555 research outputs found

    A case study evaluation: perceptually accurate textured surface models

    Get PDF
    This paper evaluates a new method for capturing surfaces with variations in albedo, height, and local orientation using a standard digital camera with three flash units. Similar to other approaches, captured areas are assumed to be globally flat and largely diffuse. Fortunately, this encompasses a wide array of interesting surfaces, including most materials found in the built environment, e.g., masonry, fabrics, floor coverings, and textured paints. We present a case study of naïve subjects who found that surfaces captured with our method, when rendered under novel lighting and view conditions, were statistically indistinguishable from photographs. This is a significant improvement over previous methods, to which our results are also compared. © 2009 ACM

    A Novel Framework for Highlight Reflectance Transformation Imaging

    Get PDF
    We propose a novel pipeline and related software tools for processing the multi-light image collections (MLICs) acquired in different application contexts to obtain shape and appearance information of captured surfaces, as well as to derive compact relightable representations of them. Our pipeline extends the popular Highlight Reflectance Transformation Imaging (H-RTI) framework, which is widely used in the Cultural Heritage domain. We support, in particular, perspective camera modeling, per-pixel interpolated light direction estimation, as well as light normalization correcting vignetting and uneven non-directional illumination. Furthermore, we propose two novel easy-to-use software tools to simplify all processing steps. The tools, in addition to support easy processing and encoding of pixel data, implement a variety of visualizations, as well as multiple reflectance-model-fitting options. Experimental tests on synthetic and real-world MLICs demonstrate the usefulness of the novel algorithmic framework and the potential benefits of the proposed tools for end-user applications.Terms: "European Union (EU)" & "Horizon 2020" / Action: H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity / Acronym: Scan4Reco / Grant number: 665091DSURF project (PRIN 2015) funded by the Italian Ministry of University and ResearchSardinian Regional Authorities under projects VIGEC and Vis&VideoLa

    Screening for Neonatal Jaundice by Smartphone Sclera Imaging

    Get PDF
    Jaundice is observed in over 60% of neonates and must be carefully monitored. Ifsevere cases go unnoticed, death or permanent disability can result. Neonatal jaun-dice causes 100,000 deaths yearly, with low-income countries in Africa and SouthAsia particularly affected. There is an unmet need for an accessible and objectivescreening method. This thesis proposes a smartphone camera-based method forscreening based on quantification of yellow discolouration in the sclera.The primary aim is to develop and test an app to screen for neonatal jaundicethat requires only the smartphone itself. To this end, a novel ambient subtractionmethod is proposed and validated, with less dependence on external hardware orcolour cards than previous app-based methods. Another aim is to investigate thebenefits of screening via the sclera. An existing dataset of newborn sclera images(n=87) is used to show that sclera chromaticity can predict jaundice severity.The neoSCB app is developed to predict total serum bilirubin (TSB) fromambient-subtracted sclera chromaticity via a flash/ no-flash image pair. A studyis conducted in Accra, Ghana to evaluate the app. With 847 capture sessions, thisis the largest study on image-based jaundice detection to date. A model trained onsclera chromaticity is found to be more accurate than one based on skin. The modelis validated on an independent dataset collected at UCLH (n=38).The neoSCB app has a sensitivity of 100% and a specificity of 76% in iden-tifying neonates with TSB≥250μmol/L (n=179). This is equivalent to the TcB(JM-105) data collected concurrently, and as good as the best-performing app in theliterature (BiliCam). Following a one-time calibration, neoSCB works without spe-cialist equipment, which could help widen access to effective jaundice screening

    Robust Specularity Removal from Hand-held Videos

    Get PDF
    Specular reflection exists when one tries to record a photo or video through a transparent glass medium or opaque surfaces such as plastics, ceramics, polyester and human skin, which can be well described as the superposition of a transmitted layer and a reflection layer. These specular reflections often confound the algorithms developed for image analysis, computer vision and pattern recognition. To obtain a pure diffuse reflection component, specularity (highlights) needs to be removed. To handle this problem, a novel and robust algorithm is formulated. The contributions of this work are three-fold.;First, the smoothness of the video along with the temporal coherence and illumination changes are preserved by reducing the flickering and jagged edges caused by hand-held video acquisition and homography transformation respectively.;Second, this algorithm is designed to improve upon the state-of-art algorithms by automatically selecting the region of interest (ROI) for all the frames, reducing the computational time and complexity by utilizing the luminance (Y) channel and exploiting the Augmented Lagrange Multiplier (ALM) with Alternating Direction Minimizing (ADM) to facilitate the derivation of solution algorithms.;Third, a quantity metrics is devised, which objectively quantifies the amount of specularity in each frame of a hand-held video. The proposed specularity removal algorithm is compared against existing state-of-art algorithms using the newly-developed quantity metrics. Experimental results validate that the developed algorithm has superior performance in terms of computation time, quality and accuracy

    On-site surface reflectometry

    Get PDF
    The rapid development of Augmented Reality (AR) and Virtual Reality (VR) applications over the past years has created the need to quickly and accurately scan the real world to populate immersive, realistic virtual environments for the end user to enjoy. While geometry processing has already gone a long way towards that goal, with self-contained solutions commercially available for on-site acquisition of large scale 3D models, capturing the appearance of the materials that compose those models remains an open problem in general uncontrolled environments. The appearance of a material is indeed a complex function of its geometry, intrinsic physical properties and furthermore depends on the illumination conditions in which it is observed, thus traditionally limiting the scope of reflectometry to highly controlled lighting conditions in a laboratory setup. With the rapid development of digital photography, especially on mobile devices, a new trend in the appearance modelling community has emerged, that investigates novel acquisition methods and algorithms to relax the hard constraints imposed by laboratory-like setups, for easy use by digital artists. While arguably not as accurate, we demonstrate the ability of such self-contained methods to enable quick and easy solutions for on-site reflectometry, able to produce compelling, photo-realistic imagery. In particular, this dissertation investigates novel methods for on-site acquisition of surface reflectance based on off-the-shelf, commodity hardware. We successfully demonstrate how a mobile device can be utilised to capture high quality reflectance maps of spatially-varying planar surfaces in general indoor lighting conditions. We further present a novel methodology for the acquisition of highly detailed reflectance maps of permanent on-site, outdoor surfaces by exploiting polarisation from reflection under natural illumination. We demonstrate the versatility of the presented approaches by scanning various surfaces from the real world and show good qualitative and quantitative agreement with existing methods for appearance acquisition employing controlled or semi-controlled illumination setups.Open Acces

    Automatic Detection and Correction for Glossy Reflections in Digital Photograph

    Get PDF
    [[abstract]]The popularization of digital technology has made shooting digital photos and using related applications a part of daily life. However, the use of flash, to compensate for low atmospheric lighting, often leads to overexposure or glossy reflections. This study proposes an auto-detection and inpainting technique to correct overexposed faces in digital photography. This algorithm segments the skin color in the photo as well as uses face detection and capturing to determine candidate bright spots on the face. Based on the statistical analysis of color brightness and filtering, the bright spots are identified. Finally, bright spots are corrected through inpainting technology. From the experimental results, this study demonstrates the high accuracy and efficiency of the method

    Gradient variation: A key to enhancing photographs across illumination

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore