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Abstract

Jaundice is observed in over 60% of neonates and must be carefully monitored. If

severe cases go unnoticed, death or permanent disability can result. Neonatal jaun-

dice causes 100,000 deaths yearly, with low-income countries in Africa and South

Asia particularly affected. There is an unmet need for an accessible and objective

screening method. This thesis proposes a smartphone camera-based method for

screening based on quantification of yellow discolouration in the sclera.

The primary aim is to develop and test an app to screen for neonatal jaundice

that requires only the smartphone itself. To this end, a novel ambient subtraction

method is proposed and validated, with less dependence on external hardware or

colour cards than previous app-based methods. Another aim is to investigate the

benefits of screening via the sclera. An existing dataset of newborn sclera images

(n=87) is used to show that sclera chromaticity can predict jaundice severity.

The neoSCB app is developed to predict total serum bilirubin (TSB) from

ambient-subtracted sclera chromaticity via a flash/ no-flash image pair. A study

is conducted in Accra, Ghana to evaluate the app. With 847 capture sessions, this

is the largest study on image-based jaundice detection to date. A model trained on

sclera chromaticity is found to be more accurate than one based on skin. The model

is validated on an independent dataset collected at UCLH (n=38).

The neoSCB app has a sensitivity of 100% and a specificity of 76% in iden-

tifying neonates with TSB≥250µmol/L (n=179). This is equivalent to the TcB

(JM-105) data collected concurrently, and as good as the best-performing app in the

literature (BiliCam). Following a one-time calibration, neoSCB works without spe-

cialist equipment, which could help widen access to effective jaundice screening.



Impact Statement

The primary contribution of this work is the development of the neonatal scleral-

conjunctival bilirubinometer (neoSCB) app. Oftentimes, visual inspection is the

only available means to screen for jaundice. This is subjective and difficult for the

untrained individual, leading to missed cases. This can result in death and disability.

neoSCB may offer an objective means of screening for jaundice, leading to fewer

untreated severe cases of jaundice. The screening performance of the neoSCB app

is superior to visual inspection and as good as purpose-made screening devices

(transcutaneous bilirubinometers – TcBs).

Apart from reduction in quality of life, permanent disabilities impose a greater

socio-economic burden on families in less economically developed countries, where

there are higher rates of jaundice-related death and disability. In a global health

context, the ubiquity of smartphones means the app can be used in parts of the

world with fewer healthcare provisions, where there is limited access to advice from

medical professionals or TcBs.

The neoSCB app was developed so as not to rely on phone attachments or

reference cards. This may help with the adoption of the tool, as it does not depend

on supply chains or assembly or maintenance steps. This may increase access to

jaundice screening in low-resource settings.

The neoSCB app is cheaper than a TcB, even if a suitable smartphone must be

purchased. This is an advantage, as reducing costs is important in both high and

low-income countries.

Telemedicine is evolving beyond the remote consultation, with more diagnostic

services available via smartphone. neoSCB can help remote communities catch
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jaundice early, as well as reducing the number of false alarms. In remote areas,

false alarms can involve long, costly, and sometimes dangerous trips to far away

hospitals. In the context of the COVID-19 pandemic, new parents may be wary of

trips to hospitals. A tool like neoSCB can provide reassurance if the baby is not at

risk, and a definitive signal to seek medical attention if the baby is at risk.

Apart from the impact of a future deployment of the neoSCB screening app,

this work makes several academic contributions. It confirms that sclera chromatic-

ity is more indicative of systemic bilirubin levels than skin chromaticity, and it con-

firms that phototherapy leads to subsequent underestimation by TcB devices. These

confirmations can help inform further research into jaundice screening.

This work showcases a new application of ambient subtraction to recover

ambient-independent colour. Further, it shows that this can be done on a smart-

phone, and that a screen-as-illumination modality is also feasible. These insights

may help other researchers explore new ways to monitor disease via smartphone

colour imaging. For example, some literature has considered using smartphone

camera images to diagnose anaemia by quantifying the pallor of the palpebral con-

junctiva.

Finally, the Detecting Jaundice in African Neonates (DJAN) study collected

847 separate image sets. This is the largest study of its kind, and the first in a

majority Black African population. This database can be used to further refine

the neoSCB algorithm or develop entirely new methods for image-based jaundice

detection.
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Chapter 1

Introduction

1.1 Motivation and Aims

Smartphones are now used in a variety of healthcare contexts. At the time of writ-

ing, some national governments are using smartphones to suppress the spread of

the COVID-19 pandemic by tracking exposed individuals via GPS. Altogether less

topical and controversial, many smartphones count steps and report the daily totals

as a default behaviour. Yet smartphones were originally conceived neither as tools

to monitor the spread of disease nor as pedometers. These innovations made use

of existing smartphone functionalities – the GPS unit and the accelerometer – to

deliver solutions where medical devices and healthcare infrastructure were not.

Digital colour imaging is now used for various medical purposes such as man-

aging wound healing [7], burn severity assessment [8], melanoma assessment [9],

anaemia detection [10], and a variety of eye examinations [11] [12]. There has been

a trend towards quantitative image-based diagnostics, where once only qualitative

assessment was used. Until recently only a dedicated digital camera would have the

quality required to capture useful clinical images. Now smartphone image quality

has improved significantly, providing opportunities for point-of-care imaging solu-

tions. For example, urine-based strip tests can be read and interpreted in the home

setting using a smartphone camera application [13].

The aim of this thesis is to develop and test an app to measure neonatal jaun-

dice severity so it can serve as a screening tool. The approach is based on the
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quantification of the yellow discolouration in the sclera and skin that characterises

jaundice. The risk of death and disability from jaundice rises the longer the condi-

tion goes untreated, so early identification is essential [14]. In this thesis it is argued

that a smartphone-based method could provide an alternative to both visual inspec-

tion and expensive, purpose-built devices, going some way towards addressing the

unmet need for accessible and objective jaundice screening.

The scalability of smartphone-based healthcare solutions gives them a great

potential for impact. Smartphones are now ubiquitous: Almost half of the world’s

population own one, including a substantial fraction in the least economically de-

veloped countries [15]. This means people who have limited access to health-

care resources in less economically developed countries (LEDCs) can benefit from

smartphone-based innovations. Jaundice affects LEDCs disproportionately, with a

greater incidence of long-term impairment and death [16]. Throughout this thesis,

the proposed solutions are considered in the light of how scalable they would be

in a low-resource setting, with preference given to approaches that require minimal

add-ons to the smartphone itself.

Smartphones are not a panacea. Smartphone hardware and software can be dif-

ficult to use due to heterogeneity between different makes and models [17]. For this

reason, some of the most well-established smartphone healthcare applications use

the device as a datalogger and interface for a purpose-built external sensor, such as

a continuous glucose monitor. The question of how to achieve device independent

results while using data from the inbuilt camera is therefore central to this thesis.

Sclera-based screening apps have been studied in adult populations, but little

attention has been directed towards imaging the newborn sclera. In this work, the

feasibility and predictive utility of sclera colour quantification is compared to skin

colour quantification.
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1.2 Thesis Objectives and Overview
The objectives of this thesis are:

1. Identify the desirable features of an image-based jaundice detection app and

the key challenges to be overcome

2. Propose an imaging solution and jaundice metric that satisfies these criteria

3. Build an app that implements this solution

4. Establish the app is feasible to use in a clinical settings by a pilot study

5. Test the colorimetric accuracy of the app

6. Determine whether the sclera or skin is a better site from which to predict total

serum bilirubin (TSB), and whether the sclera-based approach is affected by

the phototherapy history of the newborn

7. Collect data in a larger population and use the images and measured TSB

values to train and test a model to predict TSB from the jaundice metric

8. Investigate the factors affecting TSB prediction performance

9. Calculate the screening performance of the app in identifying newborns with

TSB greater than a clinically relevant threshold

10. Compare the app screening performance to that of the transcutaneous biliru-

binometer

In the rest of this chapter, the background to this work is presented. Firstly,

the problem of neonatal jaundice is described. Current methods of jaundice screen-

ing are introduced and their limitations are discussed, motivating the need for a

smartphone-based solution. Following this, there is an overview of the process by

which a digital image is produced and how colour information is derived from im-

ages. Finally, current research efforts towards image-based jaundice detection are

reviewed.
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In Chapter 2, the three clinical studies used in this thesis are described. Details

are provided of the scopes, enrolment processes, imaging technologies, and clinical

data collected. The datasets are compared to each other. Lastly, there is a summary

of how each study is applied to address the above objectives.

In Chapter 3, the thought process behind the development of the neonatal

scleral-conjunctival bilirubinometer (neoSCB) screening app is explained. The

challenges related to screening for jaundice using a smartphone camera are outlined

(Objective 1). Based on these considerations, a novel method based on ambient-

subtracted sclera chromaticity is suggested (Objective 2). The principles of the

method are demonstrated on clinical and non-clinical image data. Finally, the smart-

phone hardware requirements are outlined and the neoSCB app is described (Ob-

jective 3).

In Chapter 4, a model relating total serum bilirubin (TSB) to ambient-

subtracted sclera chromaticity is sought using data from a pilot study at UCLH

(Objective 4) and a larger study conducted in Ghana (Objective 7). First, the ambi-

ent subtraction method is compared to some white balance methods on colour card

data collected in a clinical environment (Objective 5). Skin chromaticity on the

sternum is compared to sclera chromaticity to determine which is a better predictor

of neonatal TSB (Objective 6). The variability due to segmentation and between

repeat measurements is quantified. The effects of gestational age, phototherapy his-

tory, and other clinical factors on prediction accuracy are investigated (Objective

8). Once the model is selected, it is trained on the Ghana dataset and tested on

the UCLH dataset. The performance is compared to other studies that have sought

image-based TSB prediction.

In Chapter 5: Screening performance, the neoSCB app screening performance

is quantified (Objective 9). It is compared to transcutaneous bilirubinometry (Ob-

jective 10). The real-world applicability of the app and possible next steps are

discussed.
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1.3 Jaundice Background

1.3.1 What is Jaundice?

Jaundice is caused by a build-up of bilirubin in the body, which manifests as a

yellow discolouration of the skin and whites of the eyes (sclera). Bilirubin is a

yellow pigment that occurs naturally in the body as a breakdown product of heme,

which is present in red blood cells (RBCs). When a RBC is first broken down, the

bilirubin is in an unconjugated, fat-soluble form and is found bound to albumin.

In the liver, the bilirubin becomes conjugated and thus water-soluble. In this form

it can be excreted. Anything that disrupts or overloads this pathway can cause

jaundice, as bilirubin fails to be cleared from the body quickly enough. For example,

adult patients with liver problems, such as alcoholic liver disease or viral hepatitis,

may present with jaundice because the conjugation process is impaired.

The focus of this work is neonatal jaundice. Jaundice is very common in

neonates, with around 60% of term and up to 80% of premature neonates affected

in the first week of life [14]. There are several contributing factors: newborns natu-

rally have a higher rate of hemolysis (RBC breakdown), as fetal RBCs have shorter

lifespans; the enzyme that conjugates bilirubin in the liver takes some time to gain

function after birth; bilirubin is re-absorbed into circulation by the gut; bruising dur-

ing childbirth is common, creating an greater load of hemolysis [18]. In the majority

of cases, this normal, so-called physiological jaundice resolves without any need for

intervention [14]. Pathological jaundice refers to jaundice that results from an un-

derlying health condition, which can lead to a more rapidly rising level of jaundice

and a greater risk of adverse outcomes. Examples of such conditions include ABO

blood group incompatibility between mother and newborn, Rhesus disease, and in-

herited deficiency in the Glucose-6-Phosphate Dehydrogenase (G6PD) enzyme, all

of which increase the rate of hemolysis. Unconjugated bilirubin is neurotoxic, and it

can cross the blood-brain barrier if levels are elevated for a prolonged period. In the

short term, this can lead to acute bilirubin encephalopathy. Symptoms of bilirubin

encephalopathy include arching of the back, listlessness, and high-pitched crying.

If untreated, permanent damage to the brain can ensue, which is called kernicterus.
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Death or lifelong disability such as cerebral palsy or deafness can result [19].

In the most severe cases, exchange transfusion is used to urgently reduce the

concentration of bilirubin in the blood. In moderate cases, the safer, non-invasive

option of phototherapy is preferred. Figure 1.1 shows a baby undergoing photother-

apy. The eyes are shielded from the light.

Phototherapy involves shining blue light in the wavelength range 460-490nm

onto the exposed skin of the baby. While bilirubin absorbs most strongly around

460nm, the longer wavelengths penetrate deeper into the tissue. These wavelengths

affect bilirubin by the processes of photoisomerisation and photodegradation, with

the former being more significant [20]. The isomers created can be excreted by the

body in bile and urine, bypassing the need for conjugation in the liver [21]. These

isomers appear in the blood soon after phototherapy is applied, but it may be some

time before all isomers are cleared from the superficial tissues. While isomers are

cleared from the skin, they are simultaneous reabsorbed from the blood, along with

unconjugated bilirubin, until a new equilibrium is reached [21].

The isomers of bilirubin created during phototherapy also have a yellow colour.

As they are cleared from the superficial tissue, the yellowness fades, a process some-

Figure 1.1: Newborn undergoing phototherapy. “phototherapy” by Jennifer Pack is li-
censed with CC BY-NC 2.0 (https://creativecommons.org/licenses/by-nc/2.0/).
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times referred to as “bleaching” [22]. This means that contact-based estimations by

optical devices such as the transcutaneous bilirubinometer develop a discrepancy

with total serum bilirubin (TSB) in the hours after phototherapy [22] [23] [24].

Studies showed this discrepancy is absent or less pronounced in skin areas cov-

ered during phototherapy, which provides more evidence for a bleaching effect on

exposed skin [25] [26] [27] [28] [29].

Treatment threshold graphs such as the one in Figure 1.2 are produced by the

National Institute of Health and Care Excellence (NICE). These indicate the recom-

mended treatment based on the neonate age and bilirubin level. Premature babies

are vulnerable to excess bilirubin (also known as hyperbilirubinaemia) at lower con-

centrations. Therefore, different thresholds are applied depending on the gestational

age of the neonate [14].

Figure 1.2: Treatment thresholds for a gestational age of 38 weeks. For babies in the first
4 days of life, thresholds for treatment are lower. Graph from NICE Clinical
Guideline 98 (2010) [14].

1.3.2 Disease Burden

According to Bhutani et al. [16], worldwide in 2010, hyperbilirubinaemia was re-

sponsible for 114,000 deaths, 62,000 cases of developmental delay, 64,000 cases

of hearing loss, 35,000 cases of athetoid cerebral palsy, and 18,000 individuals af-

fected with other neurological disabilities. In less economically-developed coun-
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tries (LEDCs), the disease burden due to jaundice is higher. Travel to healthcare

facilities may be expensive or arduous, fewer community healthcare profession-

als such as midwives are available, and home births are more common [30] [31].

These three factors mean more cases of jaundice go undiagnosed, which greatly

increases the risk of permanent disability. Furthermore, jaundice-related disability

imposes a higher socio-economic cost on families in LEDCs than in developed na-

tions [32] [33]. One of the most affected regions in the world is sub-Saharan Africa.

In addition to the reasons mentioned above, jaundice can be particularly difficult to

notice in Black African neonates as their skin pigmentation is darker. G6PD en-

zyme deficiency is also more common in this region. This inborn metabolic condi-

tion causes red blood cells to be broken down at an increased rate, which increases

the chance of jaundice [34]. In Ghana, Adei-Atiemo et al. identified hyperbilirubi-

naemia as “the most significant and preventable risk factor for cerebral palsy” [35].

1.3.3 Screening and Diagnosis Methods

The gold standard test for diagnosis of jaundice is a blood test to determine the total

serum bilirubin (TSB), a concentration measured in micromoles per litre (µmol/L)

or milligrams per decilitre (mg/dL). A heel lance is used to extract a blood sam-

ple. This can be painful for babies and distressing for parents. The need to travel

to a hospital to carry out such a blood test also makes them impractical for rou-

tine jaundice monitoring, especially in remote areas. Furthermore, the result is not

immediately available, and lab measurement turnaround times can vary consider-

ably. As it is neither possible nor desirable to monitor bilirubin levels via blood

tests alone, neonates must be regularly screened for jaundice in other ways. Most

commonly this is done via a visual inspection, ideally by a midwife or doctor. The

NICE clinical guidelines advise new parents to check for any yellow discolouration

under a bright, preferably natural source of light by pressing lightly on the skin. In

babies with darker skin tones, it is recommended to inspect the gums and whites of

the eyes for signs of jaundice [36].

A transcutaneous bilirubinometer (TcB) is a hand-held optical device that,

when pressed to the skin of the forehead or chest, can provide an estimate for TSB.
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The reflectances of specific wavelengths are measured to infer the optical density

of bilirubin in the skin. In the UK, the JM-103/5 (Draeger UK) and the Bilichek

(Philips Healthcare) are the two TcBs available for clinical use. The JM-103/5

measures reflectance of 450nm and 550nm light. It mitigates the effect of other

skin chromophores (primarily melanin and hemoglobin) using a dual optical path-

way system. This is possible because the longer path length provides more infor-

mation about the deeper, subcutaneous layer (where bilirubin accumulates), while

the shorter path length provides more information about the dermal and epidermal

layers (where the other skin chromophores predominate). The Philips Bilichek uses

reflectance data from 137 different wavelengths in the visible range to resolve an

estimate of concentrations of all skin chromophores [37].

TcBs are useful screening tools because they are non-invasive and give an on-

the-spot, objective indication of jaundice severity. The TcB reading is in the same

units as the TSB (µmol/L or mg/dL). It is compared to a clinically relevant TSB

Figure 1.3: Flowchart for the screening and diagnosis of jaundice. Reproduced with per-
mission from Ref. [38].
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threshold to determine whether or not the baby requires a blood test. Therefore,

even though a numerical reading is provided by the TcB, the outcome is a binary

screening decision.

Figure 1.3 summarises the decision tree currently used in the UK for screening

and diagnosis of jaundice. If jaundice is visible, babies at home are referred to a

hospital. Particularly at-risk groups (premature or less than one day old) are given

blood tests at once.

A positive TcB screening result is always followed by a blood test before treat-

ment is recommended. The accuracy of the TcB is inferior to measurement of TSB;

TSB is the gold standard to which all screening techniques must be compared.

1.3.4 Limitations of Existing Methods

Visual inspection is subjective and unreliable, and thus should not be relied upon

as the sole method for identifying jaundiced babies [36] [39] [40] [41]. Visual

identification of jaundice is especially difficult for inexperienced individuals such

as parents, and it is even harder to identify jaundice in babies with darker skin

complexions (for both professionals and parents).

TcBs have a few important disadvantages. They are expensive, at approxi-

mately £3,400 per device (NHS costing report, 2010 [36]). As a result, they are not

always available to midwives visiting in the community. In resource-poor settings

TcBs are prohibitively expensive. Furthermore, it is not well-established that TcBs

are equally effective for all ethnicities, with the literature split [34] [36] [42] [43].

Olusanya et al. reported an overestimation of TSB in Black African neonates

for both the JM-103 and Bilichek TcBs, which could lead to unnecessary treat-

ment [34].

Table 6.1 summarises the accuracy and accessibility of visual inspection and

the TcB. As a standalone screening approach, visual inspection lacks accuracy,

while the TcB is not sufficiently accessible. There is thus a need for an inexpensive,

accessible, objective screening method, especially in a global context.
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Table 1.1: Comparison of visual inspection and transcutaneous bilirubinometer.

Method Accuracy vs TSB Accessibility
Transcutaneous
Bilirubinometer

(TcB)

Validated accuracy in term and
near-term neonates up to

250µmol/L – TcBs are effective
as an objective screening tool at

this threshold [36]

Low availability,
especially outside of

clinical setting;
High unit cost

Visual Inspection Not easily quantified due to
subjectivity; High negative

predictive value when
performed correctly [39] [44];

Poor in identifying clinical
severity of jaundice [44]

No equipment
needed; Training
required in best

practices for visual
inspection

1.3.5 Advantages of Smartphone-based Screening

In the last few years, smartphone manufacturers have allowed developers to access

raw camera data, opening the door to point-of-care diagnosis based on the measure-

ment of colour. At the same time, hardware and software advances have increased

the quality of images captured with smartphones.

If smartphone cameras can be leveraged to provide a new screening method for

jaundice, the potential impact is large. As discussed in Section 1.3.2, sub-Saharan

African populations suffer disproportionately from jaundice-related mortality and

disability. Current screening tools are not available or unfit, and there is less contact

with trained healthcare workers.

A smartphone-based screening method would offer several advantages over

existing methods. Like TcBs, they are objective, portable, non-invasive, and offer

a result at the point-of-care. However, they are an order of magnitude cheaper than

TcBs. They are also more accessible, as smartphones are becoming ubiquitous

in even the most resource-poor settings. Finally, TcBs are contact-based, which

increases the risk of spreading infection or the need for disposables, while digital

photography can be completely contact-free.

The benefits of such a technique would be felt more keenly in LEDCs. In

LEDCs, lab results can be unreliable or slow to arrive, which may delay time-

critical treatment. In this situation, clinicians may err on the side of caution and
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recommend phototherapy. Unnecessary phototherapy can cause dehydration and,

when phototherapy units are in short supply, block access to treatment for other

neonates [45].

1.4 Digital Colour Imaging

1.4.1 Digital Image Formation Pipeline

A digital image is an image discretised in both spatial coordinate and intensity [46].

It is stored as an array of integer values, which encode brightness level. In the case

of a 2D greyscale image, the digital image can be stored as a 2D array. In the case of

a 2D colour image, each colour channel has its own 2D array. RGB colour images

have red, green, and blue colour channels, and can be stored as an mxnx3 array,

where m and n are the dimensions of the image in pixels.

The process of digital image formation depends not only on the contents of the

scene being imaged, but also on the nature of the light illuminating the scene, as

well as the characteristics of the imaging device. Once an image is captured, further

post-processing steps can be employed to improve the appearance of an image or

emphasise certain features.

In this section, the key ingredients of digital image formation - camera, scene,

lighting, and post-processing - will be explored in turn, followed by equations that

can be used to model this process.

1.4.1.1 The Camera

One of the most important characteristics of a RGB camera is the camera spectral

sensitivity (CSS). The CSS relates scene radiance to measured RGB triplets. It can

be thought of as the relative probability of a photon of a given wavelength triggering

a R, G, or B count. The shape of the sensitivity curve depends on the sensitivity of

the photosensor1 and the transmittance of the optical components before it (most

importantly the RGB colour filter array and the infrared (IR) cut off filter), which

1The great majority of smartphones employ complementary metal-oxide semiconductor (CMOS)
image sensors for their cameras. CMOS sensors are chosen over charge-coupled device (CCD)
sensors because they are cheaper, draw less power, achieve faster data-throughput rates, and allow
on-chip processing such as noise reduction and analogue-to-digital conversion [47].
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Figure 1.4: Example of a RGB camera spectral sensitivity profile (Nikon D3200). R, G
and B channels are sensitive to different regions of the visible spectrum. CSS
measured using LED colour target method of MacDonald et al. [48].

are all functions of the incident light’s wavelength. Figure 1.4 shows an example

CSS.

It is useful to know the CSS of a camera for applications including multispec-

tral imaging, colour constancy, and camera simulation. Characterising the camera’s

response to light in this way is often a necessary step towards using it as a scientific

or medical instrument.

The radiometric response function of a camera relates irradiance at the sensor

to image pixel value. In the ideal case, this is a linear function up to some maximum

value. This maximum value is the saturation point.

The dynamic range of a camera is the range of intensities the camera is capable

of recording, from the dimmest (one standard deviation greater than the noise floor),

to the brightest (the intensity that will saturate a sensor) [49].

The bit depth of a camera is the number of distinct values that a pixel can take.

At 12-bit, this number is 212 = 4096, at 14-bit, this number is 214 = 16384.
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1.4.1.2 The Scene

The colour of an object in a digital image depends on the nature of the prevailing

illumination. However, even under consistent illumination an object may not pro-

duce the same sensor response when imaged by two cameras if the CSS of one is

not the same as the other. The stable intrinsic property of an object in a scene that

affects its colour is its reflectance spectrum.

The reflectance spectrum of a material is the fraction of incident light reflected

by that material for every wavelength of visible light. This depends on how photons

are scattered and absorbed within the body of the material. Scattering is caused by

inhomogeneities that cause variation in the refractive index at a microscopic scale.

In biological tissue, visible light is scattered by organelles found in cells, such as

mitochondria, and inhomogeneities in the extracellular matrix [50]. Absorption can

occur when the energy of a photon matches the energy of an electronic transition

from one molecular energy configuration to another. Molecules that absorb light

in the visible region of the spectrum are called chromophores. Photons of different

wavelengths carry different amounts of energy, so will be absorbed to greater or

lesser degree by a given chromophore. In Figure 1.5, the molar absorption coeffi-

cients of melanin, oxyhaemoglobin, and deoxyhaemoglobin are plotted. These four

biological chromophores are the most important in determining the colour of skin.

Haemoglobin absorbs in the blue and green regions of the spectrum, so white light

that passes through a haemoglobin-rich tissue becomes dominant in red. Similarly,

bilirubin (responsible for jaundice) has a yellow colour because it absorbs strongly

in the blue region of the spectrum.

An important distinction must be made between two types of reflected light:

diffuse and specular. Diffusely reflected light enters the body of a material and is

scattered multiple times before being re-emitted from the surface. This is the com-

ponent of reflected light that is of diagnostic utility, because it contains information

about the absorption and scattering characteristics of the tissue [52]. Specular re-

flection, on the other hand, describes light that is directly reflected from the surface

of the material. It has approximately the same spectral power distribution as the
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Figure 1.5: Molar absorption coefficients of skin chromophores: oxyhaemoglobin, deoxy-
haemoglobin, melanin and bilirubin. Data from Ref. [51].

light source itself. It is highly directional, and more pronounced on glossy, wet,

or metallic surfaces. By contrast, diffuse reflection occurs is all directions; a per-

fectly diffusive surface has the same luminance when viewed from any angle. This

idealised surface is described as a Lambertian surface.

1.4.1.3 The Illumination

Common sources of light include daylight, incandescent lighting, fluorescent light-

ing, and light-emitting diodes (LEDs). Fluorescent lamps pass a current through a

mercury vapour. The excited mercury produces ultraviolet (UV) light that causes

the phosphor tube coating to glow [53]. Fluorescent lamps are commonly used in

commercial and government buildings as they are more energy efficient than incan-

descent bulbs, emitting less power as heat.

LEDs exploit electroluminescence, the emission of light from a material

through which a current is passed. Semi-conductors with energy band gaps in the

visible spectrum are used for LEDs. White LEDs rely on a combination of this and

a phosphor coating, like fluorescent lamps. To create a white light, a blue light LED

and a phosphor that fluoresces yellow are combined.
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Incandescent bulbs pass current through a wire filament to heat it to high

enough temperatures to emit light. The sun is also an incandescent light source:

it emits light due to its temperature. The spectrum emitted by an incandescent light

source depends principally on its temperature, as well as on the material properties.

A black body is a conceptual material whose spectral power output depends

only on its temperature. Plank’s formula gives this relationship, which is derived by

considering a body that absorbs all wavelengths of incident radiation in thermal and

radiative equilibrium. The peak of the emission spectrum of a black body moves

toward shorter wavelengths at higher temperatures.

The relationship between colour and temperature is not only a theoretical con-

sideration. The correlated colour temperature (CCT) of a light source is the temper-

ature of a black body whose spectrum appears most similar to the light source [53].

This can be used to describe the spectrum of any light source, even when that spec-

trum is very dissimilar to that of a black body (such as a fluorescent tube). Incandes-

cent lights are relatively redder than most other sources (CCT approximately 2400-

2600K), while direct sunlight is more white (CCT approximately 5000-6000K).

Fluorescent lights are intermediate in CCT (2700-5000K).

Although CCT can be a useful description of light sources, it does not fully

characterise the source. One object may appear to have the same colour under two

different light sources, leading one to assume they are equivalent. However, an

object with a different spectral reflectance may appear quite different under those

same two light sources. This phenomenon is called metamerism.

1.4.1.4 File Formats and Post-processing

Various post-processing operations can be performed on raw image data, which is

the data initially recorded by the sensor array. These frequently include compres-

sion (to reduce the file size for storage and transfer), gamma encoding (to make the

range of available tones more perceptually uniform), and white balancing (in order

to render neutral objects as neutral, rather than as the prevailing scene illumination

colour). JPEG images are created using all of these post-processing steps.

A raw format file contains all the information captured by the sensor. For scien-
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tific applications, the goal is to exploit this information rather than create a visually

appealing image. Therefore, a lossless rather than lossy file format is preferred.

JPEG is an example of a lossy file format because compression takes place.

Figure 1.6 summarises the essential steps for processing raw image data in a

lossless manner without adding non-linearity.

Figure 1.6: Essential steps of raw camera data processing pipeline [54].

Linearisation Some digital cameras may store image data using a non-linear trans-

form. The inverse transform must first be applied to recover linear data.

White Balance R and B values are scaled relative to the G value such that objects

of neutral colour (grey or white) appear neutral in the image.

Demosaicing The raw data is originally greyscale because each sensor element has

either a red, green, or blue colour filter. Pixel values for the other two channels

must be interpolated from neighbouring pixels.

Colour Space Correction Camera spectral sensitivity functions vary so RGB val-

ues are not comparable between devices until a transform is applied to bring

the triplets into a common colour space. This transform can be summarised

by a 3x3 matrix or lookup table.

Brightness and Contrast Control This step is only necessary for viewing pur-

poses. A global scaling can make the image brighter. A non-linear transform

(gamma) can be used to make detail in dark areas more visible but should not

be used if a linear output is needed.

1.4.1.5 Image Formation Equation

The image formation process can be summarised in an equation. In the simplest

case: the scene imaged is composed of flat, coplanar objects (the “Mondrian World”
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assumption, after the artist); the scene is uniformly illuminated by a single illumi-

nation; surfaces are Lambertian (perfectly diffusive). In this case, the pixel value

for channel k at position x, Ik,x, is given by Equation 1.1. E(λ ) refers to the uniform

illumination spectrum, S(λ , x) refers to the object reflectance spectrum at position

x, and Qk(λ ) refers to the CSS of channel k, where k=R,G,B. The integral is over

the entire spectrum ω .

Ik,x =
∫

ω

E(λ )S(λ ,x)Qk(λ )dλ (1.1)

Equation 1.1 can be developed to describe more general situations. In general,

illumination is not uniform; the term for illumination may be position-dependent,

E(λ , x). An extra term can be added to represent the effect of specular reflection.

In this so-called dichromatic model of image formation, reflection is modelled as a

linear combination of diffuse and specular components [55]. For the specular com-

ponent, the surface reflectance term S can be assumed to be wavelength-independent

for most dielectric inhomogeneous objects (the neutral interface reflection assump-

tion [56]). Therefore, this term can be incorporated into a position-dependent factor

outside the second integral. This factor, ws(x), also encapsulates the geometrical

effect of viewing angle, surface orientation, and incident light direction on the in-

tensity of the specular term. A similar scaling, wd(x), for the diffusive term also de-

pends on surface orientation and incident light direction, but not on viewing angle

because this component is Lambertian by construction [57]. Equation 1.2 includes

these extensions, and will be referred to as the Image Formation Equation (IFE)

hereafter.

Ik,x = wd(x)
∫

ω

E(λ ,x)S(λ ,x)Qk(λ )dλ +ws(x)
∫

ω

E(λ ,x)Qk(λ )dλ (1.2)

It is important to note that this equation still falls short of encapsulating all

the effects that lead to the creation of an image. For example, it does not counte-

nance more than one distinct source of light, reflections of light from one surface to
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another (interreflections), or the presence of noise.

1.4.1.6 Noise

The signal-to-noise ratio (SNR) is an important consideration in any measurement.

Photon noise, also known as shot noise, is inherent to any measurement of

light, regardless of the equipment used. This is because it is a feature of the light

itself: light is quantised in packets called photons, and the arrival of photons is a

random process. The Poisson distribution describes the variation in arrival time.

This distribution is used for any process where events occur at a fixed rate per unit

time whilst also being independent of each other. In the case of light, the expected

rate of arrival of photons is proportional to the irradiance. If the average rate of

arrival is λ , then over time interval t the expected number of photons incident on

a sensor element is λ t, and the discrete probability distribution for the number of

incident photons N is given by Equation 1.3. k is any non-negative integer.

Pr(N = k) =
e−λ .t(λ .t)k

k!
(1.3)

One feature of a Poisson distribution is that the expected value is equal to the

variance. Therefore, the standard deviation is proportional to the square root of the

expected value: when measuring light, the photon noise is signal-dependent. This

means that even in the absence of any other noise contributions, the photon noise

gives us a fundamental upper limit for the signal to noise ratio, which is propor-

tional to the square root of the intensity of the signal. Hence, when photon noise

is the dominant source of noise, longer exposure times result in images with better

SNR [58].

In the case of large photon counts, the central limit theorem allows photon

(Poisson) noise to be accurately approximated by a Gaussian distribution with mean

and variance each given by λ t [59] [60]. For captures involving smaller photon

counts, other sources of image noise become relatively more important [58].

Thermal noise, or dark current, refers to the signal generated within the bulk of

the sensor that is not caused by incident light. Dark current is produced as a result
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of thermal fluctuations, which cause electron-hole pairs to form and thus add noise

to the output voltage [61]. Like photon noise, these thermal electrons are generated

according to Poisson statistics. Longer exposure times and higher temperatures are

associated with increased dark current noise.

One other important source of noise is read noise. This encompasses noise

due to converting the photon-generated charge to voltage, amplifying, and digitis-

ing the signal. For charge-coupled device (CCD) sensors, read noise is the same for

every pixel, as charges are read out in series through the same output. For comple-

mentary metal-oxide semiconductor (CMOS) sensors, each column - or sometimes

even each pixel - has its own readout structure, so charges can be converted in par-

allel. This means frame rates for CMOS sensors are faster, and that read noise is

not the same for every pixel. Instead, read noise is best described by a distribution,

normally characterised by its root-mean-square noise value.

1.4.2 Consistent Colour

Thus far the process of image formation has been explored through the factors that

affect the recorded digital image. In this section, the concepts used to define and

compare different colours are introduced, as well as some approaches to achieving

repeatable colour in practice by accounting for device- and illumination-specific

effects.

1.4.2.1 Colour Spaces and Transforms

When an image is first recorded by the camera sensor, it is said to be in the camera’s

internal or raw space. The values cannot be interpreted unless something is known

about the way the camera records light. They are device dependent. Device inde-

pendent colour spaces are required to compare between device outputs and display

colours.

The CIE (International Commission on Illumination) 1931 XYZ colour space

is both device independent and a “reference” colour space, meaning it can represent

all colours visible to the typical human eye. It relies on measurements of the average

human response to colour stimuli taken by Wright and Guild in the 1920’s [62]. The
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CIE used these data to define a standard observer, from which the XYZ colour space

results. Many other colour spaces exist, but most are defined with direct reference

the CIE 1931 model. The XYZ space can be used as an intermediate step when

transforming between camera raw values and display colour spaces such as sRGB.

To convert between camera raw space and XYZ space it is common to use a

mapping. Such a mapping can be developed using a set of RGB values and corre-

sponding XYZ values. These can either be simulated, if the camera CSS is known,

or measured by imaging a colour card with known XYZ values. All mappings in-

troduce some degree of error due to the fact CSS’s cannot be described as linear

combinations of the human cone sensitivities.

Importantly, such a mapping is only optimal for the illumination under which

the colour card was imaged: Using a mapping developed under one illumination on

image data capture under a different illumination will give sub-optimal results. For

this reason, mappings under two or more illuminants are often provided in image

metadata for use by colour space conversion algorithms.

1.4.2.2 Standard Illuminants and White Points

In addition to the standard observer, the CIE also define standard illuminants. These

are spectra used to represent common and useful lighting conditions. Illuminant E

has equal energy in all parts of the visible spectrum. Illuminant series D repre-

sent natural daylight, with D65 most similar to noon light (CCT of approximately

6500K) and D50 described as horizon light (CCT of approximately 5000K).

