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Abstract

Extreme lighting conditions, such as a high dynamic range (HDR) scene
or a low light environment, may introduce many kinds of defects for
digital photography. These artifacts, including pixel saturation, noise,
blurring, etc., have been studied as individual problems in the area of im-
age processing for decades. Recently, Computational Photography, an
emerging area across computer vision and computer graphics, attempts
to resolve the problems by “reinventing” digital cameras. In light of
previous contributions in this area, this thesis presents two novel solu-
tions to enhance photographs in HDR scene and low light environment
respectively. The key ideas behind both solutions are based on one fun-
damental observation: the image gradient variation due to illumination
change. However, such variation has been either ignored or over sim-
plified in the existing works. To enhance photography in HDR scenes,
we build a dual-camera system, being able to capture a normal (visible-
light) photograph and its near infra-red counterpart with a single shot.
By manipulating the gradient magnitude based on near infra-red infor-
mation, the visible photograph can be enhanced in both contrast and
texture. For low light environment photograph enhancement, we pro-
pose a selective re-flashing method which requires only two input flash
photographs with different flash intensities. By decomposing the ra-
diance gradient, our method can faithfully recover the ambient image
and allows the user to re-flash the selected regions. Compared to the
existing works, our approach is simple yet efficient and able to achieve
higher visual quality. Besides, we hope that our work can help better
understand the relationship between gradient and illumination, and
provide more insights for digital photograph enhancement.
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Chapter 1

Introduction

Light makes photography. Embrace light. Admire it. Love it. But above

all, know light. Know it for all you are worth, and you will know the key to

photography.

George Eastman
(The Founder of Kodak)

Photography is all about capturing and recording light. This rule, since the
birth of daguerreotype nearly 170 years ago [Coe 1976], remains the same even
with the most advance of the photo sensing technology today. Light plays a critical
role in photography, but it is not always easy to control. For example, in the scene
where the brightness contrast is very high, a.k.a. high dynamic range, the bright
regions are easily over saturated while the dark regions are still underexposed,
as shown in Figure 1.1. Another example could be photography in low light
environment. In some scenarios, such as outdoor night activities, dimly lit parties,
or even simple indoor portraits, photographs are very likely corrupted by noise,
motion blur, or flash artifacts. Figure 1.2 and 1.3 illustrate two kinds of common
low light situations, in which many kinds of artifacts are exhibited.
The imperfections in conventional digital cameras stimulate the increasing pop-

ularity of Computational Photography which “re-invents” cameras and redefines
ways of capturing and enhancing digital photography. Existing works can be
classified into three categories:

1



CHAPTER 1. Introduction

Computational Optics Novel optic elements enable cameras to gain more infor-
mation from a scene with more flexible exposure settings, such as refocusing
using 4D lightfield [Ng et al. 2005; Lumsdaine and Georgiev 2009; Levin
et al. 2009], depth recovering with coded radiance [Veeraraghavan et al. 2007;
Levin et al. 2007; Bando et al. 2008], deblurring through obtained motion ker-
nels [Ben-Ezra and K.Nayar 2004; Agrawal and Raskar 2007; Tai et al. 2008;
Agrawal et al. 2009; Cho and Lee 2009], etc.

Computational Illumination High dynamic range illumination can be effectively
captured using the approaches presented in [Debevec andMalik 1997; Nayar
andMitsunaga 2000], and representedwithin lowdynamic range as proposed
in [Reinhard et al. 2002; Fattal et al. 2002]. In low light environment, the
ambient image can be enhanced by adding into it rich and sharp details
which are extracted from its flash counterpart, as proposed in [Eisemann and
Durand 2004; Petschnigg et al. 2004; Raskar et al. 2004a; Miao and Sim 2005;
Agrawal et al. 2005b; Krishnan and Fergus 2009].

Computational Processing Recent works have enriched image processing with
new techniques. For instance, Poisson Image Editing [Pérez et al. 2003] opens
new era for gradient domain image processing, Bilateral Filtering [Tomasi
and Manduchi 1998], as well as Non-local Means [Mahmoudi and Sapiro
2005], have become the de facto standard techniques for feature-preserved
image smoothing. Besides, human intervention has been increasingly incor-
porated in image processing to provide high level prior knowledge, such as
the scribble-based marking used in [Li et al. 2004; Agarwala et al. 2004].

1.1 Overview

This thesis deals with new techniques in the second and third category above, i.e.
computational illumination and computational processing, specifically, on how to
enhancephotographs taken in thehighdynamic sceneor the low light environment.
Our techniques are based on our major observation about the connection between
the radiance gradient and illumination variation. We find that such connection
can be a key to understanding and resolving the problems, however, it has been

2



CHAPTER 1. Introduction

neglected in previous studies. In this work, we first study radiance gradient
variation based on the BRDF model, and then derive its mathematical relationship
with illumination change. Based on this study, we propose: (1) a novel solution
that enhances low dynamic range representation of HDR scenes by showing better
contrast and recovering lost texture details, (2) a new computational re-flashing
approach which is able to capture and present low light ambient radiance with
high visual quality.
The subsequent sections first present the motivation of our work by summa-

rizing the challenges faced by digital photography under two extreme lighting
conditions, i.e. high dynamic range and low light environment, followed by our
research objectives and contributions.

1.2 Challenges under Various Lighting Conditions

1.2.1 High Dynamic Range

High dynamic range (HDR) means the intensity range of the scene illumination
is much higher than that of digital photographs. The usual contrast ratio of an
outdoor scene in natural daylight can be up to 1010, which is much greater than
the dynamic range recorded by the current digital cameras (102), resulting in the
problems of overexposure or underexposure. Figure 1.1 gives an example: under
high brightness, both color and textures are washed out, while in the darkness,
details are barely seen.
Given the limited dynamic range of camera sensor, it is very difficult for a

common digital camera to capture HDR radiance with a single image. Professional
photographers therefore choose to take photographs in RAW format, in which
scene radiance is recorded with 12 or 14 bits per channel, much wider than the
conventional 8 bit per channel. As a result, more details can be revealed in the
image if the brightness contrast is properly adjusted. However, such adjustment
usually needs to be done region by region, which requires significant manual effort
as well as experience. Furthermore, the dynamic range of RAW format is still
limited.
Other than using a single input image, researchers have proposed ways to

3



CHAPTER 1. Introduction

Figure 1.1: Thisfigure shows two typical high dynamic range scenes. The leftfigure
is taken inside a hall with glass ceiling, and the right one is taken in a forest toward
the bright sky. As it can be seen, both images suffer from the similar problem: the
bright regions (the glass ceiling and the sky) have been over saturated, but some
regions are still in the darkness completely.

4
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capture HDR radiance by taking a set of photographs with different exposure
settings [Debevec and Malik 1997]. Then the recovered HDR radiance can be
compressed to low dynamic range with tone-mapping methods [Reinhard et al.
2002; Fattal et al. 2002]. In theory, HDR based tone-mapping can preserve and
reveal all the details of the original radiance. However, the demanding requirement
of multiple inputs restricts the method from being widely used.

1.2.2 Low Light Photography

Low light environment, such as outdoor night, candle lighting, dim indoor lighting,
is another challenge faced by photographers, where the ambient illumination is too
weak to be sensed by today’s digital cameras. Though various ways can be used to
compensate the low lighting, they are not without their problems and limitations.
For example, using larger aperture can gain more incident light but lose the depth
of field; prolonging exposure time can also capture more ambiance but may cause
blurring artifacts; increasing ISO can avoid blurring but boost image noise.
Flash photography has been widely used in low light environment. However,

artificialflash is typically strong andharsh, which usually ruins the natural ambient
radiance and causes uneven exposure. Figure 1.2 gives an example. The left image
is taken without flash but with high ISO value and slow shutter speed. As we can
see, due to the low light condition, the subject in the image suffers from motion
blur and noise. In contrast, the image on the right, a typical photograph taken with
strong flash and fast shutter speed, presents a sharp and clear image. However,
the image fails to convey an crucial element in the scene - the gentle atmosphere
rendered by the candle light. Tomitigate such unpleasant flash effects, experienced
photographers often choose slow sync flash mode (or night portrait mode in low-end
cameras) as an alternative, which is essentially a long exposure endingwith a quick
flash burst. Figure 1.3 shows a comparison between images in this flash mode and
a normal flash mode. The upper image is taken with a normal flash mode. Again,
due to the strong flash and fast shutter speed, the ambient radiance looks pale and
the flash is yet unable to reach the distant background which is eventually veiled
in darkness. In contrast, when the slow sync flash mode is applied, as shown in
the lower image, the ambiance can be well preserved. However, this solution is

5
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Figure 1.2: This set of images were taken in an outdoor birthday party at night. In
the no-flash image on the left, the image quality is seriously degraded by many ar-
tifacts, such as noise, blur, and underexposure. On the contrary, the flash image on
the right exhibits high image quality, but the ambient radiance has been completely
ruined by the strong and harsh flash.

not perfect. As we can see in the image, the blurring and “ghost” effects seriously
degrade the visual quality. This is because the exposure time of the slow sync
flash image is as long as 1.3 seconds, which is too long for a casual hand-held
shooting, causing motion blur; and the quick flash at the end creates a sharp image
overlapping with the blur, causing the ”ghost” effect.
In Computational Photography, researchers tended to take advantage of both

flash and no-flash photographs [Eisemann andDurand 2004; Petschnigg et al. 2004;
Agrawal et al. 2005b], or exploit multiple flash pictures [Raskar et al. 2004c; Miao
and Sim 2005], to enhance the ambient image while eliminating the flash artifacts.
A common issue of these methods is their strong dependence on the static scene
assumption, since they usually require at least two images of the same scene as

6
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Figure 1.3: These two images were taken inside a restaurant, where the small
ceiling lights and the table candles are the only ambient illuminations. Under the
normal flash mode shown in the upper image, similar to Figure 1.2, fast shutter
speed and strong flash yield high image quality at the cost of losing the ambient
radiance. Under the slow sync flash mode (or night portrait mode) shown in the
lower picture, the longer exposure with the final quick flash can help preserve the
ambient radiance but may cause motion blurring and ghost effects, as highlighted
in the figure.

7
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inputs. More details will be elaborated in the next chapter.

1.3 Motivation

While many contributions have been made in recent years to address the challeng-
ing problems of enhancing photographs in HDR scenes or low light environment,
previous approaches are limited in the following two ways:

Dynamic Scenes Most methods require multiple input photographs (e.g. photos
with different exposure settings or flash/no-flash pairs) to be aligned pixel by
pixel. Such aligned photographs can only be easily obtained in static scenes.
In dynamic scenes, however, those methods are hardly applicable since it is
difficult to gather the required inputs during one exposure.

Dynamic Illumination While more inputs provide more information, new prob-
lemsmay be introduced especially when images are captured under different
lighting conditions. For example, flash may cause cast shadows, specular-
ities, and inter-reflection, while weak ambient image may introduce noise
and blur. Removing such side effects is not easy and increases the overall
complexity.

In the previous works, the impact of illumination variation is either painfully
removed or simply treated as variation of the image intensity. In this thesis,
we will show that the illumination variation, on the contrary, is important to
understand and resolve the problems listed in Section 1.2. To be precise, we
first derive a mathematical relationship between illumination change and radiance
gradient. Then we exploit the relationship to enhance digital photography in
different scenarios.

1.4 Objectives

As discussed in the previous sections, the problems of enhancing digital pho-
tography in two different scenarios: high dynamic range scenes and low light
environment, are challenging and worthy of study. Although the photographs in

8



CHAPTER 1. Introduction

these two scenarios exhibit completely different appearance and artifacts, in this
thesis the problems are bridged together by the same key factor: gradient variation
due to illumination change. The objective of our work is to solve the two problems
by exploiting this key factor. More specifically:

• For scenes in high dynamic range illumination, we aim at acquiring a low
dynamic representation with better brightness contrast and richer texture
details than conventional photographs.

• For scenes in low lighting condition, our goal is toprovide an efficient solution
such that theweak ambient radiance can be recorded andpresentedwith high
visual quality.

• Being an approach requiring multiple photographs as inputs, our method
should minimize its dependence on the static scene assumption, thus avoid-
ing artifacts such as motion blurring or thermal noise.

• Our computational techniques will also incorporate with computer vision
and/or human interaction. With computer vision, our approach should be
as automatic as possible. Being aided by human, the intervention must be
simple and intuitive enough.

1.5 Contributions

In terms of original contributions to the field of computational photography, this
thesis makes the following two:

1. Derive and analyze a mathematical relationship between illumination varia-
tion and radiance gradient.

2. Demonstrate such relationship is a key to understanding and enhancing dig-
ital photography under different illumination, by successfully applying it in
two complicated scenarios: high dynamic range and low light environment.

