15 15 15 ± 0 15 16 15 ± 0

nomystery-opt11(20) 17 18 17.8 ± 0.4 18 18 18 ± 0
openstacks-opt11(20) 15 19 15.4 ± 0.5 15 19 15.4 ± 0.5
parcprinter-opt11(20) 10 10 10 ± 0 10 10 10 ± 0

parking-opt11(20) 1 1 1 ± 0 1 1 1 ± 0
pathways(30) 4 4 4 ± 0 4 4 4 ± 0

pegsol-opt11(20) 17 19 17.2 ± 0.4 19 19 19 ± 0
pipesworld-notankage(50) 9 9 8.9 ± 0.3 10 10 9.9 ± 0.3

pipesworld-tankage(50) 13 13 13.1 ± 0.3 13 13 13.2 ± 0.4
psr-small(50) 50 50 50 ± 0 50 50 50 ± 0

rovers(40) 6 8 6.1 ± 0.3 8 8 8 ± 0
scanalyzer-opt11(20) 10 10 10 ± 0 10 10 10 ± 0

sokoban-opt11(20) 20 20 20 ± 0 20 20 20 ± 0
storage(30) 15 15 15 ± 0 15 15 15 ± 0

tidybot-opt11(20) 0 0 0 ± 0 0 0 0 ± 0
tpp(30) 6 6 6 ± 0 7 6 6 ± 0

transport-opt11(20) 7 7 7 ± 0 7 7 7 ± 0
visitall-opt11(20) 9 9 9 ± 0 9 9 9 ± 0

woodworking-opt11(20) 7 7 7 ± 0 7 7 7 ± 0
zenotravel(20) 10 10 10 ± 0 12 12 12 ± 0

Table 9.1.2: Coverage comparison (the number of instances solved in 5min, 4GB,
M&S heuristics) among the standard baseline tie-breaking algorithms. We high-
light the best results when the difference between the maximum and the minimum
coverage exceeds 2.
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9.2 Detailed Data for Table 4.2.1

[f
,h

,fifo
]

[f
,h

,lifo
]

[f
,h

,ro
]

[f
,h

,〈d〉,fifo
]

[f
,h

,〈d〉,lifo
]

[f
,h

,〈d〉,ro
]

Zerocost (620) 256 279 261.9 ± 1.4 284 264 288.1 ± 1.6

airport-fuel(20) 15 13 13.8 ± 0.4 14 13 14 ± 0.5
blocks-stack(20) 17 17 17 ± 0 17 17 17 ± 0

depot-fuel(22) 6 6 6 ± 0 6 6 6 ± 0
driverlog-fuel(20) 8 8 8 ± 0 8 8 8 ± 0

elevators-up(20) 7 13 7 ± 0 7 9 9.1 ± 0.8
floortile-ink(20) 8 8 8.1 ± 0.3 8 8 8.2 ± 0.4

freecell-move(20) 4 19 4.9 ± 0.3 17 10 16.4 ± 0.7
grid-fuel(5) 1 1 1 ± 0 1 1 1 ± 0

gripper-move(20) 7 7 7 ± 0 7 7 7 ± 0
hiking-fuel(20) 9 9 9 ± 0 9 9 9 ± 0

logistics00-fuel(28) 16 16 16 ± 0 16 16 15.3 ± 0.5
miconic-up(30) 16 17 16.6 ± 0.5 19 18 20.3 ± 0.7

mprime-succumb(35) 15 14 17.1 ± 0.8 22 14 20.1 ± 0.3
mystery-feast(20) 7 5 7.7 ± 0.5 6 5 7.2 ± 0.8

nomystery-fuel(20) 10 10 10 ± 0 10 10 10 ± 0
parking-movecc(20) 0 0 0 ± 0 0 0 0 ± 0

pathways-fuel(30) 5 5 4.3 ± 0.5 5 5 4.1 ± 0.3
pipesnt-pushstart(20) 8 8 8.4 ± 0.5 8 8 9.8 ± 0.4

pipesworld-pushend(20) 3 4 3.8 ± 0.4 3 3 4.8 ± 0.4
psr-small-open(20) 19 19 19 ± 0 19 19 19 ± 0

rovers-fuel(40) 8 8 8 ± 0 8 8 8 ± 0
scanalyzer-analyze(20) 9 9 9.1 ± 0.3 9 10 9.2 ± 0.4
sokoban-pushgoal(20) 18 18 18 ± 0 18 18 18 ± 0