The white point of an illuminant is given by the colour values assigned to an

object that reflects equally in all parts of the visible spectrum. It is necessary to

define white in this way because human vision exhibits colour constancy. This is

the observation that we adapt to our lighting environment so that objects appear to

have a stable colour under a wide range of illuminations (under the warm glow of

a candle or the cool illumination of an overcast day, a sheet of white paper always

appears white). Cameras do not have such a facility, which is why white balancing

is required.

Chromatic adaptation transforms are used to emulate the chromatic adaptation
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that gives us colour constancy. These are used to estimate the colour that would

be recorded under a different illumination than the one used to capture the im-

age. For example, if an object’s colour under a D50 illuminant is specified by one

triplet XYZ(D50), a chromatic adaptation transform could provide an estimate for

XYZ(D65), the colour under a D65 illuminant.

1.4.2.3 Achieving Consistent Colour

We have now seen why it is necessary to account for both CSS and illumination

to reliably describe the colour of an object. The problem of correcting for CSS is

made easier by the fact that the camera can be characterised before the image is

captured. However, the nature of the scene illumination cannot be known ahead

of the capture, and affects not only the required white balance but also the optimal

choice of mapping, as discussed. Therefore, the question of how to estimate scene

illumination from image data is central to achieving consistent colour.

Broadly, two approaches are used to attain reliable colour descriptors for ob-

jects in digital images: computational colour constancy and invariance methods.

Computational colour constancy aims to render a scene as it would appear under

some canonical illuminant by first estimating the illumination under which the im-

age was captured. Invariant techniques attempt to find image features that do not

change when certain aspects of the imaging conditions change (e.g. illumination or

imaging device) [57].

Colour constancy algorithms cannot work for images with arbitrary scene con-

tents and illumination, because the degrees of freedom are too high to be recovered

from an array of RGB triplets [63]. Therefore, assumptions are needed to make

the problem tractable. Some techniques make assumptions on the contents of the

scene. One simple method assumes that the average contents of the scene would

be neutral when properly colour balanced. As such, any deviation must be due

to colour cast from the illumination. This is known as the “grey world” assump-

tion [64]. The “white point” method assumes that the brightest part of an image is

a perfectly reflective white object, and thus its colour reflects the colour of the pre-

vailing illumination [65]. A third method assumes that the scene contains a gamut
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of colours that is representative of that illumination and calculates the transform

that would take those colours to a gamut representative of the desired canonical il-

luminant [66]. Often, assumptions about the possible illumination spectra are used

to constrain the space of possible solutions. For example, to estimate illumination

spectra Finlayson et al. suggest comparing the image gamut to a range of candi-

date illumination gamuts and assuming the best match is the true illumination [67].

Some methods assume that the illumination is approximately Plankian, reducing the

problem of estimating illumination spectral power distribution (SPD) to estimating

the correlated colour temperature of the illumination [68].

Invariant techniques, unlike colour constancy algorithms, do not output RGB

images. They involve an algebraic manipulation of the terms of an image formation

model such as Equation 1.2 to find quantities that are independent of some terms

(under certain assumptions). For example, assuming an object without any specular

reflection, normalised RGB (chromaticity) is invariant to image intensity, object

orientation, and incident light direction [69].

Of particular relevance to this thesis, some literature exists on the use of flash/

no-flash image pairs of the same scene to mitigate the effect of the illumination.

DiCarlo et al. estimates the scene as it would appear under flash only using ambient

subtraction [70]. Given that the flash SPD and CSS are known, surface reflectance

can be estimated using a linear model of surface reflectance. This information is

then used along with the ambient-only image to classify the ambient illumination

as one of a set of candidates. One advantage of this technique over other colour

constancy methods is that different parts of the scene are treated separately. Thus,

in images with two or more areas of ambient light this approach can correctly clas-

sify each. Two limitations are important. Firstly, this technique cannot be applied

to distant objects as the flash will not reach them. Secondly, the surface reflectance

recovery is based on only three knowns, so only a three-dimensional surface model

can be used. Real objects have surface reflectance functions that are better described

by five to seven basis functions [71]. Drew and Lu also use flash/ no-flash pairs

to estimate scene illumination, but without first estimating surface reflectance [72].
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By assuming narrowband camera sensors, Plankian lights, and Lambertian surfaces,

they show that ambient illumination can be identified without any a priori knowl-

edge about the flash SPD, CSS, or scene. Under these assumptions, the log of the

ratio between the ambient-only and estimated flash-only images is invariant to cam-

era and surface properties.

The suitability of each of the above approaches depends on what image data is

available, what the desired output is, what information is known a priori, and what

assumptions it is reasonable to make.

1.5 Review of Image-based Jaundice Detection Re-

search
Some research exists on the use of digital photography to detect jaundice. The ear-

liest example came from Leartveravat et al. in 2009 [73]. Using a Sony Cybershot

digital camera and a custom reference colour card, images of the sternum were cap-

tured and manually processed in Photoshop. After white balance, region selection

and conversion to CYMK colour space, a correlation of 0.86 was achieved between

(Y - M) and TSB across 61 subjects.

Leung et al. (2015) used a Nikon D3200 DSLR (Digital Single-Lens Re-

flex) camera to photograph the eye of 110 babies immediately before their blood

test [74]. All images were captured in the same room to minimise ambient light

variation. RGB values from square regions of interest (ROIs) on the skin (fore-

head) and sclera were fitted to a quadratic model for predicting TSB values. Linear

correlation coefficients of 0.75 (p < 0.01) and 0.56 (p < 0.01) between estimated

and measured TSB were found, respectively, for the sclera ROI and the skin ROI.

This confirmed the hypothesis of the authors that the sclera is a better region from

which to estimate TSB, as it is free from melanin and hemoglobin. They conclude

that the technique is feasible as a screening method, and show that for a screening

threshold of 205µM it has performance comparable to that of the latest generation

of TcBs [74]. Limitations of this study include the relative lack of data at high TSB

values (only a few subjects had TSB greater than 250µmol/L), and that it was not
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shown to be effective in more than one lighting environment or for more than one

camera.

Rizvi et al. (2019) also used a digital camera to image the sclera for jaundice

estimation [75]. 50 healthy and 50 jaundiced neonates were recruited. The images

captured by a Samsung camera were transferred to a Samsung tablet. An app called

BiliCapture on the tablet aided the user in identifying a region of interest to be

analysed. A correlation of 0.86 was achieved in 50 jaundiced neonates.

de Greef et al. (2014) introduced the first smartphone-based method for jaun-

dice detection called BiliCam [76]. The technique involves a colour card that is

placed above the navel of the newborn. This serves two purposes. Firstly, it al-

lows for a degree of quality assurance in the capture image: The mobile application

guides the user in the positioning of the phone using a viewfinder that should match

the shape of the colour card. Also, by examining the standard deviation of the colour

card pixel values the application is able to warn the user if the view is occluded or

the lighting is inconsistent. Secondly, the colour card is used for colour calibration.

The BiliCam app captures images with the phone flash on and off, and extracts

features from the skin colour coordinates in various colour spaces, as well as colour

gradients. These features are fed into multiple machine learning algorithms which

are then combined to produce an estimate for the TSB. In a study of 100 newborns

this estimate correlated with the gold-standard blood test with a linear correlation

0.84. Although the colour card-based approach allows for effective white balanc-

ing and image quality control, it may also prove a limitation of the technique. As

the author notes, it is not clear how reproducible their custom card is, and whether

variation due to different printers or papers would affect the result. As in the study

by Leung et al. (2015), only one model of camera was used (in this case, the iPhone

4S back-facing camera). Taylor et al. evaluated the performance of the BiliCam

app installed on iPhone 5S smartphones in a multi-ethnic sample of 530 newborns

in seven different sites in the US [77]. The colour accuracy of the printed colour

card was tested at the time of printing. A correlation of 0.9 with TSB values was

observed, with similar performance observed in all ethnic groups. The authors con-
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clude that BiliCam is as effective as a TcB in screening for neonatal jaundice.

Aune et al. (2020) produced an app that estimates TSB using a colour card and

skin image [78]. An optical model of newborn skin was used that has parameters for

skin thickness, melanin and haemoglobin levels. Some patches on the colour card

were designed to have similar reflectance properties as newborn skin. This requires

spectral printing, but in this study a consumer printer was used and the resulting

colours were measured with a spectrometer. They estimate the cost of production

of such a card at less than one US dollar. In a study across two hospitals, the app-

estimated TSB correlated with TSB with a coefficient of 0.84 across 302 newborns.

The correlation among Caucasian newborns was found to be significantly higher

than the correlation among non-Caucasians.