9
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1.6 Road Map

The rest of this thesis is organized as follows: the next chapter provides the back-
ground and recent related work on high dynamic range imaging, computational
flash photography, gradient based image editing, and a brief review of interac-
tive computer vision. Chapter 3 presents our theoretical study on the relationship
between radiance gradient variation and illumination change. Chapter 4 and 5
demonstrate how our theory can be applied to enhance photographs under high
dynamic range illumination or low light environment. Finally, Chapter 6 concludes
the thesis along with the discussion of future research directions.

10



Chapter 2

Literature Survey

In this thesis, our research focuses on gradient variation across different illumina-
tions, and in particular, we will tackle photography enhancement in high dynamic
range and low light environment. The digital photographs captured in such situ-
ations could be degraded by many artifacts, such as the blooming effect by over-
exposure, blurring and noise due to slow shutter speed, shadows or specularities
produced by flash. Some of these artifacts, as classical problems in the domain of
image processing, have been studied individually for decades. Instead of resolving
these artifacts one by one through post processing, in computational photography,
we aim to invent new capturing and representing solutions which can easily re-
move or avoid these artifacts as a whole. In [2009], Raskar and Tumblin already
gave an intensive introduction of most recent research in Computational Photog-
raphy. In this chapter, we will briefly review some of the most related works of its
two branches: computational illumination and processing.

2.1 Computational Processing

Broadly speaking,many classical problems can be categorized in the area of compu-
tational processing, such as image segmentation, matting, colorization, etc. These
problems have attracted great attention recently, and been attempted by a large
amount of new methods. In this section, we will review two basic techniques,
namely, Bilateral Filtering and Poisson Image Editing, which are widely used in

11



CHAPTER 2. Literature Survey

Figure 2.1: Compared with Gaussian blurring, bilateral filter can smooth the small
noise while preserving the strong feature.

many of these methods (including ours). Since Poisson image editing is processing
based on gradient domain, we will also review some latest techniques on image
reconstruction from gradients.

2.1.1 Bilateral Filtering

Bilateral filter was first invented by Tomasi and Manduchi in [1998]. It is, in
fact, a blurring filter consists of two Gaussian weighting functions, as shown in
Equation (2.1). The usual Gaussian blurring of a pixel p is a weighted average of
the pixel and its neighbors (GσS(‖p − q‖)). On top of it, bilateral filter introduced
another weighting factor: intensity difference, to preserve strong edges (Gσr(|Ip −
Iq|)). Pixels, which are much different from their neighbors, will be assigned low
weight. And pixels having similar intensities are given higher weight for blurring.
Thus, bilateralfilter is an edge-preservingfilters. Figure 2.1 illustrates thedifference
between a usual Gaussian filter and bilateral filter.

BF[I]p =
1
Wp

∑
q∈S
GσS(‖p − q‖)Gσr(|Ip − Iq|)Iq (2.1)

In Computational Photography, bilateral filter is widely used to decompose an
image to a large scale layer and a detail layer [Oh et al. 2001; Durand and Dorsey
2002; Tumblin and Turk 1999; Bae et al. 2006], or separate the two layers across
different images (a.k.a. joint bilateral filter) [Petschnigg et al. 2004; Eisemann and
Durand 2004]. In our work described in Chapter 4, we used bilateral filter to
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separate large scale layer of brightness for contrast transferring.

2.1.2 Poisson Image Editing

Poisson image editing (PIE), brought by Pérez et al. in [2003], is a significant contri-
bution on gradient-based image processing. Pérez et al. were the first to formulate
image compositing problem as a Poisson equation with a guided vector field. The
goal of image compositing is to blend the region of interest (ROI) from the source
onto the target image, as illustrated in Figure 2.2. In the final composition image
c, letΩ denote the unknown closed region with boundary ∂Ω, and let r denote the
pixel value overΩ. Then PIE introduces another vector field v, and defines r as the
solution of the following minimization problem,

min
r
=

�
Ω

|∇r − v|2 with r|∂Ω = t|∂Ω, (2.2)

where ∇ is the gradient operator. The solution to Equation (2.2) is given by the
following Poisson equation with Dirichlet boundary conditions,

Δr = div(v) with r|∂Ω = t|∂Ω, (2.3)

where div(v) is divergence of v.
By defining different v, solving Equation (2.2) can accomplish different goals.

For instance, to achieve seamless compositing, v is usually defined as the gradient
of s, e.g. v = ∇s. In this way, Equation (2.2) forces the pixel values insideΩ to be as
close as s, and the pixel values on the boundary ∂Ω to be as close as t, resulting in a
seamless blending without visible discontinuities around the boundary. Similarly,
by changing v, PIE can successfully obtainmany different compositing effects, such
as concealment, exchange texture, local illumination and color change, etc.
Undoubtedly, this idea inspires many later works on image composition, such

as Interactive Photomontage [Agarwala et al. 2004], image completion [Sun et al.
2005], Drag-and-drop Pasting [Jia et al. 2006], scene completion [Hays and Efros
2007], etc. More importantly, such a Poisson problem formulation is also extended
to many other applications, such as Poisson Matting [Sun et al. 2004], Poisson

13
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+ =

Source Image Target Image Composition

s t

c

Ω

∂Ω

Figure 2.2: An illustration of image compositing problem. s denotes the source
image, t denotes the target image, c denotes the final composition, and Ω denotes
the unknown closed region with boundary ∂Ω.

Surface Reconstruction [Kazhdan et al. 2006], face makeup [Guo and Sim 2009], etc.
However, most of these works seldom studied how the guided vector field is

affected by the illumination. In PIE, Pérez et al. simply changed the magnitude
of the vector field to change local brightness, which was similar to [Fattal et al.
2002]. Such gradient technique is based on an assumption that image gradients,
especially their orientation, are usually invariant to illumination change. But, as
shown in Chapter 3, this assumption does not always hold: for surfaces with
arbitrary BRDFs, in low-light conditions, both the magnitude and orientation of
image gradients are indeed sensitive to illumination changes.

2.1.3 Image Reconstruction from Gradients

Reconstructing image Z from its gradient (p, q) means integrating the gradient field
under integrable constraint

∂2Z
∂x∂y

=
∂2Z
∂y∂x

(2.4)

and under certain boundary condition (e.g. Dirichlet condition). As shown in
poisson image editing, the problem can be formulate as solving a Poisson equation:

ΔZ =
∂p
∂x
+
∂q
∂y
= div(p, q), (2.5)
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where div() is divergence operator. And this equals to solving a sparse linear
system Ax = b, where A is a sparse matrix standing for Laplacian operation, vector
x contains image intensity of every pixel, and b is divergence value. Usually (p, q)
are not integrable, and least square solution given by standard Poisson solver is
not good enough.
In [2005a], Agrawal et al. tried to force integrability by correcting curl value,

since integrable gradients should have zero curl. In their following work [2006b],
they compared several gradient reconstruction algorithms and proposed a better
solution using anisotropic diffusion. The idea is simple: they applied an edge-
preserving diffusion tensor (similar to affine transformation) on both sides of the
Poisson equation, and formed a new sparse system A′x = b′, which is proved to be
very robust to noise. In our work, we applied their method reconstruct radiance
from manipulated gradient field.

2.2 Computational Illumination

2.2.1 High Dynamic Range Imaging

Essentially, high dynamic range imaging (HDRI) includes two parts: capturing and
representing. For a commondigital camera, it is difficult to record theHDRradiance
with a single shot, because the photodides cannot be “excited” if the incident light
is too strong [Reinhard et al. 2006]. Therefore, capturing HDR radiance using
multiple photographs is still the most popular way so far. Representing high
dynamic range radiance on low dynamic range medium, such as printing on paper
or displaying on monitors, is called HDR tone mapping problem. The challenge
for tone mapping is how to reproduce visual appearance, meaning the mapped
radiance must appear as same as the HDR scene in human eyes. A common
pipeline of high dynamic range imaging is illustrated in Figure 2.3.

Capturing high dynamic range radiance

Under assumption of linear camera response, the HDR radiance can be achieved
by properly combining radiance value of multiple low dynamic range (LDR) pho-
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Figure 2.3: An illustration of high dynamic range imaging procedure. The contrast
of radiance intensity in an HDR scene could be as large as 1010 ∼ 1012. After
tone mapping, the radiance can be properly displayed on the low dynamic range
medium.

tographs. The photographs are captured in a static scene using different exposure
time. Because of linear response, the image intensity can be converted to radiance
domain by simply dividing the exposure duration. Then for each pixel, the ra-
diance value should be similar excluding the over/under exposed recordings. By
averaging corresponding pixel radiance across proper exposures, the result is HDR
radiance.
However, the response of most digital cameras are not linear. Debevec and

Malik [1997]demonstrateda simple and robustway to recover thenonlinear camera
response function from a series of aligned exposures. They sampled a set of points
which consisted of a segment of camera response curve in every exposure. A
smoothed response curve was produced by fitting theses segments together with
linear optimization. Similarly, Mitsunaga and Nayar [1999] modeled the response
function with a polynomial equation, which was determined using the linear least
square fitting.

Tone mapping

Tone mapping methods can be roughly divided into two categories:

Global operator: compressing the dynamic range with an identical function for
each pixel

Local operator: reducing the dynamic range with a nonlinear spatially varying
function.
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Table 2.1: A comparison between HDR + Tone mapping and our method
HDR + Tone mapping Our Method

Input
A series of aligned pho-
tographswithdifferent expo-
sure

A visible photograph and its
corresponding near infra-red
picture, obtained with a sin-
gle shot

Applicability in
dynamic scene No Yes

Automation
No. Tone mapping method
usually have thresholds for-
global or local operators.

Yes. Fully automatic.

Details preserv-
ing

All details are preserved
Most details can be pre-
served (benefiting from tex-
ture transfer)

Visual quality
Depending on tone mapping
methods and parameter tun-
ing

High

To match the visual appearance globally, researchers derived many different
nonlinear curve mapping radiance to image, based on some psychological model
of human vision, such as [Tumblin and Rushmeier 1999; Reinhard and Devlin
2005]. However, such operators can hardly preserve fine details in high dynamic
range data. In [2002], Reinhard et al. scaled the radiance globally based on a
“key” luminance, and then they invented adodge-and-burnoperator tomanipulate
contrast for each pixel differently. In gradient domain, Fattal et al. [2002] proposed
a method to adaptively attenuate gradients with large magnitude. Thus, the fine
details with small gradient magnitude were well preserved after dynamic range
reduction.

Comparison with our method

In Chapter 4, we describe a novel method to enhance visible photographs cap-
tured in HDR scene with its corresponding near infra-red pictures. A comparison
between HDR + Tone mapping and our method is summarized in Table 2.1
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2.2.2 Flash Photography Enhancing

Photographs taken in low light environment often exhibit many kinds of artifacts,
such as noise, blurring, underexposure, etc. Research on removing such artifacts
has been carried on for decades. So far, firing strong flash to compensate weak
ambiance is still the most popular way to obtain high quality photos in low light
situation. But flash will cause other problems, such as uneven exposure, shadows
and specularities. This leads in an interesting research topic in computational
illumination: how to use flash to enhance low light photography?