storage-lift(20) 4 4 4.1 ± 0.3 5 4 4.2 ± 0.4
tidybot-motion(20) 16 16 16 ± 0 16 16 16 ± 0

tpp-fuel(30) 8 11 8 ± 0 11 10 11 ± 0
woodworking-cut(20) 5 7 7 ± 0 8 5 8.2 ± 0.8

zenotravel-fuel(20) 7 7 7 ± 0 7 7 7 ± 0

Table 9.2.1: Coverage comparison (the number of instances solved in 5min, 4GB,
LMcut heuristics) on 620 Zerocost instances. We highlight the best results when
the difference between the best and the worst coverages is greater than 2.
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[f
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,fifo
]

[f
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,lifo
]

[f
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,ro
]

[f
,h

,〈d〉,fifo
]

[f
,h

,〈d〉,lifo
]

[f
,h

,〈d〉,ro
]

Zerocost (620) 280 301 287.7 ± 3.2 302 288 308.1 ± 2.1

airport-fuel(20) 5 5 5 ± 0 5 5 5 ± 0
blocks-stack(20) 20 20 20 ± 0 20 20 20 ± 0

depot-fuel(22) 5 5 6 ± 0 6 5 6 ± 0
driverlog-fuel(20) 9 9 9 ± 0 9 9 9 ± 0
elevators-up(20) 8 14 8.6 ± 0.5 9 13 11 ± 1
floortile-ink(20) 8 8 8 ± 0 7 7 6.9 ± 0.3

freecell-move(20) 5 17 6.7 ± 0.9 17 15 17.3 ± 0.5
grid-fuel(5) 2 2 2 ± 0 2 2 2 ± 0

gripper-move(20) 20 20 20 ± 0 20 20 20 ± 0
hiking-fuel(20) 13 13 12.8 ± 0.4 13 12 12.1 ± 0.3

logistics00-fuel(28) 16 16 16 ± 0 16 16 16 ± 0
miconic-up(30) 29 30 30 ± 0 30 30 30 ± 0

mprime-succumb(35) 21 19 19.6 ± 0.7 25 15 23.4 ± 0.9
mystery-feast(20) 4 4 5.9 ± 0.3 4 4 6 ± 0

nomystery-fuel(20) 16 16 16 ± 0 16 16 16 ± 0
parking-movecc(20) 0 0 0 ± 0 0 0 0 ± 0

pathways-fuel(30) 4 4 4 ± 0 4 4 4 ± 0
pipesnt-pushstart(20) 3 3 3.4 ± 0.5 5 3 5 ± 0

pipesworld-pushend(20) 5 9 7.7 ± 0.5 5 6 9 ± 0.9
psr-small-open(20) 19 19 19 ± 0 19 19 19 ± 0

rovers-fuel(40) 8 8 8 ± 0 8 8 8 ± 0
scanalyzer-analyze(20) 11 11 11 ± 0 11 11 11 ± 0
sokoban-pushgoal(20) 19 19 18 ± 0 18 18 18 ± 0

storage-lift(20) 4 4 4 ± 0 4 4 4 ± 0
tidybot-motion(20) 0 0 0 ± 0 0 0 0 ± 0

tpp-fuel(30) 9 10 9.6 ± 0.5 11 10 11 ± 0
woodworking-cut(20) 7 7 8 ± 0.5 8 7 9 ± 1

zenotravel-fuel(20) 10 9 9.6 ± 0.7 10 9 9.3 ± 1.0

Table 9.2.2: Coverage comparison (the number of instances solved in 5min, 4GB,
M&S heuristics) on 620 Zerocost instances. We highlight the best results when
the difference between the maximum and the minimum coverage exceeds 2.
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,fifo
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[f
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,lifo
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,ro
]

[f
,h

,〈d〉,fifo
]

[f
,h

,〈d〉,lifo
]

[f
,h

,〈d〉,ro
]