BiliScan (BeiShen Healthcare Technology Co., Shenzhen, China) is the most

extensively studied jaundice detection app. Like the later version of BiliCam and

the system by Aune et al., it uses a colour card with a hollow centre to guide the

image capture and colour correct the image. However, in this case the user of the

app must print the colour card, so it cannot require specially coated-paper, advanced

printing methods, or a measurement of its spectral reflectance. Images are captured

under ambient illumination and uploaded to a sever which uses a machine learning

algorithm to calculate an “Automated Image-based Bilirubin” (AIB) value. Rong

et al. (2016) used the BiliScan app to image 215 neonates and found a correlation

of 0.77 with TSB [79]. The largest study to date (Dong et al., 2020, n=369) found

a similar correlation of 0.76, but only within a range of bilirubin values 5 to 15

mg/dL (86 to 257 µmol/L), finding the method unreliable for values less than 5

mg/dL and greater than 18mg/dL (308µmol/L) [80]. Yang et al. (2018, n=296

from 194 subjects), also found that BiliScan worked best in a central range of 10

to 20 mg/dL, but was inferior to the TcB outside this range [81]. Ren et al. (2020)

found a correlation between AIB and TSB of 0.78, and no difference in performance

based on postnatal or gestational age [82]. However, they found a significantly

lower performance for those images captured during the night hours as compared

to daylight hours. Swarna et al. (2018) conducted the only evaluation of BiliScan
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on a non-Chinese neonatal population [83]. A lower correlation of 0.6 was reported

across 35 newborns.

Aydin et al. (2016) used a smartphone and a colour card printed by a consumer

printer, which was placed on the chest [84]. A combination of Gaussian filtering,

thresholding, and pixel similarity methods were used to identify skin in the images

of 80 neonates, of which 40 were healthy. A correlation of 0.85 with TSB val-

ues was achieved using an ensemble of two machine learning approaches, and the

system had 85% accuracy in identifying which babies belonged to the jaundiced

group.

Some researchers have investigated contact-based methods for imaging the

skin using a smartphone. Sufian et al. (2018), used a housing for the smartphone

camera containing LEDs and a reference colour card [85]. A plastic window al-

lowed imaging of the skin. The housing allows ambient light to be removed as

a confounding factor, and the contact blanches the skin, lowering the influence of

haemoglobin on the skin colour. After calibrating six different phones using refer-

ence objects, they were brought into agreement. A non-linear model based on the

ratio of the Y and Z value in XYZ colour space gave a correlation of 0.9 in a sam-

ple of 48 neonates. Munkholm et al. (2018) imaged the skin using a smartphone

in direct contact with the newborn forehead, using a dermatoscope, and using a

dermatoscope with a green filter [86]. The aim of the filter was to minimise the in-

fluence of haemoglobin on the recorded colour. The dermatoscope standardises the

imaging distance and lighting, and a significant correlation with recorded TSB in

64 neonates was found. The filtered and direct method results did not reach signif-

icance. Padidar et al. (2019) used a similar approach, imaging the forehead using

a 100x clip-on microscope attachment on a smartphone [87]. They used a three-

colour, printed colour card for reference captures before the measurement capture.

With a sample size of 113, a correlation of 0.48 with TSB was found.

The group from the University of Washington that created BiliCam later pro-

duced BiliScreen (Mariakakis et al. [88]). This is a smartphone-based method for

screening for jaundice in adults, with a view to catching cases of pancreatic cancer
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earlier. Here, the sclera colour is analysed rather than the skin. The study author

argues that because the healthy range of bilirubin for adults is much lower (less

than 22µM rather than less than 257µM), it is necessary to look to the sclera. Two

methods are employed to ensure consistent colour measurements in different am-

bient lighting environments. One applies a colour correction algorithm based on a

colour card like BiliCam, but cut into the shape of glasses that can be worn. This

also makes automatic localisation of the eyes easier. The other method uses a 3D-

printed goggles that block out ambient light, into which the mobile phone is slotted.

Here, the flash is used in torch mode to provide the light. Automatic segmenta-

tion algorithms identify the sclera, and colour features from various colour spaces

are used with a random forest regression to produce TSB prediction models. In a

study with 70 volunteers, the linear correlation with measured TSB was 0.78 for

the glasses method and 0.89 for the 3D-printed goggles method. Two solutions to

the problem of variation between smartphone cameras are proposed: either to train

the model on each available device separately, or to incorporate a calibration step

before data collection using a colour target array of known reflectance properties.

Three other papers have been published that aim to detect jaundice in adults

using digital imaging [89] [90] [91]. Like Mariakakis, they also image the sclera,

and rely on either custom made glasses, light-blocking goggles or housing for the

camera. These accessories are used in the automatic detection of sclera regions and

also mitigate the effect of ambient light. Such methods rely on cooperation from

the subject, and so would not be practical for neonates.



Chapter 2

Clinical Imaging Studies

2.1 Overview
In this chapter, there follows an overview and comparison of the clinical datasets

analysed in this thesis. All three studies involve the collection of paired TSB read-

ings and digital images from jaundiced newborns. The three studies are described

in the order in which they were conducted:

1. UCLH Nikon Study

2. UCLH Smartphone Study

3. Ghana Smartphone Study

The data collected in these studies is analysed in subsequent chapters to address

the thesis objectives.

2.2 Clinical Datasets Used In This Thesis

2.2.1 Study 1: UCLH Nikon Study

The first clinical dataset used in this investigation was collected at University Col-

lege London Hospital (UCLH). A digital camera was used to capture images of the

sclera and forehead of 133 newborns. The aim was to investigate the potential of

digital imaging for estimating the severity of jaundice, and to compare the sclera

and skin as sites of measurement. Ethical Approval was obtained from the London

- City Road and Hampstead NHS Research Ethics Committee.
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Subjects that required a blood test were recruited from the outpatient clinic.

Many of the subjects were referred by a visiting midwife during a routine check-up,

while others were attending appointments to monitor ongoing physiological jaun-

dice. There were no exclusion criteria based of postnatal or gestational age. Babies

who had received phototherapy within the preceding 24 hours were ineligible. The

images were captured in the Advanced Neonatal Nurse Practitioner (ANNP) clinic

of UCLH, and the blood test followed within twenty minutes to limit the possibility

of a change in bilirubin level in the intervening period. TSB was determined from a

blood sample obtained via heel prick. The sample was spun in a centrifuge before

insertion into a point-of-care bilirubinometer.

Images were captured using a Nikon D3200 24.2-megapixel DSLR camera

with a 60mm macro lens. ISO was fixed at 1600, while exposure time and aperture

control were set automatically by the camera. Images were saved in Nikon’s raw

file format, NEF (Nikon Electronic Format). The sclera was brought into focus

manually. The lighting in the ANNP clinic was not controlled beyond ensuring that

the fluorescent ceiling lighting was switched on. For subjects one to 82, a custom

printed, L-shaped yellows scale and colour patch array was included in the capture.

Figure 2.1 shows a typical capture for this phase of the study. For subjects 83 to

133, a laminated CameraTrax three-by-two-inch 24-patch colour card was included.

Figure 2.1: Example image captured in UCLH Nikon Study, including custom colour ref-
erence card. Media consent for this image was obtained from all parties.

Analysing this dataset, Leung et al. (2015) showed the sclera-region RGB
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values gave a stronger correlation with TSB than did the forehead-region RGB val-

ues [74]. This study used a quadratic polynomial model. Coauthored by this author,

and based on the same dataset, Leung et al. (2019) later showed that a simple linear

model based on chromaticity could achieve similar correlation with TSB [1]. How-

ever, this analysis used a smaller sample (n=87) because it relied on raw image files,

which were only available for 87 of the 133 subjects.

2.2.2 Study 2: UCLH Smartphone Study

A clinical study was carried out in the UCLH Neonatal Care Unit and Postnatal

Ward between January 2017 and February 2018. The aim was to investigate the

accuracy of image-based jaundice estimation via the sclera using a smartphone.

Ethical Approval was obtained from the London - City Road and Hampstead NHS

Research Ethics Committee. Parents were informed of their baby’s eligibility for the

study and what would be involved in the data collection process, including potential

benefits and downsides. After allowing them to consider, verbal and written consent

was obtained. Parents were reminded that giving consent did not oblige them to take

part in the study, and that they could drop out at any point without it affecting the

care of their baby.

This study used the front-facing camera of an LG Nexus 5X smartphone, with

illumination provided by the screen of the smartphone itself.

The pictures were taken at whatever time was most convenient during the ap-

pointment so as not to disrupt the assessment or treatment of the baby. Often, the

data was collected before the baby underwent a blood test, while he or she was lying

supine on the assessment table. Babies were found to be more compliant before the

blood test, as the heel prick to draw blood is a painful procedure. In other cases,

the images were captured with the baby in the arms of a parent. Around the time of

feeding babies open their eyes, making data collection more straightforward. The

pictures were always taken within 20 minutes of the blood draw so the TSB reading

would be accurate at the time of image capture.

Image capture involved holding the phone approximately 10-20cm from the

face. The volume keys were used to initiate the capture sequence, which took ap-
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proximately 1.5 seconds and captured one image with illumination from the screen

and one without. Multiple image pairs were captured for each subject to ensure at

least one pair was usable. The user would aim to ensure that the image was not

blurred and that the sclera was visible. However, due to the clinical setting this was

not always possible.

Figure 2.2 shows an example of an image pair captured by the app in the flash-

on and flash-off conditions, with the corresponding phone images adjacent.

Figure 2.2: Example image pair captured by app in UCLH Smartphone Study. (A) Smart-
phone screen illuminating subject. (B) Subject illuminated by smartphone. (C)
Smartphone in flash-off condition. (D) Subject capture under ambient illumina-
tion only. Media consent for these images was obtained from all parties. Figure
originally published in Ref [2].

The exposure time and ISO value were fixed for all captures to 1/25 seconds

and 250, respectively. These values were chosen as a compromise between minimis-

ing motion blur and using as much of the dynamic range of the sensor as possible,
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after extensive testing in hospital and office-like lighting environments (predomi-

nantly fluorescent strip lighting). However, the fixed capture settings did not always

result in a well exposed capture, which is a limitation of this dataset.

The TSB measurement began with a blood draw using a heel lance. A few

drops were collected using a capillary tube, which was promptly sealed with resin.

A centrifuge spun the tube to separate the serum from the hematocrit, and the serum

was analysed using a bilirubinometer to give a value for the total serum bilirubin

(TSB). This method allowed a result at the point of care. Sometimes this method

was not available, and a sample was instead sent for laboratory testing, which is a

longer process. Only measurements taken using the centrifuge and bilirubinometer

method were used for this study.

A data collection sheet was filled in for each subject. For confidentiality rea-

sons, only the time and date of image capture was used to link the image to the

datasheet. The time of the first image and last image capture was noted on the

datasheet, and each baby received an integer subject number. Other information

collected included the baby’s gestational age, postnatal age, whether he or she had

received phototherapy within the previous 24 hours, where the images were cap-

tured (including description of the lighting present), the TcB measurement (if one

was made), and the point-of-care TSB measurement. A copy of the data collection

sheet used can be found in Appendix A.

A total of 51 babies were imaged using the application (16 female, 35 male,

median postnatal age 11 days). All but four of the 51 image sets were captured in

the same room (the Advanced Neonatal Nurse Practitioner (ANNP) Clinic of the

UCLH Neonatal Ward). For eight of the subjects, not enough sclera was visible to

identify a usable region of pixels in the sclera. For another two subjects, results

from the point-of-care bilirubinometer were not available. 41 subjects remained

for analysis. Histograms representing the distributions of TSB, gestational age, and

postnatal age for these subjects can be found in Appendix C.

Based on the UCLH dataset, this author published a journal article investigat-

ing ambient-subtracted sclera chromaticity for smartphone jaundice screening [2].
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2.2.3 Study 3: DJAN Smartphone Study

The Detecting Jaundice in African Newborns (DJAN) study was conducted in

Ghana. Funded by Saving Lives at Birth1, this study aimed to test the smartphone-

based screening technique in the setting in which it stands to have the most impact.

The study also tested the practicality of the app in both hospital and rural com-

munity healthcare settings. Images were captured in the Greater Accra Regional

Hospital between March 2019 and February 2020, and in community health centres

and the Holy Family Hospital in Kwewu West District, a rural area of Ghana, be-

tween February and March 2020. A total of 847 capture sessions took place, with

765 individuals enrolled, making this the largest study on image-based bilirubin

detection to date. Ethical approval was obtained from the Ghana Health Service

Ethical Review Committee and UCL Research Ethics Committee.

In the DJAN study, the imaging app used the smartphone back-facing camera

and the smartphone LED flash, which was fitted with an acrylic diffuser as a pre-

caution. Four different Samsung S8 (Samsung Electronics Co. Ltd., South Korea)

smartphones were used.

Only babies in need of a blood draw for TSB estimation were included in

the study. Immediately prior to the heel prick blood draw, the baby was imaged

with the smartphone app and had a measurement taken with the Draeger JM-105

transcutaneous bilirubinometer (Draeger UK). Serum bilirubin concentration mea-

surements were made using a centrifuge (SciSpin Haematocrit Micro Centrifuge,

SciQuip Ltd., UK) and bilirubinometer (Bilimeter 3D, Pfaff Medical GmbH, Ger-

many).

In this study, some babies were undergoing treatment for jaundice, others were

attending postnatal clinic for scheduled appointments. Images were taken in a va-

riety of locations, and this was recorded along with the nature of the prevailing

1Saving Lives at Birth: A Grand Challenge for Development funds “groundbreaking prevention
and treatment approaches for pregnant women and newborns in poor, hard-to-reach communities
around the time of childbirth” [92]. It is jointly supported by Grand Challenges Canada, the U.S.
Agency for International Development (USAID), the Norwegian Agency for Development Cooper-
ation (Norad), the Bill & Melinda Gates Foundation, the UK’s Department for International Devel-
opment (DFID) and the Korea International Cooperation Agency (KOICA) [92].
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light (indoor/ natural/ both). No measurement was made of the ambient light envi-

ronment. If the baby was undergoing phototherapy, or had received phototherapy

within the last 24 hours, this was recorded. Whether the parents and staff thought

the baby appeared jaundiced was also noted. The data collection sheet used can be

found in Appendix A.

Figure 2.3: Typical image capture scenario for Phase 1a of DJAN study. Media consent for
this image was obtained from all parties.

The app was used to capture three flash/ no-flash image pairs of the sclera and

one of the sternum. For the first 167 studies, an X-Rite ColorChecker Passport was

included in the shot for these captures. Figure 2.3 shows a typical image capture

scenario for this phase of the study. It was time-consuming to simultaneously po-

sition the full colour card inside the shot and obtain a good quality image of the

sclera with sufficient flash illumination. Thereafter, the protocol was changed, and

the colour card was captured separately, after the other captures. This was an eas-

ier capture process and resulted in sclera images with larger regions of interest and

higher subtracted signal-to-noise ratios. The colour card was imaged over the ster-
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DJAN
Study
Phase

Principle Location Capture Protocol Real-time
Feedback/ Result

from App
1a Greater Accra

Regional Hospital
(Procedure Room)

x3 sclera image pairs, x1
chest image pair (all with

colour card in frame)

No

1b Greater Accra
Regional Hospital
(Procedure Room)

x3 sclera image pairs, x1
chest image pair, x1

colour card image pair

No (first 80%)
Yes (final 20%)

2 Greater Accra
Regional Hospital
(Postnatal Clinic)

x3 sclera image pairs (no
colour card)

Yes

3 Holy Family
Hospital (Playroom)

x3 sclera image pairs (no
colour card)

Yes

Table 2.1: Comparison of phases of DJAN study.

num of the baby immediately after the other captures to minimise the risk of any

changes in incident ambient light between baby images and colour card images.

Images were captured with approximately 10-20 centimetres between the cam-

era and the sclera, sternum, or colour card. When possible, the camera preview was

used to angle the phone to avoid specular highlights on the sclera. The app was

updated after six months to provide real-time feedback to the user on the signal-to-

noise in the captured image. The image capture user guide for the app can be found

in Appendix B. This was provided to the Ghana team in August 2019 and explains

the protocol for capturing good images using feedback from the real-time image

review screen included in the latest app version.

Table 2.1 shows the different phases of the DJAN study and how they differed

from one another. Figure 2.4 shows the different phases of the study by date and

number of capture sessions. In Phase 1, all capture sessions took place in the Proce-

dure Room. In Phase 2, 45% of capture sessions took place in the Postnatal Clinic,

41% in the Procedure Room, and the remaining 14% in various other locations in-

cluding the maternity ward and the neonatal intensive care unit (NICU). In Phase 3,

at Holy Family Hospital, 94% of capture sessions took place in the Playroom, with

the rest mostly in the NICU.

Figure 2.5 shows the inclusion pipeline for capture sessions. After removing
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Figure 2.4: Phases of the DJAN study. Relative width of segments corresponds to the num-
ber of capture sessions recorded in each phase.

capture sessions where either no TSB was recorded or there was no image pair with

visible sclera, 724 capture sessions remained. 76% of sessions excluded due to a

lack of TSB reading were from the Postnatal Clinic in Phase 2. This is because the

neonate was attending a scheduled check up appointment and was not deemed at

risk of jaundice after visual inspection and a TcB reading.

Figure 2.5: Flowchart showing number of capture sessions and reasons for exclusion in
DJAN study.

The included 724 capture sessions form the basis of the analysis in subsequent

chapters. 403 of them involved male subjects, and 321 involved female subjects.

Subjects were sometimes imaged more than once. From the 724 sessions, 651 im-

age sets were from the first capture session for a given subject, 59 were from a
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second-time session, 13 were from a third-time session, and one was from a fourth-

time session.

2.2.3.1 DJAN Subject Statistics

In this section, statistics for the DJAN subject data are displayed in a series of plots.

Similar plot for the UCLH Smartphone Study can be found in Appendix C.

Figure 2.6 shows a histogram of TSB values for all 724 capture sessions. The

legend shows the numbers of capture sessions involving subjects who had either no

recent exposure to phototherapy (378) or who had had phototherapy within the last

24 hours (346). The relative number of no-phototherapy babies is higher at low TSB

values. Overall, the median TSB is 198µmol/L and the maximum is 540µmol/L.

Figure 2.6: Histogram of TSB values for DJAN study (n=724).

Figure 2.7 shows the gestational age, postnatal age, and birth weight his-

tograms for the DJAN dataset. The median gestational age was 28 weeks 4 days.

32 neonates were preterm (less than 35 weeks gestational age), while 88 were near-

term (35-37 weeks gestational age). The median postnatal age was 4 days 22 hours

and the median birth weight was 3.1kg.
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Figure 2.7: Histograms of gestational age, postnatal age, and birth weight for DJAN study
(n=724).
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2.2.4 Comparison of Datasets

Table 2.2 summarises the three datasets that are used in the subsequent chapters.