Conventional Flash Exposure Bracketing

Flash Exposure Compensation (FEC) and Flash Exposure Bracketing (FEB) are
common techniques beingusedbyphotographers for years [Lefkowitz 1981; Canon
]. When subjects appear too dark compared with background, photographers
need to flash them to compensate such low light condition. In such case, flash
output is usually set at low level to illuminate subjects only, and it is set according
to photographers’ experience or camera’s evaluation system (such as E-TTL of
Canon). Some latest models of flash allow photographers to take three photos
continuously with different flash intensity, and photographers subjectively pick
the best one from the 3 pictures. Usually flash intensity is changed within a range
of 1-3 stops below and above the normal output, which is called flash exposure
bracketing. Since FEC and FEB will calculate and adjust flash output based on
subject’s lighting condition, they can help photographers take properly-exposed
photos by minimizing flash artifacts. However, FEC and FEB usually require
long exposure time because of low flash intensity, which may still cause motion
blurring. Besides, such conventional tricks are highly dependent on hardware and
photographers’ experience.
Conventional flash photography cannot avoid flash artifacts completely, and

does not work well when ambient illumination is very low. Many computational
approaches have been proposed to increase visual quality of low-light photographs
by combining strength of flash/no-flash image pairs, multiple illuminating, image
based re-lighting, etc.
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Flash and No-flash Image Pairs

Among the earliest research in the area of enhancing low-light photography using
flashmust be the contemporaneous work of [Petschnigg et al. 2004] and [Eisemann
and Durand 2004]. Petschnigg et al. used bilateral filter to extract detail-layer of
flash image and base-layer of ambient image, and blended them together based on
the mask of shadow and specularity. The Bilateral filter can catch slow variation
of an image while preserving strong features. By utilizing this characteristic, their
results successfully combined sharp details from flash image with overall ambient
illumination. But their techniques on shadows and specularities removal require
thresholds and are not fully automatic. Eisemann and Durand proposed a similar
method incorporating with bilateral filter either: they not only transferred details,
but also transferred color information from flash image to final output. They
treated harsh shadows and soft shadows caused by flash in a manual way. The
major contribution of these approaches is that they apply bilateral filter to extract
and fuse desired features from multi-modal images, which is proven to be both
simple and efficient. However, bilateral filtering is a pixelwise operation so the
result is very sensitive to noise. Meanwhile, shadows and specularities can not be
identified automatically.
Agrawal et al. [2005b] presented a gradient projection method that can automat-

ically remove highlights from flash image and undesired reflection from ambient
image. They assume that the orientation of image gradients does not change in
flash/no-flash image pairs. Based on this assumption, they corrected gradients
orientation for pixels with artifacts in both flash and ambient image. In [2006a],
Agrawal et al. proposed an edge suppression operatorwhich can suppress edges by
projecting edge gradient vector onto its own orthogonal direction, i.e. reducing the
gradient magnitude to zero. Therefore, if the ambient shadow edges do not show
in the corresponding flash image, their method can suppress such edges and thus
remove the shadow. Similarly, the reflection in flash image can be removed as well.
Again, their method still does not consider the variation of gradient orientation
due to illumination change.
Almost all approaches based on flash/no-flash image pair strictly require the

static scene assumption, meaning both camera and the captured scene are static
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during exposure. The reason is that these methods require flash and ambient
images to be taken in the same scene or at lease geometrically aligned for pixelwise
processing. Obviously, such static assumption has greatly limited application of
these methods. Also, the non-flash image is captured either using a high ISO,
which results in grainy image noise, or using a long exposure, which requires both
the camera and scene to be stationary. This greatly limits the method’s practicality.

Multiple Flash Imaging

Multiple flash imaging refers to taking photographs from the same viewpoint
but under different flash conditions, such as with various flash intensities or with
various flash positions. A flash and no-flash image pair can be regarded as a special
case of multi-flash images with just two flash intensities (flash on and flash off ).
Raskar et al. built a camera prototype with 4 flashes located in different posi-

tions [2004c], as shown in Figure 2.4. These flashes will cast shadows in different
directions, which makes it easy to identify perceptual edges in flash images for
non-photorealistic rendering. Their method is the first computational approach to
utilize multiple flashes, and is built on a simple observation that shadows’ varia-
tion due to flash from different directions. Unfortunately, their study ignored flash
effects on other aspects such as specularity, intensity, and gradient, which could be
important clues to enhance low-light photography.
Miao and Sim [2005] proposed a linear model to recover ambient image from

multiple flash images taken the same scene with different flash intensities. They
then re-render the ambient image by simulating a longer exposure time, resulting in
brighter images that still preserves the original ambient illumination. Theirmethod
is simple and computationally efficient, yet the linear model is very sensitive to
noise and their method does not suppress noise effectively.

Comparison with our method

In Chapter 5, we present a new approach to enhance low light photography using
only two flash photographs. Given known flash intensity ratio, our method can
recover the ambient andflash-only radiance, thus allowing theuser to selectively re-
flash the low light ambient image. Here, we compare our method against methods
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Figure 2.4: A prototype of multi-flash camera invented by Raskar et al. in [2004c]

using flash and no-flash pair [Petschnigg et al. 2004; Eisemann and Durand 2004;
Agrawal et al. 2005b] andmultiple flash images [Miao and Sim 2005], and the result
is summarized in Table 2.2.

2.3 Interactive Computer Vision

Recently, more and more approaches begin to seek user’s interaction to gain high-
level visual information which could be difficult to derive automatically. Such
interaction can be implemented as selecting desired regions by simple scribbling
or rough painting. The selected pixels mainly serve two purpose: (1) indicating
the regions for processing (e.g. inpainting, matting, cloning, etc.) in such as [Pérez
et al. 2003; Sun et al. 2004; Agarwala et al. 2004; Jia et al. 2006; Wang et al. 2007; Wu
et al. 2007], (2) labeling the regions for data training, in such as [Li et al. 2004; Lu
et al. 2009].
In our computational re-flashing method described in Chapter 5, we also incor-

porate with user interactive scribbling, marking the regions in which to re-flash or
keep the ambiance.
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Chapter 3

Theory

3.1 Overview

It has beenwidely known that image gradients are affected by strong features, such
as object shapes, textures, and depth edges (object boundaries). For smooth sur-
faces or flat texture with grainy, small and low-contrast features, image gradients
usually have small magnitudes and change smoothly. Therefore, image gradients,
particularly for their magnitudes, are often assumed to be invariant to illumina-
tion in a number of recent works, e.g. [Agrawal et al. 2006a; Agrawal et al. 2006b;
Agrawal et al. 2005b; Raskar et al. 2004b]. Our study shows that this assumption
does not hold for all situations. It is acceptable in situations in which there is suf-
ficient ambient light. However, in low-light environments where ambient lighting
is weak, image gradients are indeed sensitive to illumination changes.
In this chapter, we firstlymap the image intensity to scene radiancewith camera

response function, and then derive a mathematical relationship between radiance
gradients and illumination change based on BRDF model. We show that the
illumination variation affects both gradient magnitude and orientation. We also
discuss the conditions under which such affection on gradient orientation can be
ignored and which not.
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Figure 3.1: Image acquisition is a nonlinear mapping from scene radiance to image
intensity. Such non-linearity can occur during exposure, digitization, and post
processing. This figure is modified from the one in [Debevec and Malik 1997].

3.2 Scene Radiance and Image Intensity

The intensities of pixels, captured using a common digital camera, are usually
nonlinearmappings of the scene radiance. Such non-linearity is often characterized
by photo sensor response and post digital processing in camera, as illustrated in
Figure 3.1. Mathematically, the relationship between scene radiance and image
intensity can be defined using nonlinear and monotonically increasing function f ,
which is named camera response function (CRF). Therefore, we have

I = f (R), (3.1)

where R is scene radiance and I is image intensity. Debevec and Malik have
presented a method [1997] to recover f using a set of photographs taken with
varying, known exposure time. Apparently, its inverse f−1 is also well defined.
With obtained f , we can easily recover scene radiance R 1 from

R = f−1(I). (3.2)

Figure 3.2 shows the camera response function of our Canon 350D DSLR camera,
which is used in our further experiments.
There are no two cameras having the same camera response function, even

if they are of the same model. This implies that the nonlinear mapping from
illumination intensity to pixel intensity is different from one camera to another.

1In fact, it should be sensor irradiance (E) but not scene radiance (R) here, as shown in Figure 3.1.
But in modern cameras, since R is linear proportional to E constantly across all pixels [Debevec and
Malik 1997; Kolb et al. 1995], it is safe to say that R is recovered up to an unknown scale factor.
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Figure 3.2: The camera response function of our Canon 350D DSLR camera. We
recovered it using Debevec and Malik’s method in [1997].

Although in some cameras, the mapping is close to linear in the middle range of
pixel intensity, such a partial linearity is not sufficient in our work which studies
the illumination variation over a wide range.
In contrast, radiance is a linear measurement of illumination intensity and is

independent of cameras. And the gradient operation is linear as well. Therefore,
whenwe investigate image gradients under varying lighting conditions, we exploit
gradients of radiance value instead of gradients of pixel intensity.

3.3 Radiance Gradient

3.3.1 Radiance gradient based on BRDF model

To find out the relationship between radiance gradient and illumination, we first
need to examine how radiance is reflected from illumination. As illustrated in
Figure 3.3, the incoming irradiance incidenton the surfacepointP from thedirection
ωi, and the reflected radiance exit alongωo. The directionω can be parametrized by
azimuth angle θ and elevation angle φ w.r.t. surface normal n. In computer vision
and computer graphics, the ratio of outgoing radiance to the incident irradiance
is usually modelled with the bidirectional reflectance distribution function (BRDF)
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Figure 3.3: Diagram showing vectors used to define the BRDF, taken from
[Wikipedia ]. ωi and ωo are unit vectors, and n is the surface normal.

[Forsyth and Ponce 2002], as shown in Equation (3.3)

ρbd(ωo, ωi) =
radiance
irradiance

=
Ro(P, ωo)

Ri(P, ωi) cosθidωi
, (3.3)

where
dωi = sin(θi)dθidφi (3.4)

is the differential solid angle.
Therefore, the radiance leaving point Px,y on the 2D radiancemap in a particular

direction (ωo) can be expressed as

Ro(Px,y, ωo) = ρx,y(ωi, ωo)Ri(Px,y, ωi) cosθidωi. (3.5)

By image gradient2, we mean the pixel forward difference, a commonly used
gradient approximation. That is to say, in a radiance map R, the gradient field

2Strictly speaking, it should be radiance gradient in this thesis. We will use both terms synony-
mously, justified by the fact that the camera response function establishes a one-to-one mapping
between the two.
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∇R = (∂R∂x , ∂R∂y ) is computed as

∂R
∂x
= Ro(Px+1,y, ωox+1,y) − Ro(Px,y, ωox,y)
= ρx+1,yRi(Px+1,y, ωix+1,y ) cos(θix+1,y )dωix+1,y − ρx,yRi(Px,y, ωix,y ) cos(θix,y )dωix,y , (3.6)

and similarly for ∂R∂y . In Equation (3.6), since Px+1,y and Px,y are adjacent points,
according to the smoothness of illumination, we can assume the radiance arriving
these two points are equal, i.e.

Ri(Px,y, ωix,y ) = Ri(Px+1,y, ωix+1,y ). (3.7)

Thus, from Equation (3.6), we can derive

∂R
∂x
= Ri(Px,y, ωix,y)(ρx+1,y cos(θix+1,y )dωix+1,y − ρx,y cos(θix,y )dωix,y ), (3.8)

and similarly

∂R
∂y
= Ri(Px,y, ωix,y)(ρx,y+1 cos(θix,y+1 )dωix,y+1 − ρx,y cos(θix,y )dωix,y ). (3.9)

And the magnitude and orientation of ∇R are, respectively,

|∇R| =
√(
∂R
∂x

)2
+

(
∂R
∂y

)2
, and (3.10)

tanα =
∂R
∂y
/
∂R
∂x

=
ρx,y+1 cos(θix,y+1 )dωix,y+1 − ρx,y cos(θix,y )dωix,y
ρx+1,y cos(θix+1,y )dωix+1,y − ρx,y cos(θix,y )dωix,y

, (3.11)

where α is the orientation of radiance gradient.
From these equations, for a given scene, ofwhich the BRDFat each point isfixed,

the gradient of reflected radiance in a particular direction has two properties: (a)
the gradient magnitude, |∇R|, depends on both intensity and direction of incoming
radiance, Ri, as shown in Equation (3.10); and (b) the gradient orientation, α, ONLY
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depends on the direction of Ri, but not its intensity, as shown in Equation (3.11). In
particular, the magnitude of radiance gradient varies linearly with magnitude of
Ri, and non-linearly with θi.
Although the above conclusion is drawnw.r.t. the outgoing radiance in a partic-

ular direction (ωo), it is easy to conclude that the gradient of total radiance leaving
the point Px,y also has the same properties. This is because the radiance leaving the
surface is the sum over contributions from all incoming directions.

3.3.2 Discussions

There are two special cases where radiance gradient may not change according to
illumination.

Homogeneous surface When diffused light strikes on a homogeneous surface,
such as a textureless wall or flat table surface, the radiance reflected from the
adjacent surface patches will be almost the same. The reasons are: (a) the
incident radiance of diffused light are almost the same everywhere; and (b)
the BRDF and surface normal of each point are the same for homogeneous
material. In this case, no matter how the intensity or direction of incident
light are changed, the radiance gradient is always very small and close to
zero.

Specular surface When illuminants arrive specular surface in one direction, they
are reflected in a small lobe of directions around the specular direction, as
described in Figure 3.4. As the result, the radiance leaving along the spec-
ular direction is much stronger than those leaving along other directions.
For example, in Figure 3.4, the adjacent points P1 and P2 receive the same
irradiance, but the radiance leaving the points have large difference due to
different reflection directions. In such case, the radiance gradients are largely
dependent on the shape of specular lobe, and the gradients magnitude are
not linear in the intensity of incoming illumination.
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point light souce

specular surface
P2

P1

Figure 3.4: The radiance reflection from specular surface can bemodeled as a small
lobe of directions around the specular direction.