IPC benchmark (1104) 558 565 558.9 ± 2.1 571 575 571.4 ± 1.7

airport(50) 27 26 25.7 ± 0.5 27 26 25.7 ± 0.5
barman-opt11(20) 0 0 0 ± 0 0 0 0 ± 0

blocks(35) 28 28 28 ± 0 28 28 28 ± 0
cybersec(19) 2 3 3.9 ± 1.1 8 12 10 ± 1

depot(22) 6 6 6 ± 0 6 6 6 ± 0
driverlog(20) 13 13 13 ± 0 13 13 13 ± 0

elevators-opt11(20) 15 15 15 ± 0 15 15 15 ± 0
floortile-opt11(20) 6 6 6 ± 0 6 6 6 ± 0

freecell(80) 9 9 9 ± 0 9 9 9 ± 0
grid(5) 1 1 1 ± 0 1 1 1 ± 0

gripper(20) 6 6 6 ± 0 6 6 6 ± 0
hanoi(30) 12 12 12 ± 0 12 12 12 ± 0

logistics00(28) 20 20 20 ± 0 20 20 20 ± 0
miconic(150) 140 140 140 ± 0 140 140 140 ± 0

mprime(35) 21 21 20.9 ± 0.3 21 21 20.9 ± 0.3
mystery(30) 16 16 15.2 ± 0.4 16 16 15.4 ± 0.5

nomystery-opt11(20) 14 14 14 ± 0 14 14 14 ± 0
openstacks-opt11(20) 11 18 11.7 ± 0.5 18 18 18 ± 0
parcprinter-opt11(20) 13 13 13 ± 0 13 13 13 ± 0

parking-opt11(20) 1 1 1 ± 0 1 1 1 ± 0
pathways(30) 5 5 5 ± 0 5 5 5 ± 0

pegsol-opt11(20) 17 17 17 ± 0 17 17 17 ± 0
pipesworld-notankage(50) 14 14 14.6 ± 0.5 14 15 14.4 ± 0.5

pipesworld-tankage(50) 8 8 8 ± 0 8 8 8 ± 0
psr-small(50) 48 48 48 ± 0 48 48 48 ± 0

rovers(40) 7 7 7 ± 0 7 7 7 ± 0
scanalyzer-opt11(20) 10 10 10 ± 0 10 10 10 ± 0

sokoban-opt11(20) 19 19 19 ± 0 19 19 19 ± 0
storage(30) 14 14 14 ± 0 14 14 14 ± 0

tidybot-opt11(20) 12 12 12 ± 0 12 12 12 ± 0
tpp(30) 6 6 6 ± 0 6 6 6 ± 0

transport-opt11(20) 6 6 6 ± 0 6 6 6 ± 0
visitall-opt11(20) 10 10 10 ± 0 10 10 10 ± 0

woodworking-opt11(20) 10 10 10 ± 0 10 10 10 ± 0
zenotravel(20) 11 11 11 ± 0 11 11 11 ± 0

Table 9.2.3: Coverage comparison (the number of instances solved in 5min, 4GB,
LMcut heuristics) on 1104 standard IPC benchmark instances. We highlight the
best results when the difference between the maximum and the minimum coverage
exceeds 2.
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]

[f
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]
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,〈d〉,ro
]

IPC benchmark (1104) 491 496 489.4 ± 1.0 487 487 485.6 ± 1.5

airport(50) 9 9 9 ± 0 9 9 9 ± 0
barman-opt11(20) 4 4 4 ± 0 4 4 4 ± 0

blocks(35) 22 22 22 ± 0 22 21 21.9 ± 0.3
cybersec(19) 0 0 0 ± 0 0 0 0 ± 0

depot(22) 6 6 5 ± 0 5 5 5 ± 0
driverlog(20) 12 12 12 ± 0 12 12 12 ± 0

elevators-opt11(20) 13 13 13 ± 0 12 12 12 ± 0
floortile-opt11(20) 6 6 6 ± 0 6 6 6 ± 0

freecell(80) 17 17 16 ± 0 16 16 16 ± 0
grid(5) 2 2 2 ± 0 2 2 2 ± 0

gripper(20) 20 20 20 ± 0 20 20 20 ± 0
hanoi(30) 14 14 14 ± 0 14 14 14 ± 0

logistics00(28) 20 20 20 ± 0 20 20 20 ± 0
miconic(150) 73 73 73.2 ± 0.4 73 73 72.2 ± 0.4

mprime(35) 23 24 23.7 ± 0.5 23 24 23.4 ± 0.5
mystery(30) 15 16 15 ± 0 15 16 15 ± 0