3.4 Gradient Variation across Illumination

3.4.1 Gradient variation under a single illuminant

Single illuminant can change in both its intensity and direction, thus affecting the
incident irradiance, as illustrated in Figure 3.5. From Equation (3.10), it can be seen
that the gradient magnitude |∇R| is affected by both illumination intensity (i.e. the
radiance Ri) and incident directionωi. And Equation (3.11) shows that the gradient
orientation α is dependent only on ωi but not on incoming radiance.
Equation (3.10) and (3.11) also explain the reason why researchers, in many

recent works, assume that image gradients, particularly their orientation, are in-
variant to illumination changes. In situations in which only the illumination inten-
sity changes, e.g. a scene illuminated evenly by diffused lighting, the assumption
performs very well because such change only scales the gradient magnitude |∇R|
without altering the gradient orientation α. In other words, the overall gradient
map vary only by a scaling factor.
However, the assumptiondoesnotholdwhen illuminationdirectionalso changes.

An example of this is direct sunlight, which has both direction and intensity. As
illustrated in Figure 3.5(b), when illumination changes from s1 to s′1, the angles be-
tween the illuminant and surface normals of adjacent non-parallel patches changes
as well. And this will nonlinearly change the radiance reflected from the patches.
As a result, both the magnitude and orientation of the radiance gradient will be
affected.
When two varying light sources illuminate a scene, we may easily analyze the
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(a) Single illuminant intensity change (b) Single illuminant direction change

Figure 3.5: When illumination changes from s1 to s′1, the change in the angles
between the illuminant and surface normals at adjacent patches will affect radiance
gradients.

situation as well. As shown in the next section, and in Figure 3.6 it is the dominant
light source that will dictate how the radiance gradients change.

3.4.2 Gradient variation under two illuminants

Photographic scenes that contain two light sources are common enough to warrant
closer study. One such situation is when flash is used in a low ambient light
environment. In Chapter 5, we will demonstrate how such gradient variation
due to flash can be applied to low light photography enhancement. While in this
section, without loss of general, by illuminants, we mean general light sources.
Based on the physics of photography, the overall radiance map captured by a

camera canbemodeled as a sumof radiancemapsof different illuminants [Agrawal
et al. 2005b]. Suppose we have two radiance maps R1 and R2, corresponding two
illuminants s1 and s2, and let R denote the overall scene radiance captured by the
camera. In a static scene with the position and direction of the illuminants fixed,
the captured radiance R is:

R = R1 + R2. (3.12)

Since the gradient is a linear operator, the radiance gradient field can be ex-
pressed as:

∇R = ∇R1 + ∇R2. (3.13)
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Equation (3.13) shows that the captured radiance gradient is composed of the
gradients of R1 and R2. Since ∇R, ∇R1, and ∇R2 are all vectors, we may easily
visualize them with a diagram such as Figure 3.6, where ∇R is the vector sum of
∇R1 and ∇R2.
With two illuminants, we can change both of them simultaneously, or only

change one of them. In fact, the conclusion of study on changing one of illuminants
can be easily propagated to the case of two illuminants variation. Therefore, let
us focus on the change of one of the illuminants, and analyze how the captured
radiance gradient ∇Rwill be affected in this situation.

Changing intensity If we change only intensity of s2 and not its direction, e.g.
changing from s2 to s′2, Equation (3.10) and (3.11) say that the gradients ∇R2
and ∇R′2 are parallel and differ only in their magnitudes. As for another
illuminant (whether directional or not), there is no change. Thus, the gradient
∇R1 remainsunchanged also. The vector diagram for this situation is depicted
in Figure 3.6(a). It is clear that the captured radiance gradient will change
from ∇R to ∇R′, due solely to the intensity change in the s2. In fact, both its
magnitude and orientation will change, as shown in the figure.

Changing direction In another way, we can change only the direction of s2 such
that its radiance gradient changes from ∇R2 to ∇R′2, as shown in Figure 3.6(b).
Similarly, both magnitude and orientation of ∇Rwill change.

To demonstrate the gradient variation under two illuminants, we set up an
example, as follows: we use two light sources to illuminate a figurine from two
different directions, andwe fix the intensity of one light and adjust that of the other
one. The photos under two different illumination intensity and corresponding
radiance gradient are shown in Figure 3.7. It is very clear that as the intensity of
the light on right side increases, the magnitudes of radiance gradient are enlarged
and the gradient orientation are shifted. This experiment again, proves that the
radiance gradient varies when illumination changes.
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(a) Gradient magnitude variation
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(b) Gradient orientation variation

Figure 3.6: Illustration of how the scene radiance gradient ∇R is the vector sum
of the gradient ∇R1 and ∇R2. If the radiance intensity changes from R2 to R′2, the
radiance gradient ∇Rwill change in both magnitude and orientation.

Figure 3.7: Two light sources illuminate the figurine from left and right sides. The
left light is fixed, while the intensity of the right lights is varied. In the zoomed-
in gradient map, blue arrows denote gradient of radiance in (a), and red arrows
denote gradient of radiance in (b). When the right light becomes brighter, both the
magnitude and orientation of radiance gradients are changed accordingly.

32



CHAPTER 3. Theory

(a) | ∇A | � | ∇F | (b) | ∇A | and | ∇F | are
comparable

Figure 3.8: When | ∇A | � | ∇F |, i.e. the scene radiance gradient is dominated by
the ambient component, flash variation has little impact on the captured radiance
gradient. Otherwise, such impact is very large and cannot be ignored.

3.5 Discussions on Gradient Variation

Figure 3.6 and 3.7 also shed light onwhen it is safe to assume that radiance gradients
are invariant to illumination change. Here, we use flash photographywith ambient
lighting condition as an example to analyze the assumption. LetA denote ambient
radiance and F denote flash radiance. Usually,A can be very large (e.g. day light) or
extremely low (e.g. outdoor night), and cannot be changed by photographer. Thus,
in flash photography, we normally adjust flash intensity to change the overall
lighting condition.
When the ambient light is sufficiently strong, themagnitude of the ambient gra-

dient can be much larger than that of flash gradient, i.e. | ∇A | � | ∇F |, it can be seen
that the radiance gradient is hardly affected by the change in flash gradient. This
situation occurs when changing the flash intensity contributes little to the strong
ambient light. As illustrated in Figure 3.8(a), the blue circled region illustrates the
variation range of flash gradient, and the gray region stands for the variation range
of radiance gradient. It can be seen that when | ∇A | is dominant the composed
∇R can be assumed to be the same with ∇A as they are very close to each other.
However, in low-light conditions when | ∇A | is comparable to, or much less than,
| ∇F |, we cannot ignore the change in radiance gradients. Such situation is dictated
in Figure 3.8(b): the variation range of ∇R in fact remains the same due to the same
∇F, but compared with ∇A, the variation of ∇R cannot be ignored any more.
In the next two chapters, we demonstrate howwe can apply thesemathematical

33



CHAPTER 3. Theory

insights to enhance photographs in different scenarios. In Chapter 4, by matching
histogram of gradient magnitude from visible image to near infrared image, we
successfully enhanced photographs captured in high dynamic scene. In Chapter 5,
we present a novel method that can cleanly decompose the ambient and flash
gradients, and finally enhance low-light photography for the whole or selected
parts of an image.
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Chapter 4

Enhancing Photographs with Near

Infrared Images

4.1 Overview

By studying the image gradient variation under single illuminant, we know that the
change of illumination intensity will affect the gradient magnitude only. In other
words, by manipulating image gradient magnitude, we may adjust illumination
intensity thus improving the brightness contrast of the captured scene radiance.
Inspired by this idea, in this chapter, we introduce a novel method to enhance a
photograph by using the contrast and texture information of its corresponding near
infrared image.
Near Infra-Red (NIR) images of natural scenes usually have better contrast and

contain rich texture details that may not be perceived in visible light photographs
(VIS). To exploit these good characteristics of NIR, we first decompose the NIR/VIS
pair into average and detail wavelet subbands. We then transfer the contrast in the
average subband and transfer texture in the detail subbands. Transferring contrast,
one of the most important steps in our method, is done by matching distribution
of gradient magnitude in VIS to that in NIR. We built a special camera mount that
optically aligns two consumer-grade digital cameras, one of whichwasmodified to
capture NIR. Comparedwith tone-mappedHDR images, our results exhibit higher
visual quality. This work has been published in CVPR’08 [Zhang et al. 2008].
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4.2 Background and Related Work

The radiance from natural scenes usually spans a very wide dynamic range, far
exceedingwhat a digital camera can capture. For instance, in a sunny outdoor envi-
ronment, the dynamic range could reach as high as 109. In contrast, a professional-
grade digital camera that uses 14 bits per channel can capture a range of only 104.
Consumer-grade cameras are even worse. One common technique around this
problem is to first compute an high dynamic range (HDR) image, usually from
multiple shots of varying exposures, and then to map this into a lower dynamic
range (LDR) image suitable for display devices. However, such a tone-mapping
procedure does not usually produce a perceptually pleasing result. Usually, pixels
end up becoming too bright or too dark, and rich scene information such as color
and texture are almost completely lost. Figure 4.1(a) shows a typical photo taken
under anHDR environment, where the footpath is very bright but the region inside
the building can barely be seen.

(a) Visible Image (b) Near Infrared Image (c) Our Enhanced Result

Figure 4.1: We proposed a novel image enhancement method by transferring con-
trast and texture from near infrared image to visible image. Figure 4.1(a) and
Figure 4.1(b) are an improper exposed photo taken under high dynamic range en-
vironment and its corresponding near infrared photo. With only these two input
images, our approach can adaptively and automatically adjust contrast and enrich
visible details in over- or under-exposed areas, as shown in Figure 4.1(c).

We have reviewed many recent methods of recovering the HDR image and
tone-mapping techniques in Chapter 2. In contrast, our method uses Near Infrared
(NIR) light. This lies between visible red light and Long Infra-Red (LIR) light in
the electromagnetic spectrum. NIR light has wavelength in the range 750 − 1400
nm, which is longer than visible light (380− 750 nm). Human eyes can not see NIR
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light but most digital cameras can sense it very well. For example, some models
of SONY digital cameras or camcorders have a Night Shot mode which increases
cameras visual range by letting the sensor acquire more NIR light. However,
most manufacturers insert an IR cutoff filter over the camera sensor to filter out
NIR light, to avoid some unwanted artifacts. In fact, NIR images usually have
better brightness contrast and provide rich texture details, as seen in Figure 4.1(a)
and 4.1(b). The details of trees and leaves are barely seen in the visible image, but
look clear and sharp in the NIR image. We exploit this fact in our work.
Inspired by the camera’s ability to record NIR light and by recent works on

tonal transfer [Bae et al. 2006; Neumann and Neumann 2005; Fredembach and
S usstrunk 2008], we propose a novel method that can adjust a photograph’s con-
trast adaptively and enrich texture details fully automatically with just one shot
(i.e. one VIS/NIR image pair). NIR photography is not new; it is commonly appre-
ciated for its artistic value [Maher and Berman ], but has not been fully exploited
in computational photography. Morris et al. observed that the wavelet coefficients
of long infrared (LIR) natural images closely follows the Laplacian distribution
[2007]. Encouraged by their work, we build a dual-camera system that can cap-
ture visible photo and NIR photo of the same scene simultaneously, and find that
NIR images also have similar statistical properties. Moreover, we notice that NIR
images of natural scenes usually exhibit lower dynamic range and contain rich tex-
ture details. In terms of transfer techniques, the Neumann brothers showed how
to transfer color style from a source image to an arbitrary target image by applying
histogram matching [2005]. Similarly, Bae et al. also presented a method to transfer
tonal quality from one image to another, using histogram matching and bilateral
filter in [2006]. In the light of their work, we propose an original way of using NIR
information to enhance visible photographs. Given as input one VIS image and its
corresponding NIR image, our approach can adaptively detect unsatisfactory pix-
els in the VIS image, and transfer contrast information and high frequency texture
from its NIR counterpart. We use histogram matching in the gradient domain to
transfer contrast and use wavelet coefficients to transfer texture information. We
were able to achieve very pleasing results (see Fig.4.1).
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4.3 Near Infrared Imaging