nomystery-opt11(20) 18 18 18 ± 0 18 18 18 ± 0
openstacks-opt11(20) 15 19 15.4 ± 0.5 19 19 19 ± 0
parcprinter-opt11(20) 10 10 10 ± 0 10 10 10 ± 0

parking-opt11(20) 1 1 1 ± 0 1 1 1 ± 0
pathways(30) 4 4 4 ± 0 4 4 4 ± 0

pegsol-opt11(20) 19 19 19 ± 0 19 19 19 ± 0
pipesworld-notankage(50) 10 10 9.9 ± 0.3 10 9 9.8 ± 0.4

pipesworld-tankage(50) 13 13 13.2 ± 0.4 13 13 13 ± 0
psr-small(50) 50 50 50 ± 0 50 50 50 ± 0

rovers(40) 8 8 8 ± 0 8 8 7.1 ± 0.3
scanalyzer-opt11(20) 10 10 10 ± 0 10 10 10 ± 0

sokoban-opt11(20) 20 20 20 ± 0 19 19 19 ± 0
storage(30) 15 15 15 ± 0 15 15 15 ± 0

tidybot-opt11(20) 0 0 0 ± 0 0 0 0 ± 0
tpp(30) 7 6 6 ± 0 6 6 6 ± 0

transport-opt11(20) 7 7 7 ± 0 6 6 6 ± 0
visitall-opt11(20) 9 9 9 ± 0 9 9 9 ± 0

woodworking-opt11(20) 7 7 7 ± 0 7 7 7 ± 0
zenotravel(20) 12 12 12 ± 0 10 10 10.1 ± 0.3

Table 9.2.4: Coverage comparison (the number of instances solved in 5min, 4GB,
M&S heuristics) on 1104 standard IPC benchmark instances. We highlight the
best results when the difference between the maximum and the minimum coverage
exceeds 2.
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9.3 Additional Figures for Figure 4.2.1: lifo Default
Tiebreaking
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Figure 9.3.1: Histogram comparing the node evaluation ratio (node/sec) between
standard tie-breaking ([f, h, lifo]) and depth-based tie-breaking ([f, h, 〈d〉, lifo]) on
LMcut and M&S heuristics. On M&S, compared to LMcut, node evaluation rate
more often becomes slower when depth is enabled. This is because the node
evaluation of M&S is an order of magnitude faster than LMcut, and the overhead
of managing depth-based tie-breaking queue becomes significant.
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9.4 Additional Figures for Figure 4.2.3: More His-
tograms for the Size of Final Plateaus

These includes 12 additional histograms for the size of final plateaus on more
variety of domains and instances.
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Figure 9.4.1: (Page 1/2) Number of nodes (y-axis) expanded per depth (x-axis) in
the final plateau with different tie-breaking strategies. Both axes are in logarithmic
scale.
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Figure 9.4.2: (Page 2/2) Number of nodes (y-axis) expanded per depth (x-axis) in
the final plateau with different tie-breaking strategies. Both axes are in logarithmic
scale.

118



9.5 Additional Figures for Figure 4.2.4: More His-
tograms for the Size of Non-final Plateaus

These are the additional histograms for the size of non-final plateaus on more
variety of domains and instances.
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Figure 9.5.1: Depth distribution in the non-final plateaus (plateau (f ∗, h) , h 6= 0):
Other domains.
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9.6 Detailed Data for Table 5.5.2
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Zerocost (620) 295 303 301.0 305 309 305.9 ± 2.1 337 340 341 ± 2.2 340 342 344.3 ± 1.8

airport-fuel(20) 13 12 12.7 14 12 12.8 ± 0.8 13 11 11.7 ± 0.5 13 11 11.7 ± 0.5
blocks-stack(20) 15 15 15.0 15 15 15 ± 0 17 17 17 ± 0 17 17 17 ± 0

depot-fuel(22) 6 6 6.0 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0
driverlog-fuel(20) 8 8 8.0 8 8 8 ± 0 8 8 8 ± 0 8 8 8 ± 0
elevators-up(20) 20 20 19.9 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0
floortile-ink(20) 8 8 8.0 8 8 8 ± 0 9 8 8.7 ± 0.5 9 8 8.7 ± 0.5

freecell-move(20) 12 14 13.3 12 14 13.2 ± 0.4 17 18 17.9 ± 0.8 17 18 18.3 ± 0.9
grid-fuel(5) 1 1 1.0 1 1 1 ± 0 1 1 1 ± 0 1 1 1 ± 0

gripper-move(20) 6 6 6.0 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0
hiking-fuel(20) 8 8 8.0 8 8 8 ± 0 9 9 9 ± 0 9 9 9 ± 0

logistics00-fuel(28) 15 15 15.0 15 15 15 ± 0 15 15 15 ± 0 15 15 15 ± 0
miconic-up(30) 14 17 15.1 14 17 15.1 ± 0.9 15 21 17.9 ± 1.2 15 21 18 ± 1.2

mprime-succumb(35) 19 16 19.1 20 16 20.1 ± 0.6 30 23 28.3 ± 0.9 30 27 29.3 ± 0.7
mystery-feast(20) 7 6 6.9 6 5 5.9 ± 0.3 8 8 8 ± 0 8 8 8 ± 0

nomystery-fuel(20) 10 10 10.0 10 10 10 ± 0 10 10 10 ± 0 10 10 10 ± 0
parking-movecc(20) 13 14 14.3 13 15 14.4 ± 1.5 20 20 20 ± 0 20 20 20 ± 0

pathways-fuel(30) 5 5 4.1 5 5 4 ± 0 5 5 5 ± 0 5 5 5 ± 0
pipesnt-pushstart(20) 7 8 7.7 8 8 7.8 ± 0.4 9 9 9 ± 0 9 9 9 ± 0

pipesworld-pushend(20) 5 6 5.1 5 5 5 ± 0 7 8 7.1 ± 0.3 7 7 7.7 ± 0.5
psr-small-open(20) 19 19 19.0 19 19 19 ± 0 19 19 19 ± 0 19 19 19 ± 0

rovers-fuel(40) 7 7 7.0 7 7 7 ± 0 8 9 8 ± 0 8 8 8 ± 0
scanalyzer-analyze(20) 8 11 10.1 16 18 15.3 ± 0.9 15 15 15 ± 0 15 15 15 ± 0

sokoban-pushgoal(20) 16 16 16.0 16 16 16 ± 0 17 17 17 ± 0 17 17 17 ± 0
storage-lift(20) 4 4 4.0 4 4 4 ± 0 4 4 4.3 ± 0.5 4 4 4.8 ± 0.4

tidybot-motion(20) 14 14 14.0 14 14 14 ± 0 15 16 16 ± 0 16 16 15.9 ± 0.3
tpp-fuel(30) 8 10 8.7 8 10 8.2 ± 0.4 8 10 9.1 ± 0.3 10 10 10 ± 0

woodworking-cut(20) 20 20 20.0 20 20 20 ± 0 19 20 20 ± 0 19 20 20 ± 0
zenotravel-fuel(20) 7 7 7.0 7 7 7 ± 0 7 7 7 ± 0 7 7 7 ± 0

Table 9.6.1: Coverage results with LMcut for computing f and inadmissible
distance-to-go heuristics for tie-breaking, on 620 Zerocost instances. We high-
light the best results when the difference between the maximum and the minimum
coverage exceeds 2, over all configurations including Table 9.2.1.
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Zerocost (620) 308 305 307.3 ± 1.5 307 306 307.8 ± 1.4 336 331 337.9 ± 2.1 337 333 337.6 ± 1.3

airport-fuel(20) 1 1 1 ± 0 1 1 1 ± 0 5 5 5 ± 0 5 5 5 ± 0
blocks-stack(20) 20 20 20 ± 0 20 20 20 ± 0 20 19 19.9 ± 0.3 20 20 19.9 ± 0.3

depot-fuel(22) 6 6 6 ± 0 6 6 6 ± 0 4 4 4 ± 0 4 4 4 ± 0
driverlog-fuel(20) 9 9 9 ± 0 9 9 9 ± 0 9 9 9 ± 0 9 9 9 ± 0
elevators-up(20) 19 19 19 ± 0 19 19 19 ± 0 20 20 20 ± 0 20 20 20 ± 0
floortile-ink(20) 8 8 8 ± 0 8 8 8 ± 0 9 8 8.8 ± 0.4 9 8 8.8 ± 0.4

freecell-move(20) 13 14 12.7 ± 0.7 13 13 12.7 ± 0.7 17 17 17.4 ± 0.5 17 17 17.3 ± 0.7
grid-fuel(5) 2 2 2 ± 0 2 2 2 ± 0 2 2 2 ± 0 2 2 2 ± 0

gripper-move(20) 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0
hiking-fuel(20) 13 13 12.1 ± 0.3 13 13 12.1 ± 0.3 11 11 11 ± 0 11 11 11 ± 0

logistics00-fuel(28) 16 16 16 ± 0 16 16 16 ± 0 16 16 16 ± 0 16 16 16 ± 0
miconic-up(30) 22 22 22 ± 0 22 22 22.1 ± 0.3 30 30 30 ± 0 30 30 30 ± 0

mprime-succumb(35) 21 17 20.4 ± 0.7 21 17 20.4 ± 0.7 28 23 27.4 ± 0.7 28 25 27.7 ± 0.7
mystery-feast(20) 5 5 5 ± 0 5 5 5 ± 0 3 3 3 ± 0 3 3 3 ± 0

nomystery-fuel(20) 16 16 16 ± 0 16 16 16 ± 0 15 15 15 ± 0 15 15 15 ± 0
parking-movecc(20) 2 2 2 ± 0 2 2 2 ± 0 10 10 10.3 ± 1.0 10 10 10.3 ± 1.0

pathways-fuel(30) 4 4 4 ± 0 4 4 4 ± 0 4 4 4 ± 0 4 4 4 ± 0
pipesnt-pushstart(20) 1 2 1.9 ± 0.8 1 2 1.8 ± 0.7 5 5 5 ± 0 5 5 5 ± 0

pipesworld-pushend(20) 8 7 7.8 ± 0.4 8 8 8 ± 0 5 5 5.4 ± 0.7 5 5 5.6 ± 0.5
psr-small-open(20) 19 19 19 ± 0 19 19 19 ± 0 19 19 19 ± 0 19 19 19 ± 0

rovers-fuel(40) 8 8 8 ± 0 8 8 8 ± 0 8 8 8 ± 0 8 8 8 ± 0
scanalyzer-analyze(20) 15 14 15 ± 0 14 15 15 ± 0 15 16 15.4 ± 0.7 15 15 15.2 ± 0.7

sokoban-pushgoal(20) 17 17 17 ± 0 17 17 17 ± 0 18 18 18.2 ± 0.4 18 18 18 ± 0
storage-lift(20) 4 4 4 ± 0 4 4 4 ± 0 4 4 4 ± 0 4 4 4 ± 0

tidybot-motion(20) 0 0 0 ± 0 0 0 0 ± 0 0 0 0 ± 0 0 0 0 ± 0
tpp-fuel(30) 9 10 9.4 ± 0.5 9 10 9.8 ± 0.4 10 11 10.9 ± 0.3 11 11 10.9 ± 0.3

woodworking-cut(20) 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0
zenotravel-fuel(20) 10 10 10 ± 0 10 10 9.9 ± 0.3 9 9 9 ± 0 9 9 8.9 ± 0.3

Table 9.6.2: Coverage results with M&S for computing f and inadmissible
distance-to-go heuristics for tie-breaking, on 620 Zerocost instances. We high-
light the best results when the difference between the maximum and the minimum
coverage exceeds 2, over all configurations including Table 9.2.2.
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IPC benchmark (1104) 534 534 534 ± 2.1 536 535 534.7 ± 1.5 564 562 563.7 ± 1.4 563 560 561.9 ± 1.4

airport(50) 24 25 23.9 ± 0.6 24 24 23.8 ± 0.4 25 24 24.8 ± 0.4 25 24 24.6 ± 0.5
barman-opt11(20) 0 0 0 ± 0 0 0 0 ± 0 0 0 0 ± 0 0 0 0 ± 0

blocks(35) 27 27 27 ± 0 27 27 27 ± 0 27 27 27 ± 0 27 27 27 ± 0
cybersec(19) 5 3 5.9 ± 1.2 6 4 5.4 ± 0.7 6 6 5.9 ± 0.8 6 5 5.6 ± 0.7

depot(22) 5 5 5 ± 0 5 5 5 ± 0 6 6 6 ± 0 6 6 6 ± 0
driverlog(20) 12 12 12 ± 0 12 12 12 ± 0 13 13 13 ± 0 13 13 13 ± 0

elevators-opt11(20) 12 12 12 ± 0 12 12 12 ± 0 15 15 14.9 ± 0.3 14 15 14 ± 0
floortile-opt11(20) 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0