4.3.1 Dual-camera system

NIR light lies adjacent to visible red light in the electromagnetic spectrum, and has
longer wavelength than visible light. NIR is not visible to human eyes, but can
be recorded by CCD or CMOS sensors. However, most manufacturers of digital
cameras install an IR cutoff filter over the sensor to suppress infrared light and
avoid unwanted artifacts.
To capture both visible and NIR pictures for the same scene simultaneously, we

built a dual-camera system which comprises two Sony F828 digital cameras and
one hot mirror. A hot mirror is a specialized dielectric mirror which can reflect
NIR light when incident light arrives at a certain angle. We used a 45◦ hot mirror,
meaning it can reflect NIR light with angle of incidence of 45◦ but does not block
visible light. Figure 4.2(a) illustrates how our system works. Although the Sony
F828 has built-in Night Shot mode which can temporarily move the IR cutoff filter
away to allow NIR imaging, Sony has intentionally limited such NIR imaging to
only allow long exposure times. Our modified camera does not suffer from this
limitation. We also modified the remote control of the camera so that it can trigger
two cameras at the same time. We have carefully setup two cameras to ensure that
they are optically aligned. They also share the same camera settings, such as focal
length and aperture size, to guarantee the geometric alignment of the image pair.
Currently, we do not force the two cameras to use the same shutter speed, because
digital cameras are designed to be less sensitive to NIR thus requiring a slightly
longer exposure.
The NIR picture captured in this way is actually an RGB color image and looks

reddish since NIR light is just adjacent to red light. However, because of the filters
we use, the NIR light we capture is almost monochromatic and should not contain
any color information. So we use only intensity information by converting to HSV
color space and using V channel. Fig.4.1(a) and Figure 4.1(b) show an example
image pair captured by our dual-camera system. Our prototype hardware may
look bulky, but this can be miniaturized. Our goal is to show the usefulness of NIR
images.
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Figure 4.2: (a): Our VIS-NIR dual-camera prototype. Camera V andN are optically
aligned and connected to the same remote control, allowing a VIS/NIR image pair
of the same scene to be captured with a single shot. (b-c): Statistical properties of
NIR images. (b) shows distribution of gradient magnitude, similar to statistics of
visible images [Huang and Mumford 1999]. (c) shows distribution of H wavelet
subband of Haar transform, similar to statistics of IR images [Morris et al. 2007].
Subbands V and D have similar distribution.

4.3.2 Statistics of NIR images

Huang and Mumford [1999] have shown that the gradient histograms of natu-
ral images follow a generalized Laplace distribution which can be expressed as
Equation 4.1:

P(x) = k · e−|x/s|α . (4.1)

Recently, Morris et al. [2007] found wavelet coefficients of LIR (wavelength lies in
4000− 120000 nm) images of natural scenes can also be well fitted with a Laplacian
curve. In this paper, we show that NIR natural images share similar statistical
properties, as illustrated in Figure 4.2. We collected a total of 220 NIR photos for
statistical analysis. Some of them are collected from the web and others are cap-
tured by ourselves, mostly covering subjects of natural scenes and people. Similar
to [Huang and Mumford 1999; Morris et al. 2007], we use gradient magnitude
and the Haar wavelet coefficients. We calculate the histograms of all images for
both gradient magnitude and wavelet coefficients in horizontal (H), vertical (V)
and diagonal (D) directions. All these histograms are calculated on logarithm of
the actual values and normalized based on image pixels. In Figure 4.2, all gray
lines denote the actual histograms, the blue lines show the average histogram dis-
tribution, and the red dash lines show the fitted Laplacian curve (Equation 4.1).
We can see that the fit is good, meaning that NIR images have similar statistical
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properties as visible and LIR images (Please refer details to [Huang and Mumford
1999; Morris et al. 2007]). In Sec.4.4.3 we will show howwe can use these statistical
properties to guide the enhancement process.

4.4 Visible Image Enhancement

4.4.1 Workflow

The workflow of our approach is illustrated in Figure 4.3. There are three main
steps:

Computing the weighted region mask We calculate a weighted mask based on
saturation and brightness of the input visible image. The weight value as-
signed for each pixel will be incorporated in enhancement of next two steps.
The details of this step are introduced in Section 4.4.2.

Transferring contrast To transfer contrast from NIR to VIS, we manipulate gradi-
ent magnitude of visible image so that it has similar brightness distribution to
that of NIR. We achieve this via matching histograms of gradient magnitude.
More details are introduced in Section 4.4.3.

Transferring texture The NIR image may reveal many rich details that lack in its
visible counterpart. We enhance those detail textures in VIS by combining
high frequency subbands after applying Haar wavelet transformation. The
details are introduced in Section 4.4.4.

Note that all inputs are the logarithm of original image values as we mentioned in
the previous section.

4.4.2 Computing the weighted region mask

Intuitively, regions that suffer a loss of details are typically too bright or too dark,
and have low saturation. From this observation, aweightedmask can be calculated
based on saturation and brightness value. Let Ws and Wv denote weighted mask
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Figure 4.3: Theworkflow of our approach. The enhancement process uses theHaar
wavelet decomposition, and comprises three major steps: computing the weighted
region mask, transferring contrast, and transferring texture. See text for details.

of saturation and brightness, W denote the final weighted region mask indicating
areas to be enhanced. ThenW can be obtained using following equations:

Ws = 1 − e−ps |s−1|, ps ∈ [0, 1], s ∈ [0, 1] (4.2)

Wv = 1 − e−pv |v−0.5|, pv ∈ [0, 1], v ∈ [0, 1] (4.3)

W = Ws ·Wv , (4.4)

where s and v are the saturation and brightness intensity, and ps and pv denote the
probability that s and v appear in visible image respectively. ps and pv can be easily
obtained from the normalized histograms of channels S and V. The meaning of ps
and pv is that the pixels to be enhanced should distribute over large areas, rather
than in small regions. Enhancing large areas while ignoring small regions usually
achieves better perceptual quality.
Note thatW is calculated adaptively and fully automatically, not requiring any

thresholds. The weighted region mask is used as a mask for brightness and texture
transfer later. Figure 4.4 shows what our weighted region mask looks like and how
it is generated. A higher value in W means more information will be transferred
from NIR image, and vice versa. To reduce noise, a Gaussian blurring is first
applied onW.
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Visible Image Weighted Region Mask

 

 

Saturation Weight

 

 

Brightness Weight

Figure 4.4: Weighted region mask computation. The second row shows the his-
tograms of saturation and brightness channel (gray regions). The red and blue
lines illustrate the weights computed according to Equation 4.2. The curves are
smoothed for reducing noise. The sky and cloud have high brightness and rela-
tively low saturation, and thus have higher weights; vice versa for the tree tops.
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4.4.3 Transferring contrast

Our contrast transfer method is based on histogram matching and gradient tech-
niques. Bae et al. [2006] also applied histogram matching to transfer photograph
tonality. Instead of matching histogram in the intensity domain as they did, we
show that histogram matching in the gradient magnitude can achieve better and
reliable results.

Histogram matching

The histogrammatching problem can be simply defined as: given an image I and a
target histogram (PDF) h(z), the problem is to find a new image J by transforming
I, so as to make histogram of J be as same as h. The problem can be solved by using
the cumulative distribution function (CDF), f . Define f (x) =

∫ x
o
h(z)dz, where x

is image intensity. Let Iij and Jij denote each pixel intensity in I and J. Then the
desired image J can be obtained using Equation 4.5, and the detailed proof can be
found in [Gonzalez andWoods 2002]. In this work, we applied histogrammatching
on gradient magnitude, instead of image intensity.

Jij = f−1J ( fI(Iij)) (4.5)

Large-Scale contrast transfer

The brightness contrast of a visible image is affected by environment illumination,
as well as object shape and texture in the scene. Therefore, the brightness map of
an image should change smoothly while preserving major features such as strong
edges. To achieve a smooth brightness map of visible image V and NIR image
N (V and N are actually the average subbands in the Haar decomposition, as
shown in Figure 4.3), we apply bilateral filtering [Tomasi and Manduchi 1998] to
decompose images to large-scale layer and detail layer, and use the larger-scale
layer as brightness map, as in Equation 4.6:

VL = b f (V), VD = V − VL
NL = b f (N), ND = N −NL.

(4.6)
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VL and NL are large-scale layers, and VD, ND are corresponding detail layers (after
taking the logarithm). We use a similar definition for the bilateral filter function b f
and parameter selection as in Bae et al.’s work.
We implement three different methods to transfer contrast from the NIR image

to the VIS image. A comparison of their results can found in Figure 4.5 and 4.6.

Method 1: Histogram Matching Inspired by Bae et al.’s method [2006], we can
simplymatch intensity histogram ofVL withNL to transfer intensity distribu-
tion. This method is easy and efficient, but histogrammatching blindly alters
pixel values and thus very possibly destroy illumination consistency. From
Figure 4.5, we see that histogram matching does improve the contrast signif-
icantly. However, we also see that pixels in the tree bark are over brightened
and inconsistent with the illumination in the original image. After applying
the gradient constraint, the result looks more natural.

Method 2: Histogram Matching with Gradient Constraint Based on our analysis
in Chapter 3, if we blindly adjust image intensity without being aware of gra-
dient variation as Method 1, we may easily falsely change the gradient ori-
entation, thus breaking the illumination consistency. Therefore, to maintain
such consistency, we can check the gradient direction of the altered bright-
ness map pixel by pixel. Once we find the gradient direction that is reversed
or changed too much from the original brightness map, we force them to
be zero. After applying the gradient constraint, the enhanced result looks
more natural compared with method 1 (see Figure 4.5). But in some cases,
where gradients change abruptly along their original directions due to the
histogrammatching step, this constraint will fail, as shown in Figure 4.6. The
gradient constraint cannot remove the banding-effect on the pillar and wall,
because the gradients in those areas are not actually reversed.

Method 3: Gradient Magnitude Matching Method 1 fails to maintain the illumi-
nation consistency, while Method 2 cannot warrant smoothness of radiance
variation. The reasonwhy these twomethods do not work well is that the im-
age intensity manipulation in both of them ignores the relationship between
gradient variation and illumination change. In this case, the ambient illumi-
nation can be treated as a single illuminant. Thus adjusting image brightness
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equals to changing illumination intensity, which will only affect the gradient
magnitude. Therefore, a better solution for this case, as shown in Method
3, is matching the histogram of brightness gradient magnitude instead of
brightness intensity. We define VG and NG as the gradient magnitude of VL
and NL:

VG =
√
V2Gx + V

2
Gy
=

√
(
∂VL
∂x
)2 + (

∂VL
∂y
)2

NG =
√
N2
Gx
+N2

Gy
=

√
(
∂NL
∂x
)2 + (

∂NL
∂y

)2.

(4.7)

In Section 4.3.2 we have shown that gradient magnitude histogram of NIR
image can be well fitted with a generalized Laplacian curve. Because NL is a
smoothed version of the NIR image, its gradient magnitudeNG also has same
statistical property. Let l denote the Laplacian curve that can fit histogram of
NG. Instead of matching histogram of VG with histogram of NG directly, we
use l as the target histogram to produce a smoother andnoise-free distribution
transfer. In this case, the functions fI and fJ in Equation 4.5 are the CDFs of
l. Let VG′ denote the histogram matching result, we can easily compute new
gradients by scaling VGx and VGy along their original directions respectively:

VG′x =
VG′
VG
· VGx

VG′y =
VG′
VG
· VGy .

(4.8)

From VG′x and VG′y , we reconstruct new large-scale brightness map VL′ by
using Agrawal et al.’s improved Poisson solver [2006b]. The final contrast
transferred V′ is obtained by blending enhanced brightness map and its
original version V together using alpha-blending

V′ =W · (VL′ +VD) + (1 −W) · V, (4.9)

where the weighted mapW is used as the alpha channel and |·| denotes pixel-
wise multiplication. This method naturally maintains illumination consis-
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(a) Visbile Image (b) NIR Image

(c) Histogram Matching (Method 1) (d) HM + Gradient Constraint (Method 2)

Figure 4.5: Comparison of histogram matching (method 1) with histogram match-
ing with gradient constraint (method 2). The result of histogram matching in (c)
looks artificial because it breaks the consistency of overall brightness distribution.
After applying gradient constraints, (d) looks more natural.

tency and achieves the best result among these three methods. See Fig.4.6 for
comparison. Note that the banding-effects of methods 1 and 2 are completely
suppressed, while overall contrast has been improved.

Since the final brightness is the alpha-blending of the original brightness
and the histogram-matched brightness using mask W as alpha channel, the
contrast transferring is in fact achieved by local histogram matching. Our
final result therefore, will not exhibit global brightness shifting.

4.4.4 Transferring Texture

As we state in our workflow (Fig.4.3), after applying Haar wavelet transforma-
tion, the wavelet subbands in horizontal, vertical, and diagonal directions actually
contain rich texture information. To transfer those details, we use alpha blending
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(a) Visible Image

(b) Histogram Matching (Method 1)

(c) HM + Gradient Constraint (Method 2)

(d) HM of Gradient Magnitude (Method 3)

Figure 4.6: Comparison of Methods 1, 2, and 3. Note that the band-effects (regions
in red box) due to blind histogram matching have been successfully suppressed
by our guided histogram matching of gradient magnitude. The result of Method 3
achieves the least artifacts and best perceptual quality.
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again to combine corresponding subbands together:

VH′ =W ·NH + (1 −W) · VH. (4.10)

VV′ and VD′ are obtained similarly. The new subbands VH′, VV′, and VD′ not
only inherit texture details from the VIS image, but are also enhanced by rich
high frequency details from NIR image. Figure 4.7(g) show the result with high
frequency details transferred. The textures on the roof in the original image are
almost lost completely. By transferring high frequency details from NIR to visible
image, those lost textures are successfully recovered, and those weak textures
are also reinforced greatly. Finally, we apply inverse Haar wavelet transform to
enhance the V channel.
Please note that blending such high frequency components may introduce local

gradient reverse, since brightness gradients of NIR can be very different from the
one of VIS. In this case, our texture transferring approach should not be applied.

4.5 Experiments and Results

A common HDR scene is the natural outdoor environment under bright sunlight.
To demonstrate the strength of our techniques, we test our approach with pictures
taken in such HDR situations. All input visible and NIR image pairs have been
geometrically aligned. In outdoor daylight, tree leaves and some objects, such as
cloth and skin, reflect NIR light strongly, so they look bright and have much details
even in shaded areas (see Figure 4.1, 4.9, 4.10, and4.8). Such features in NIR images
are useful for enhancing visible images.
We also find that contrast transfer and texture transfer are both equally impor-

tant for enhancement. As shown in Figure 4.7: Figure 4.7(e) is the enhanced result
with only texture transferred, where most of roof details are successfully recovered
but the picture still looks over-exposed; Figure 4.7(f) is the result with only contrast
transferred, which has lower contrast but roof details are still lost. Obviously, after
transferring the contrast and texture, Figure 4.7(g) exhibits better visual quality.
To show that histogram matching of gradient magnitude (Method 3) can pre-

serve overall illumination map and achieve higher perceptual quality, we compare
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(a) Original VIS (b) Weighted Region Mask(e) Texture Transfer Only

(c) Cropped Roof Visible Image (f) Contrast Transfer Only

(d) Cropped Roof NIR Image (g) Texture Transfer + Contrast Transfer

Figure 4.7: Comparison of results with either contrast transfer or texture transfer.
c-g show the zoomed-in roof details.
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of our results with a naively blended output (see Figure 4.9(d) and Figure 4.10(d)).
This trivial result is obtained using alpha-blending of V and N based on the
weighted region maskW, i.e. using each pixel value inW as alpha value.
We also compare our results with tone-mapped HDR images of same scenes, as

shown in Figure 4.9(h) and Figure 4.10(e). To get the HDR image, we take multiple
images with different exposure (usually 5-7 pictures with exposure difference of
1 stop), and assemble them using the HDR Shop software developed by Debevec
[Debevec ]. We recovered the camera response curve of our camera to generate
HDR imagemoreprecisely, andweappliedReinhard et al.’s algorithmfor tonemap-
ping [Reinhard et al. 2002]. Tone-mapped HDR images are supposed to produce a
range-compressed image with rich details and high visible quality. However, tone
mapping algorithms usually have a strict assumption that the scene must be static,
i.e. no moving objects throughout the whole image sequence. Such an assumption
is easily broken in outdoor scenes, as shown in Figure 4.9(h). The walking pedes-
trian and leaves waving in the wind cause serious “ghosting effect” (shown in red
boxes) in the tone mapped results. Because the inputs of our approach are cap-
tured in a single shot, our results are free of such artifacts. Besides, our approach
preserves consistency of overall illumination distribution while recovering scene
details, therefore our results gain better perceptual quality on brightness contrast
than tone-mapped results, as shown in Figure 4.9(h) and Figure 4.10(e).

4.6 Chapter Summary

In this chapter, we presented an approach of enhancing visible photograph using
NIR information based on a dual-camera prototype. Without manual segmenta-
tion or interaction, our method can calculate the enhancing weight for each pixel
automatically and transfer brightness and texture details from the NIR image to
the visible image. We show that our histogram matching of gradient magnitude
can well maintain large-scale illumination and achieve better perceptual quality.
Also, by combining the wavelet H, V, and D subbands of NIR and visible image
high frequency details are effectively enhanced.
The highlights of our contribution include:
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(a) Visible Image (b) Near Infrared Image

(c) The Weighted Mask (d) Our Enhanced Result

Figure 4.8: 4.8(a) shows a typical landscape photograph captured in HDR sce-
nario. The forest region is obviously too dark and details of those trees are barely
seen. 4.8(b) is the NIR counterpart, showing better contrast. 4.8(c) and 4.8(d) are
computed weighted mask and our enhanced result. The overall visible quality
becomes much better: the contrast is enhanced and the rich details in Forest region
are revealed.

• Our method can adaptively enhance the VIS image by transferring the con-
trast and details from its NIR counterpart. Thus, our approach can be widely
used in various scenarios where near infrared light is sufficient.

• The three major steps in our approach — computing weighted mask, trans-
ferring contrast and transferring details — do not require any thresholds and
proceed fully automatically without any human interaction.
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(a) Visible Image (b) NIR Image (c) Weighted Region Map

(d) Method 1 (e) Method 2 (f) Method 3

(g) Alpha-blending (h) HDR Tone Mapping

Figure 4.9: Comparison of our approach with alpha-blending and HDR tone map-
ping. The naive alpha-blending result appears bad, since simple pixel-wise blend-
ing cannot transfer overall contrast. As for HDR tone mapping, the result exhibits
“ghosting effect” (shown in red boxes) because objects have moved during the
capture of multiple exposures.
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(a) Visible Image (b) NIR Image (c) Weighted Region Map

(d) Alpha-blending (e) HDR Tone Mapping (f) Our Result (Method 3)

Figure 4.10: Another comparison of our approach with alpha-blending and HDR
tone mapping. Our method successfully enhances brightness and texture by using
NIR information.
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• Our method does not incorporate with any machine learning routines, thus
is time efficient.

Since common digital cameras are capable of recording NIR light, ours is a
practical method to enhance LDR images. As far as we can tell from searching the
published literature, we are the first to successfully make use of NIR information
for photograph enhancement. Compared with tone mapping an HDR image, our
method requires only one shot (i.e. one VIS/NIR image pair). Benefiting from the
better contrast in the NIR images and a spatially varying weighted mask, our
method can produce results that are aesthetically more pleasing than tone-mapped
methods.
The comparison of Method 1, 2, and 3 (see Figure 4.5 and 4.6) also testify our

theory in Chapter 3. Our histogram matching on gradient magnitude successfully
enhances the brightness contrast while maintaining illumination consistency. We
intentionally avoid changing gradient orientation in this application because we
assume the ambient illumination is a single illuminant and we only need to change
its intensity. In next chapter, we will apply our theory in a more complicated prob-
lem: enhancing flash photography in low light condition, inwhich two illuminants
are involved: ambient lighting and flash.
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Chapter 5

Selective Re-flashing

5.1 Overview

In the previous chapter, we have demonstrated how we can manipulate gradi-
ent magnitude to change image brightness contrast when the ambient illuminant
is dominant and stable. In such lighting conditions, researchers in many recent
works assume that image gradient, particularly its orientation, is invariant across
illumination. Unfortunately, this assumption is not true when the ambient illumi-
nant is comparable to, or much less than other illuminants. A common scenario of
such a case is flash photography in low light conditions. Based on our analysis in
Chapter 3, the captured radiance gradient will change greatly, in both magnitude
and orientation, as flash output varies. Canwemake use of such gradient variation
to enhance the flash photography? The answer is: Yes.
In this chapter, we present a novel method, namely Selective Re-flashing, that

allows users to selectively re-light parts of the image with any amount of flash
illumination. In order to do this, our method first separates the ambient and flash-
only scene components from just two input flash photographs, and then re-renders
an image using different contribution of the two components. We achieve this by
exploiting the finding that both magnitudes and orientations of image gradients
vary with illumination. Compared to existing works, our method does not require
any long-exposure ambient image, and yet successfully suppresses various kinds
of flash artifacts, such as shadows, specularities and inter-reflections, in the result.
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5.2 Low light photography

Photographs captured in low-light scenarios, such as outdoor night scenes, roman-
tic candlelight dinners, or even simple indoor portraits, are very likely degraded
by noise or motion blur. The reason is that the sensors in most digital cameras
are not sensitive enough to handle such low-light conditions. A popular way to
compensate for weak ambient lighting is flash photography. Unfortunately, flash
light usually ruins the ambient illumination, creates harsh shadows and specular-
ities in the scene, and causes uneven exposure. Experienced photographers try to
overcome this by taking a series of pictures (usually 3 shots) using different flash
intensities, and then selecting the best one. The flash intensity is determined either
automatically by the camera, or based on the photographer’s experience. This
approach is called flash exposure bracketing (FEB) [Canon ].
In this paper, we re-invent FEB in a computational way: by taking two flash

pictures with different flash intensities, we can recover the ambient and flash-only
components of the scene, and then re-render selected parts of the scene with differ-
ent amounts of ambient and flash lighting. In other words, users can, withminimal
input, freely adjust the contribution of both the flash and ambient illumination to
selected parts of the image based on their preferences. For example, in Figure 5.1,
the human subject is re-lit to be more visible while preserving the ambient shadow
region of the hand. Our goal is to provide a powerful, yet simple, low-light photog-
raphy solution allowing photographers to capture pictures with high visual quality
using fast shutter speed.
In Chapter 2, we have reviewed many computational approaches, which en-

hance low-light photography based onmulti-modal imaging [Agrawal et al. 2005b;
Ben-Ezra and K.Nayar 2004; Eisemann and Durand 2004; Miao and Sim 2005;
Petschnigg et al. 2004; Yuan et al. 2007]. These methods either take a flash/non-
flash image pair or multiple images as inputs, and require both the scene and
camera to be static. Furthermore, a non-flash photo taken by a common digital
camera in low-light conditions needs a long exposure time or a high ISO setting,
which in turn leads to motion blur or a low signal-to-noise ration (SNR). In con-
trast, our approach requires only two flash pictures captured successively with fast
shutter speed. Thus the input images are not degraded by noise and our method is
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less reliant on the static scene assumption. Moreover, note that none of the existing
work permit selective re-flashing of parts of the image. The entire image is re-lit
as a whole. In contrast, our method permits the user, with a few simple sketches,
to re-flash selected parts of the scene. This is useful because the user may wish to
preserve the ambient illumination in certain parts of the scene (e.g. the region near
a candle in a romantic dinner scene) while brightening the rest.

5.3 Computational Re-flashing

For flash photography in a low-light environment, it is always difficult to balance
between ambient light and flash light. The purpose of the flash is to provide an
artificial illuminant so that the scene becomes bright enough to be captured by the
camera. Yet flash light ruins the ambient lighting and the mood associated with
that ambiance. So while the user wants the scene to be well lit for a good photo, the
user also wants to preserve the ambient lighting as much as possible. Based on our
analysis in the Chapter 3, we now propose a novel gradient decomposition method
which allows the user to selectively re-flash parts of a scene, while preserving
the ambient lighting in other parts. Our method requires just two flash images,
taken with the same exposure setting but with different flash intensities. No long
exposure or high ISO ambient image is required.
Our major assumptions are:

• That ambient illumination is constant between the two shots.
• Both the camera and scene objects are static.
• The position and orientation of the flash are fixed; only the flash intensity is
changed.

These assumptions are widely made in many multi-modal imaging approaches.
Andalthoughwe require the scene to be static, this is not a severe limitation because
both images can be captured quickly within a short interval of each other.
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(a) Input Flash Image 1 (b) Input Flash Image 2

(c) Recovered Ambient Image (d) Recovered Flash Image

(e) User Marking (f) Re-flashed Result

Figure 5.1: We propose a novel Selective Re-flashing method for low-light pho-
tography. From just two input photos captured using different flash intensities,
our method first recovers the ambient and flash-only scene components, and then
allows the user to select, with a few quick sketches, which parts of the image to
re-light, and which to preserve the ambient illumination. The user also decides
how much to re-light. Finally, our method renders the output image, according to
the user’s specifications, via a fast algorithm. In our re-flashed result above, note
that the hand shadows produced by the ambient illumination is well preserved,
while the human subject is re-lit to be more prominent.
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Figure 5.2: Our workflow of radiance gradient recovery and image re-flashing.

5.3.1 Workflow

The entire workflow of our radiance recovery and image re-flashing method is
summarized in Figure 5.2. The main steps are summarized as follow:

1. Capturing two flash images (spatially aligned) with different flash intensity

2. Mapping the intensity of two images to radiance with inverse camera re-
sponse function and computing radiance gradients (pixel forward difference)

3. Decomposing radiance gradients

4. Selectively composing radiance gradients

5. Reconstructing radiance with Poisson solver and mapping radiance to re-
flashed image.

5.3.2 Decomposing the radiance gradient

A typical flash discharge is a rapid burst of light energy followed by a slower
decay, and the total discharge time is significantly less than the camera exposure
time. Thus F is the radiancemap produced by total amount of flash output. Denote
the ratio of the two flash intensities by r. Since the radiance map F is linearly scaled
by flash intensity, we have F2 = rF1, as shown in Figure 5.3.
Now it is easy to derive:

∇F2 = r∇F1
∇R2 − ∇R1 = ∇F2 − ∇F1 = (r − 1)∇F1.

(5.1)
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Figure 5.3: Decomposition of the radiance gradient by changing the flash intensity
by a ratio r = ∇F2/∇F1. Additive Gaussian noise is used to model the uncertainty
in our measurements.

Therefore,

∇F1 = 1
r − 1(∇R2 − ∇R1). (5.2)

Given ∇F1 and ∇F2, ∇A can be recovered using

∇A = ∇R1 − ∇F1 = r∇R1 − ∇R2r − 1 , (5.3)

In our method, the flash need not be calibrated, and the absolute flash intensity (in
lumens) is also not required. We only need to know r, the ratio between two flash
intensities. Once ∇A, ∇F1, and ∇F2 are solved, we can then reconstruct the ambient
and flash radiance by integrating these gradient fields subject to the usual potential
field constraint:

∂2R
∂x∂y

=
∂2R
∂y∂x

. (5.4)

The standard way to solve this integration is via the Poisson Solver, and in this
paper we use the method described in [Agrawal et al. 2006b].
Note our method can be easily extended to three or more input flash images. In

this case, Equation (5.3) will need to be modified to compute ∇A as a least-squares
solution in terms of the radiance gradients ∇Ri and the flash intensity ratios ri. As
before, these multiple input images can, in principle and with the right hardware,
be acquired in a short period of time, so that object motion is not really an issue.
Using three or more inputs is likely to reduce overall noise, but at the expense of
more computation.
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5.3.3 Determining the ratio of flash intensities

In practice, as shown in Figure 5.3, the measured ∇R1 and ∇R2 are affected by noise
which we characterize by a zero mean Gaussian distribution:

∇̃R1 = ∇R1 + n1 (5.5)

∇̃R2 = ∇R2 + n2. (5.6)

Here, n1 and n2 are independent 2D random vectors each following a Gaussian
probability density function (pdf). We assume both pdfs have zero means, but
different covariance matrices. We further assume that the noise in both dimensions
are independent, leading to diagonal covariance matrices. Thus we may write:
n1 ∼ N(0,C1) and n2 ∼ N(0,C2), where

C1 =

⎡⎢⎢⎢⎢⎣ σ21x 0
0 σ21y

⎤⎥⎥⎥⎥⎦ , C2 = ⎡⎢⎢⎢⎢⎣ σ22x 0
0 σ22y

⎤⎥⎥⎥⎥⎦ , (5.7)

and σ21x, σ
2
1y, σ

2
2x, σ

2
2y are unknown constants. As we will soon show, there is no need

to estimate the values of these constants.
From Equation (5.3), the recovered gradients of ambient radiance can be ex-

pressed as:

∇̃A = r∇̃R1 − ∇̃R2
r − 1

=
r∇R1 − ∇R2
r − 1 +

rn1 − n2
r − 1

= ∇A + nA,

(5.8)

Therefore, to accurately recover∇A, we need tofind the optimal r that canminimize
the magnitude of the noise term nA. Because r is the ratio of two different flash
intensities, we may add the constraint r > 1, i.e. the second flash intensity is always
higher than the first. From our assumptions, it is straightforward to show that nA
follows a Gaussian pdf, i.e. nA ∼ N(0,Σ), where Σ is

Σ = (
r

r − 1)
2C1 +

1
(r − 1)2C2. (5.9)
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Figure 5.4: Plot of trace(Σ) versus r. To minimize the curve, r should be as large as
possible.

Because themean is zero, wemay equivalentlyminimize trace(Σ). As illustrated
in Figure 5.3, we want to find an optimal r to minimize the “radius of uncertainty”
of nA. Thus:

r = argmin
r
{trace(Σ)} , r > 1 (5.10)

= argmin
r

{( r
r − 1

)2
S +

1
(r − 1)2T

}
, r > 1 (5.11)

where S = σ21x + σ
2
1y and T = σ

2
2x + σ

2
2y.

The plot of trace(Σ) versus r is shown in Figure 5.4. Different values of σ21x, etc.
do not affect the general shape of the curve. Note that the curve goes to +∞ at r = 1,
and asymptotically approaches S as r → +∞. It can also be proved that the curve
achieves its minimum when r = −T/S, but this is a negative value and thus not
valid (the flash intensity ratio cannot be negative). Thus, we want r to be as large
as possible, i.e. the second flash intensity to be much higher than the first. This is
true whatever the actual values of the unknown variances σ21x etc. are.
A simple way to maximize the ratio of flash intensity is to take the first photo

without flash, and the second one with maximum flash output. However, the flash
intensity is also limited by practical concerns. First, if the flash intensity is too low
and ambient illumination is also very weak, then the radiance will be dominated
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by CCD and read out noise which leads to a low SNR [Holst 2006]. Second, if the
flash is too strong, many parts of the scene will be over-exposed (pixel values will
saturate), leading to an inaccurate radiance map R.
In our experiments, we choose the flash intensity such that the SNR of the

captured photo is high enough, and the whole image is properly exposed. By
“good SNR”, we mean the SNR value should be at least 5, according to Bushberg
et al. in [Bushberg et al. 2002].

5.3.4 Lower bound of ambient recovery

In theory, our method can recover the ambient component no matter how weak
it is, but in practice the amount of recovered ambient radiance is limited by the
camera’s dynamic range and image quantization noise. As shown in Figure 5.5
1, the camera response curve is relatively flat when radiance is low (= negative
log radiance). This region is also affected by quantization noise. Therefore, when
the ambient radiance is too weak, recovery is easily overwhelmed by quantization
noise. Ideally, we want a lower bound below which our method will not work.
However, it is not easy to find such a lower bound in general, since the dynamic

range and quantization noise is hardware dependent. For example, in our exper-
iment, when the average of ambient image intensity is as low as 20 (the intensity
range is 0 ∼ 255), our approach can still achieve reasonably good recovery. From
Figure 5.5, the log radiance value corresponding to intensity of 20 is −4. And usu-
ally the average intensity of flash images 2 is 170, corresponding to 1 approximately
in radiance logarithm. The ratio of ambient and flash radiance is about 1:32, which
also means that our method can achieve high quality ambient image with a shutter
speed that is nearly 5 stops faster.

1The camera response curve shown in this figure is in fact the same with the one in Figure 3.2.
We plot log of radiance instead of normalized radiance just for better illustration in later.

2We always adjust flash exposure settings so that all pixels intensities lie in the middle to upper
brightness range.
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Figure 5.5: The color lines describe the camera response curves of our Canon 350D
DSLR camera, and the gray dashed line illustrates the lower bound for ambient
recovery. This means if the ambient log radiance is below -4, the recovered ambient
component will be degraded by quantization noise. Note that the log radiance
values (horizontal axis) are not absolute, but depend on the camera exposure
settings. For example, enlarging the aperture will shift the curves to the right.

5.3.5 Recovering shadow regions

Typically, there are two kinds of shadows in flash photographs: those caused by the
ambient illumination, and those caused by the flash. Unless the flash and ambient
illuminants are co-linear, these shadow regions are unlikely to be one and the same.
Moreover, an ambient shadow will be completely filled with flash light, especially
when the flash intensity is high. Thus, in such regions the ambient radiance is
zero and the captured radiance R equals flash radiance F. This in turn forces their
gradients to be equal, as shown in Figure 5.6(a). On the other hand, a flash shadow
receives no light from the flash, but only from the ambient illuminant. Thus, the
captured radiance is solely due to the ambient radiance, which in turn forces their
gradients to be equal. This is shown in Figure 5.6(b).
Wemayuse the above insights to easily identify and recover the shadowregions.

In Figure 5.6(a), ∇R1 and ∇R2 have the same orientation and their magnitude ratio
is also r. From Equation (5.1), (5.2), and (5.3), we can easily derive that ∇R1 = ∇F1,
∇R2 = ∇F2 and ∇A = 0, meaning that flash dominates the overall radiance. In
Figure 5.6(b), we have ∇R1 − ∇R2 = 0, thus we know that ∇F1 = ∇F2 = 0, and
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simply get ∇A = ∇R1 = ∇R2.

(a) Ambient shadow (b) Flash shadow

Figure 5.6: In both ambient and flash shadow regions, ∇A and ∇F can still be
recovered successfully.

5.3.6 Correcting specularities

Like shadows, specularities may be caused by either the ambient lighting or the
flash. It is unlikely that both types of specularities will coincide, since specularities
are highly sensitive to the exact placement of the camera, object, and light source.
Ambient specularities appear as equally bright regions in both input images, since
they are unaffected by the flash. These regions are also equal in size. In contrast,
flash specularity regions grow in size with increasing flash intensity, because pixels
surrounding a specular spot also receive more light and become saturated. This
distinction allows us to quickly detect and distinguish between the two types of
specularities.
Once detected, flash specularities should be corrected because these were not

present in the low-light scene. To do so, we employ standard image inpainting
algorithms. This approach is similar to existing methods which replace specular
pixels with ambient information from their neighbourhood. We use neighbor-
ing pixels because the ambient radiance of specular pixels has been completely
corrupted by over-exposure. Figure 5.8 shows an example of flash specularity
detection and correction in an ambient image. In this paper, we use A. Telea’s
inpainting algorithm [Telea 2004] to remove repair specularities.

65



CHAPTER 5. Selective Re-flashing

(a) User Marking (b) Weighted Mask

Figure 5.7: Users easily select their desired regions for re-flashing by drawing broad
lines as shown in 5.7(a). White lines denote regions to be enhanced using flash,
while black lines denote regions where ambient radiance should be preserved.
After marking, a mask is automatically generated using a graphcut algorithm.
Note the mask is intentionally blurred by a simple Gaussian for a smooth blending
of the gradients inside and outside the mask.

5.3.7 Selective image re-flashing

Once the gradients of ambient component and flash component are recovered, we
can combine them together by a simple weighted sum. The weights, which control
the contribution of each component, may be chosen arbitrarily by the user. The
combined gradient field in then integrated via the Poisson Solver to obtain the
radiance map. Finally, we map the radiance values to pixel values by means of
the camera response function (CRF). The entire workflow of our radiance recovery
and image re-flashing method is summarized in Figure 5.2.
Instead of re-lighting the entire image, we can go a step further to allow the

user to choose which parts of the image to re-flash, andwhich to retain the ambient
illumination. To do this, the user quickly sketches (or scribbles), which regions to
re-flash (marked in white), and which to preserve the ambiance (marked in black).
Our scribble-based marking is similar to that in Photomontage by Agarwala et
al. [2004]. From these simple markings, a mask is automatically generated using a
graph-cut algorithm [Kwatra et al. 2003]. The boundary of themask is intentionally
blurred to smoothly blend the gradients inside and outside the mask. Figure 5.7
shows this process.
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5.4 Experiments and Results

In our experiments, we use the Canon 350D DSLR camera and Canon Speedlite
580EXflash as to capture all the pictures. The Speedlite 580EXhas aflash bracketing
exposure functionwhich allowsus to take up to 3 photos successivelywith different
flash output. Unless otherwise stated, all pictures are captured with exposure
settings of ISO 100, F8.0, and a white balance for flash. Such settings are usually
desired for taking photos with low-noise and a wide depth of field, and are very
suitable for low-light photography. The ratio of flash intensities in the two input
images is r = 4. Finally, our camera response function is pre-calculated using HDR
Shop [Debevec ].