freecell(80) 8 8 8 ± 0 8 8 8 ± 0 9 9 9 ± 0 9 9 9 ± 0
grid(5) 1 1 1 ± 0 1 1 1 ± 0 1 1 1 ± 0 1 1 1 ± 0

gripper(20) 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0
hanoi(30) 11 11 11 ± 0 11 11 11 ± 0 12 12 12 ± 0 12 12 11.9 ± 0.3

logistics00(28) 17 17 17 ± 0 17 17 17 ± 0 20 20 20 ± 0 20 20 20 ± 0
miconic(150) 140 140 140 ± 0 140 140 140 ± 0 140 140 140 ± 0 140 140 140 ± 0

mprime(35) 20 21 19.9 ± 0.8 20 21 20 ± 0.7 22 22 22 ± 0 22 22 22 ± 0
mystery(30) 15 15 15 ± 0 15 15 15 ± 0 16 16 16 ± 0 16 16 16 ± 0

nomystery-opt11(20) 13 13 13 ± 0 13 13 13 ± 0 14 14 14 ± 0 14 14 14 ± 0
openstacks-opt11(20) 10 10 10 ± 0 10 10 9.9 ± 0.3 17 17 17 ± 0 17 17 17 ± 0
parcprinter-opt11(20) 13 13 13 ± 0 13 13 13 ± 0 13 13 13 ± 0 13 13 13 ± 0

parking-opt11(20) 1 1 1 ± 0 1 1 1 ± 0 1 1 1 ± 0 1 1 1 ± 0
pathways(30) 5 5 5 ± 0 5 5 5 ± 0 5 5 5 ± 0 5 5 5 ± 0

pegsol-opt11(20) 16 16 16 ± 0 16 16 16 ± 0 17 17 17 ± 0 17 17 17 ± 0
pipesworld-notankage(50) 12 12 12 ± 0 12 12 12 ± 0 13 13 13 ± 0 13 13 13 ± 0

pipesworld-tankage(50) 7 7 7 ± 0 7 7 7 ± 0 8 8 8 ± 0 8 8 8 ± 0
psr-small(50) 48 48 47.9 ± 0.3 48 48 48 ± 0 48 48 48 ± 0 48 48 48 ± 0

rovers(40) 7 7 7 ± 0 7 7 7 ± 0 7 7 7 ± 0 7 7 7 ± 0
scanalyzer-opt11(20) 8 10 8.8 ± 0.4 10 10 10 ± 0 10 10 10 ± 0 10 10 10 ± 0

sokoban-opt11(20) 17 17 17 ± 0 17 17 17 ± 0 19 19 19 ± 0 19 19 19 ± 0
storage(30) 14 14 14 ± 0 14 14 14 ± 0 14 14 14 ± 0 14 14 14 ± 0

tidybot-opt11(20) 10 11 10.3 ± 0.5 11 11 10.6 ± 0.5 11 11 11 ± 0 11 11 11 ± 0
tpp(30) 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0

transport-opt11(20) 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0
visitall-opt11(20) 10 10 10 ± 0 10 10 10 ± 0 10 10 10 ± 0 10 10 10 ± 0

woodworking-opt11(20) 11 8 9.3 ± 1.0 9 9 9 ± 0 10 9 10.1 ± 1.1 10 8 9.9 ± 1.1
zenotravel(20) 11 11 11 ± 0 11 11 11 ± 0 11 11 11 ± 0 11 11 11 ± 0

Table 9.6.3: Coverage results with LMcut for computing f and inadmissible
distance-to-go heuristics for tie-breaking, on 1104 standard IPC benchmark in-
stances.
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IPC benchmark (1104) 477 475 470.4 ± 0.9 476 475 470.9 ± 0.9 458 457 457 ± 1.3 457 457 456.8 ± 1.2

airport(50) 7 7 7 ± 0 7 7 7 ± 0 9 9 9 ± 0 9 9 9 ± 0
barman-opt11(20) 4 4 4 ± 0 4 4 4 ± 0 4 4 4 ± 0 4 4 4 ± 0

blocks(35) 22 21 21 ± 0 21 21 21 ± 0 21 20 20.1 ± 0.3 20 20 20 ± 0
cybersec(19) 0 0 0 ± 0 0 0 0 ± 0 0 0 0 ± 0 0 0 0 ± 0

depot(22) 5 5 5 ± 0 5 5 5 ± 0 4 4 4 ± 0 4 4 4 ± 0
driverlog(20) 12 12 12 ± 0 12 12 12 ± 0 11 11 11 ± 0 11 11 11 ± 0

elevators-opt11(20) 13 13 12 ± 0 13 13 12 ± 0 10 10 10 ± 0 10 10 10 ± 0
floortile-opt11(20) 6 6 6 ± 0 6 6 6 ± 0 7 7 7 ± 0 7 7 7 ± 0

freecell(80) 15 15 15 ± 0 15 15 15 ± 0 14 14 14 ± 0 14 14 14 ± 0
grid(5) 2 2 2 ± 0 2 2 2 ± 0 2 2 2 ± 0 2 2 2 ± 0

gripper(20) 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0
hanoi(30) 14 14 14 ± 0 14 14 14 ± 0 13 13 13 ± 0 13 13 13 ± 0

logistics00(28) 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0 20 20 20 ± 0
miconic(150) 72 72 72 ± 0.5 72 72 72 ± 0.5 69 69 69.2 ± 0.4 69 69 69.2 ± 0.4

mprime(35) 19 19 19.3 ± 0.5 20 19 19.3 ± 0.5 21 21 21.1 ± 0.8 21 21 21.2 ± 0.7
mystery(30) 15 15 15 ± 0 15 15 15 ± 0 15 15 15 ± 0 15 15 15 ± 0

nomystery-opt11(20) 18 18 18 ± 0 18 18 18 ± 0 16 16 16 ± 0 16 16 16 ± 0
openstacks-opt11(20) 18 19 18 ± 0 18 19 18 ± 0 18 18 18 ± 0 18 18 17.7 ± 0.5
parcprinter-opt11(20) 10 10 10 ± 0 10 10 10 ± 0 11 11 11 ± 0 11 11 11 ± 0

parking-opt11(20) 1 1 0.6 ± 0.5 1 1 0.8 ± 0.4 0 0 0 ± 0 0 0 0 ± 0
pathways(30) 4 4 4 ± 0 4 4 4 ± 0 4 4 4 ± 0 4 4 4 ± 0

pegsol-opt11(20) 19 19 19 ± 0 19 19 19 ± 0 17 17 17 ± 0 17 17 17 ± 0
pipesworld-notankage(50) 6 5 5.7 ± 0.7 6 5 5.9 ± 0.8 9 9 8.7 ± 0.5 9 9 8.8 ± 0.4

pipesworld-tankage(50) 12 12 12 ± 0 12 12 12 ± 0 9 9 9 ± 0 9 9 9 ± 0
psr-small(50) 50 50 50 ± 0 50 50 50 ± 0 50 50 50 ± 0 50 50 50 ± 0

rovers(40) 8 8 6 ± 0 7 8 6.1 ± 0.3 6 6 6 ± 0 6 6 6 ± 0
scanalyzer-opt11(20) 10 10 9.9 ± 0.3 10 10 9.8 ± 0.4 7 7 6.8 ± 0.4 7 7 6.8 ± 0.4

sokoban-opt11(20) 18 18 18 ± 0 18 18 18 ± 0 19 19 19 ± 0 19 19 19 ± 0
storage(30) 15 15 15 ± 0 15 15 15 ± 0 14 14 14 ± 0 14 14 14 ± 0

tidybot-opt11(20) 0 0 0 ± 0 0 0 0 ± 0 0 0 0 ± 0 0 0 0 ± 0
tpp(30) 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0 6 6 6 ± 0

transport-opt11(20) 7 7 6 ± 0 7 7 6 ± 0 6 6 6 ± 0 6 6 6 ± 0
visitall-opt11(20) 9 9 9 ± 0 9 9 9 ± 0 9 9 9 ± 0 9 9 9 ± 0

woodworking-opt11(20) 8 8 8.1 ± 0.3 8 8 8.1 ± 0.3 7 7 7.1 ± 0.3 7 7 7.1 ± 0.3
zenotravel(20) 12 11 10.9 ± 0.3 12 11 10.9 ± 0.3 10 10 10 ± 0 10 10 10 ± 0

Table 9.6.4: Coverage results with M&S for computing f and inadmissible
distance-to-go heuristics for tie-breaking, on 1104 standard IPC benchmark in-
stances.
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