5.4.1 Recovering and re-flashing an ambient image

One of the most interesting applications of our method is to recover and re-flash
ambient images. Figure 5.1 already shows that in low-light conditions, traditional
flash photography is not able to illuminate the scene while preserving ambient
radiance. Note that the hand shadows are washed out by the flash in both the
inputs. However, they are well preserved in the recovered ambient image, and
completely suppressed in the flash-only image. With a few quick scribbles, the
user indicates that the human subject should be re-lit with flash, while the hand
shadow should be preserved under ambient lighting. The result of our method is
a visually pleasing enhanced image that preserves the shadows while brightening
the human subject.
Another example is shown in Figure 5.8, which demonstrates the effectiveness

of our method at handling complex scenes that contain light sources, ambient and
flash specularities. By comparing the Recovered Ambient Image with the Flash
Specularity Correction image, it is clear that our method successfully detects and
suppresses flash specularities. Moreover, in the Recovered Flash Image (which
contains the flash-only radiance), the ambient specularities caused by the desk
lamp and ceiling lights on the chrome sphere do not appear, as to be expected.
We also compared our ambient recovery with the ground truth and results of

Miao and Sim’s method [2005], demonstrating our method can faithfully recover
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(a) Input Flash Image 1 (b) Input Flash Image 2

(c) Recovered Flash-only Image (d) Recovered Ambient Image

(e) Detected Flash Specularities (f) Recovered Ambient Image with Specular-
ity Correction

Figure 5.8: These images show the effectiveness of ourmethod at handling complex
scenes that contain light sources, ambient and flash specularities. Our method suc-
cessfully detects flash specularities and corrects for them in the RecoveredAmbient
Image. Moreover, in the Recovered Flash-only Image, the ambient specularities
caused by the desk lamp and ceiling lights on the chrome sphere are absent, as to
be expected.
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ambient image and is robust to noise. In the experiment shown in Figure 5.9, the
two input flash images are taken with exposure time of 1/30 sec, and the ground
truth of ambient image is taken in 1/10 sec. To match the exposure of the ground
truth, we re-rendered our ambient radiance using 3 times of recovered intensity.
For Miao and Sim’s result, we re-rendered the ambient image with tα = 1/10sec.
Comparing the two recovered ambient images and the ground truth, it is obvious
that our recovery exhibits less noise defects, more accurate color than Miao and
Sim’s, thus presenting closer visual quality to ground truth.
Our method also outperforms the Joint Bilateral Filter (JBF), the essential tech-

nique used in [Petschnigg et al. 2004] and [Eisemann and Durand 2004]. To com-
pare, we use the flash/no-flash 3 image pair as inputs. Similar to Petschnigg et al.’s
work, we extract the large scale layer of the no-flash image and detail layer of flash
image using bilateral filter, and combine these two layers together based on the
same mask as ours (Figure 5.7(b)). We also combine the flash color layer which is
decoupled using Eisemann andDurand’smethod. The inputs and results of JBF are
shown in Figure 5.10. As can be seen, the color and details of the subject’s body are
improved but the face region is still too dark. Moreover, while the ambient noise is
reduced, the fine wall texture details have been smoothed away. Compared to our
results in Figure 5.1, our reflashing technique achieves higher visual quality.

5.4.2 Outdoor night photography

In outdoor night photography, it is extremely difficult to take a good picture that
has a high SNR, even exposure and no motion blur. A typical scene is like this:
foreground subjects are usually poorly lit, while background objects are at a dis-
tance and exhibit some interesting illumination. To capture a sharp image of the
foreground subjects, we turn on the flash and use a short exposure. But flash often
ruins the ambient mood, while a fast shutter speed causes the background to be
too dark.
Ourmethod solves this problem in a smartway: by brightening (i.e. multiplying

by a scalar) the recovered ambient radiance, and by re-flashing the foreground

3The flash image is the same with our input. The no-flash image is obtained by prolonging
exposure time, and NOT the ambient image recovered using our method.
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Figure 5.9: Our method can faithfully recover the ambient image. In overall, our
result exhibits more accurate color than Miao and Sim’s. In details, our ambient
recovery presents higher visual quality w.r.t. shadow separation (note the region
in the red circle) and noise suppression (note the region in the blue circle).
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Figure 5.10: Comparison with the result from a flash/no-flash image pair using
Joint Bilateral Filtering. The JBF enhancement is achieved using a routine similar
to that in [Petschnigg et al. 2004] and [Eisemann and Durand 2004].

subjects (see Figure 5.11). Although the foreground subject is standing in a very
dim environment and can barely be seen, our re-flashed image is visually pleasing
with a naturally re-lit subject against a brightened ambient background.

5.4.3 Separating inter-reflections

Inter-reflection is a common artifact in flash photography, especially in scenes
containing shiny surfaces near objects. To illustrate this problem, we set up a
simple experiment as shown in Figure 5.12. We position a desk lamp on the left-
front side of a ball with diffused surface to provide ambient illumination. We
also point our flash towards the ceiling and use the bounced light as the second
illuminant. We then place a mirror on the desk to reflect light onto the ball, thus
creating inter-reflections.
In the two input flash images, we can see that both the ambient light and

bounced flash are reflected to the bottom of ball, producing an overlaid inter-
reflection artifact. However, even for such a complex scene, our method correctly
separates the inter-reflection due to flash versus those due to ambient illumination
(see the bottom row of Figure 5.12). Compared to existing works, for example,
[Nayar et al. 1993; Nayar and Gong 1992; Tan et al. 2003], we do not need a set of
polarized images to detect inter-reflections, nor do we require knowledge of the
scene geometry, nor any user inputs. No special processing is necessary to handle
inter-reflections as our model correctly separates them.

71



CHAPTER 5. Selective Re-flashing

(a) Input Flash Image 1 (b) Ground Truth of Ambient Image

(c) Input Flash Image 2 (d) Recovered Ambient Image

(e) User Marking (f) Re-flashed Result

Figure 5.11: Enhancing outdoor night photography: This challenging scene is
solved in a smart way — by combining a brightened ambient image with the re-lit
foreground subject. The zoomed-in shots of the subject’s head shows that our re-
flashed result has a higher SNR than the recovered ambient component. It is also
brighter and clearer than the ground truth ambient image. The texture on the wall
behind the subject is clearly visible. In this example, we can even tune the color
of the flash radiance, so that the re-lit subject exhibits a hue similar to that in the
ambient background.
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Flash Input 1                                                          Flash Input 2   

Re-rendered Ambient Image                                 Re-rendered Flash Image

Figure 5.12: Top row: two input flash images showing an overlaid inter-reflection
artifact on the bottom of the ball. Bottom row: these show the clean separation of
inter-reflection caused by the ambient illuminant from those caused by the flash.

5.5 Limitation and discussions

Ourmethod suffers from some limitations. First, to compute gradient variation, we
require that both input images be pixel-aligned. But this is unlike other flash/no-
flash techniques. If the total exposure time is too long, any mis-alignment due to
scene or camera motion could increase the error in the recovered gradients. But
compared to flash/no-flash methods, capturing two successive flash images can be
performed very quickly, therebymitigating this problem. In theory, we can capture
both flash images with just a single burst of flash, by accurately timing the camera
sensor(s) with the decay of the flash burst. This is a hardware issue which we plan
to tackle in the future. Using a single flash also conserves battery power, and spares
the human subject from the annoyance of enduring multiple flashes.
Second, our specularity correction algorithm may fail in cases where specular

regions are very large in both the inputs. Since the gradient information in such
regions are irrecoverably lost, the original color and texture cannot be recovered
faithfully. One way to tackle this problem is to employ image inpainting with user
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hinted structure information, such the work of [Sun et al. 2005].

5.6 Chapter Summary

It is difficult to capture high quality photographs when the ambient light is weak.
Based on the mathematical relationship between radiance gradient and illumina-
tion studied in Chapter 3, we present a novel method that can faithfully recover
the ambient and flash-only radiance components from just two flash photographs.
Our method is flexible in that we allow users to re-flash selective regions instead
of the whole image. The intensity of the re-flashing can also be controlled.
This work, again, proves that gradient variation is key of enhancing pho-

tographs across illumination. Unlike other researchers, we do not ignore such
gradient variation, but make use of illumination change to decompose radiance
gradient. Our gradient decomposition method is efficient yet simple, and can
neatly separate the radiance gradient field of the flash and ambient components of
a scene. Based on that, we also introduce away to fuse them together on parts of the
image, selected with minimal user input, thereby creating novel re-flashing effects.
Finally, our method naturally handles specularities, shadows and inter-reflections,
producing results of high visual quality.
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Conclusions and Future Work

6.1 Summary

Our goal in this thesis was to find a key to enhancing digital photography under
extreme illumination situations, such as HDR and low light environment. Under
those situations, capturing and representing satisfactory photographs are very
difficult due to the limited sensing capability of digital cameras. In Computational
Photography — an emerging area across computer vision and graphics — many
approaches have been proposed, but none of them solved the problems completely.
Our research revealed the fact that the radiance gradient variation according to the
illumination change, could provide important clues to the problem. Based on this
idea, we introduced solutions for photography enhancement in HDR and low light
environment, respectively.
In the theory chapter, wemathematically showedhowradiancegradient changes

under the variation of single or two illuminants. We pointed out that the illumina-
tion variation does not only change the gradient magnitude, but also the gradient
orientation. However, in many recent works, researchers often assumed that the
radiance gradient is invariant to the illumination change. Therefore, we further
discussed the conditions under which such assumption holds and when not. Such
discussion naturally leads to our solutions presented in Chapter 4 and 5.
First, we presented a novel solution to enhance photographs in HDR scenes by

transferring contrast and textures from their corresponding near infrared photos.
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The key idea was to manipulate image gradient magnitude, which not only adjusts
local brightness contrast but also preserves overall illumination consistency. We
built a dual-camera prototype that can capture both the visible image and its near
infrared counterpart in a single shot. Thus our method does not depend on the
static scene assumption. Moreover, the whole process of our approach is adaptive
and fully automatic. Compared to the simple alpha blending and HDR + Tone-
mapping, our results exhibit higher visual quality.
Second, we introduced an approach that can recover and re-flash ambient radi-

ance from two flash photographs. The input flash photos are taken with different
flash intensities, thus providing the gradient variation of the captured radiance.
By exploiting such gradient variation, we successfully decomposed gradient field
of the ambient and flash-only radiance, allowing users to selectively re-flash the
ambiance. Compared to the existing flash/no-flash techniques, our method can
effectively suppress many artifacts such as noise, cast shadows, interreflection,
specularities, etc. Moreover, as the two flash inputs can be taken quickly and
within a very short time interval, our approach is less dependent on the static
scene assumption. We tested our method in both indoor and outdoor low lighting
environment, and achieved visually pleasing results.

6.2 Review of Contributions

The major contributions of this thesis are summarized as follows.

1. Our study on the variation of radiance gradient points out a new perspective
to computational illumination. By successfully enhancing photographs in
HDR and low light environment, we showed that gradient variation can be a
key to enhancing photographs across different illuminations.

2. We invented a novel approach which uses NIR information to adjust the
contrast of photographs adaptively and to enrich texture details automatically
with one single shot.

3. We proposed a simple yet efficient computational re-flashing method to en-
hance low light ambient radiance by letting the user re-flash it selectively.
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6.3 Future Directions

In this thesis, we demonstrated the usefulness of gradient variation across different
illuminations in two applications: HDR and low light photography. In the future,
this work can be extended in several ways:

Enhancement using multiple flashes In Chapter 3, we have shown how the radi-
ance gradient varies under the change of one and two illuminants. In fact,
the mathematical relationship could be extended to incorporate more illumi-
nants with varying intensities and directions. As a result, our computational
re-flashing technique could be extended by using a camera equipped with
multiple flashes, similar to [Raskar et al. 2004c]. By recovering the radiance
emitted by flashes in different positions, it is possible to interpret 3D scene
structures and to create more flexible re-flashing effects.

Peripheral illumination correction Peripheral illumination fall-off, a.k.a. vignetting,
is a common artifact that often jeopardizes computer vision algorithms. The
incident light falls differently from optical center to peripheral region, creat-
ing the uneven exposure effect. The state-of-the-art methods usually model
such nonlinear fall-off with a nth polynomial equation and estimate the pa-
rameters for each term. However, such approaches inherently assume that
(1) optical center and image center coincide, and (2) vignetting is radially
symmetric. As we know, under many situations, both of these assumptions
are invalid. Based on our study, such illumination fall-off could be modeled
with gradient variation, thus the original radiance (without vignetting) could
be easily recovered by simple gradient decomposition. Such solution would
not require the above assumptions, hence be more applicable and efficient.
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