UCLH Nikon
Study

UCLH
Smartphone

Study

DJAN
Smartphone

Study
Data Collection

Dates
July 2014 –
August 2014

January 2017 –
February 2018

March 2019 –
March 2020

Number Capture
Sessions
Included

87 41 724

Phototherapy
within preceding

24h?

No No 346 Yes, 378 No

Principle
Location

ANNP Clinic,
UCLH, UK

ANNP Clinic,
UCLH, UK

Multiple, Ghana

Majority
Ethnicity

Caucasian (59%) Caucasian (53%) Black African
(100%)

Device Used Nikon D3200
DSLR

LG Nexus 5X Samsung S8 (x4)

Accessories Custom colour
card

None LED diffuser,
X-Rite colour

card
Ambient Light Indoor -

fluorescent
(100%)

Indoor -
fluorescent

(100%)

Indoor -
fluorescent

(98%), Natural
(2%)

Active
Illumination

None Phone screen Phone
back-facing flash

Site Imaged Sclera, Forehead Sclera Sclera (x3),
Sternum (x1)

TcB Used None None Draeger JM-105
TSB Method Centrifuge and

bilirubinometer
Centrifuge and
bilirubinometer

Centrifuge and
bilirubinometer

Table 2.2: Comparison of clinical study datasets.

2.2.5 Objectives of Clinical Dataset Analyses

Study 1: UCLH Nikon Study data was analysed by this author, with the conclusion

that a simple chromaticity-based sclera colour metric could be predictive of the

level of jaundice as long as the data was treated in a scene-referred space [1]. This
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implied the need for raw image data, informing the development of the app and on

which smartphones it would be able to run. Therefore, although these data were

not collected using a smartphone, they were used to inform the proposal of the

sclera chromaticity as a metric of jaundice (Objective 2) and the requirements of

the neoSCB app, which are described in Chapter 3.

Study 2: UCLH Smartphone Study was the first to pilot the neoSCB app de-

veloped by this author (Objective 3: Build App). It showed that it was feasible to

image the newborn eye with a flash/ no-flash image pair in a clinical setting using a

smartphone (Objective 4) [2]. In Chapter 4, it serves as a separate, unseen dataset

on which to validate the SCB model (Objective 7).

Study 3: Ghana Smartphone Study is analysed in Chapter 4 and Chapter 5.

In Chapter 4, it is used to test the colorimetric accuracy of the app (Objective 5),

compare the efficacy of skin-based and sclera-based chromaticity measurements in

predicting TSB (Objective 6), train the final SCB model (Objective 7), and investi-

gate the factors that affect the predictive performance of the SCB model (Objective

8). In Chapter 5, it is used to quantify the screening performance of the neoSCB

app (Objective 9), and compare it to the screening performance of the JM-105 TcB

(Objective 10).



Chapter 3

Development of the neoSCB App

3.1 Overview
In this chapter, the development of the neoSCB (neonatal scleral-conjunctival biliru-

binometer) app and the principles behind it are outlined. It begins with a overview of

the key challenges that need to be addressed by any image-based jaundice screening

technique. Next, the concepts of ambient-subtracted chromaticity and subtracted

signal-to-noise ratio are explained. Ambient subtraction is essential to avoid the

need for a colour card or light-blocking housing, which is a key aim of this work.

These ideas are then demonstrated on both clinical and experimental data as a proof

of principle. Finally, the specification and development of the app itself is described.

3.2 Challenges To Be Addressed
The goal of this work is to create a system that can detect jaundice by colour imag-

ing. It is helpful to consider the key sources of error in such a system. This means

that any proposed solution can be considered in light of how well it addresses these

challenges.

Let us consider the most general example of a system that uses an RGB image

to derive information about the bilirubin level of a newborn. It can be broken down

into three steps:

1. Image Capture How the image is captured: the hardware, camera settings,

and protocol for capture including who takes the image and in what environ-
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ment.

2. Image Processing The operations applied to the image. This comprises of

two parts: A selection of the relevant region of interest and a derivation of a

colour descriptor or set of features.

3. Jaundice Level Estimation The colour information derived from the image

must be related to the jaundice level of the baby in some way. This may result

in an estimate for the serum bilirubin concentration or directly in a screening

decision or recommendation.

Despite the apparent simplicity of such a pipeline, there are a number of chal-

lenges to be addressed.

3.2.1 Image Capture

Light environment

A jaundice detection app must be effective in a range of illumination envi-

ronments. Among the studies in camera-based jaundice detection, the methods to

correct for the influence of ambient light either rely on a colour card or aim to

replace the ambient light with another light source of known properties (or some

combination of the two). Each solution has its own challenges concerning the light

environment required for image capture. If using a colour card, then the light must

be spatially consistent and bright enough to provide an image of sufficient signal-

to-noise ratio. On the other hand, if the technique relies on a light source of known

colour, then the contribution from the ambient background must be fully mitigated.

Some studies that rely on a colour card use the smartphone flash as a means of

active illumination [76] [78]. Recognising that the use of a flash alone does not in

itself guarantee sufficient illumination of the subject, these studies also attempt to

standardise the distance between the smartphone and the subject.

Studies that aim to replace ambient illumination with a known illumination

must discount the ambient contribution to the signal. These studies have all used

contact-based approaches using dermatoscopes or dermatoscope-like attachments

to the smartphone camera so that ambient light is blocked out [85] [86].
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Quality assurance

Apart from signal-to-noise ratio, the images captured must meet several other

criteria to be usable. The region of interest, be it the skin or the sclera, must be in

the image, large enough, and in focus. Motion blur due to the subject or camera

moving may disqualify the image. Some assurance of image suitability is therefore

necessary if the final result is to be trusted.

Almost all studies to date have manually discarded inadequate images during

their offline analysis. However, an app should be usable by a midwife or parent after

no or limited instruction. This requires an automatic method of discarding images

that are not usable. Some proposals involving colour cards have a viewfinder on

the app camera preview, which allows the user to align the smartphone in the right

plane and at the right distance with respect to the baby [83] [76] [78]. This helps

ensure the entire colour card is within the capture. Some also use a “hollow” colour

card, with a window in the centre to frame a region of interest of the chest [78] [77].

BiliCam uses the colour card to check for inconsistent lighting and occlusion by

checking that the standard deviation of the pixel values within a certain colour patch

is below a certain threshold [76].

3.2.2 Image Processing: ROI Selection

Identifying relevant region of interest

The skin or sclera region must be identified. Whether done automatically,

semi-automatically, or manually, this step can introduce error. For example, pix-

els belonging to the iris may be included in the sclera segmentation.

In previous work, this step is often done manually. Automatically identifying

the region of interest can be aided by introducing accessories that can be easily

detected by algorithms. For example, the systems that involve glasses worn by

adults can use fiducial markers printed on the glasses or the colour of the glasses

to identify the eyes [89] [88]. In the same way, hollow colour cards also simplify

the identification of a relevant region of interest. Contact-based methods further

simplify the task of ROI identification: the area of interest will always occupy the

same part of the image.



3.2. Challenges To Be Addressed 67

Rejecting non-representative pixels

Within the region of interest, some pixels may need to be excluded from the

final analysis if they are not representative of the tissue colour. In the sclera, filtering

eyelashes, blood vessels, and specular highlights may be required. Similarly, in the

skin, bruises or specular regions would need to be identified and excluded, either

manually or automatically, to avoid a spurious result.

BiliScreen empirically determined thresholds in HSL (Hue-Saturation-

Lightness) colour space to exclude glare (L>220), eyelashes (L<5), and vessels

(H<15) [88].

3.2.3 Image Processing: Extracting Colour Information

Device- and ambient-independent colour

The colour estimate derived from the image should be independent of the am-

bient light environment and the hardware used to capture the image. Variation be-

tween camera spectral sensitivities, even between cameras of the same make and

model, must be accounted for [6]. Similarly, to the extent that the light environment

is not controlled by the method of capture, the colour recorded must be corrected so

that the bilirubin level is not overestimated or underestimated. This is essential as

any model that relates colour to bilirubin level depends on the accuracy of the input

colour values.

The majority of image-based techniques described to date use some variation

of a reference standard or colour card. A mapping developed from a colour card has

the advantage of simultaneously correcting for variations between camera spectral

sensitivities and lighting environments. Methods that remove the influence of am-

bient light, such as the adult goggle instantiation of BiliScreen, or the contact-based

method of Sufian et al. still must address the variation between camera spectral

sensitivities. They each suggest a one-time calibration for each device before it is

used [85] [88].

Confounding chromophores

Tissue colour can vary due to chromophores besides bilirubin, such as melanin

and haemoglobin. Variation in the concentration of each of these can influence the
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bilirubin concentration estimate, and this should be accounted for in some way.

Aune et al. use a physics-based model of light transport in skin to model the

effect of variation in haemoglobin and melanin [78]. Most approaches rely on a

purely machine learning-based approach to understanding the relationship between

bilirubin and colour in the presence of confounding chromophores. Contact-based

imaging techniques discuss the benefit of blanching the skin to remove the influence

of haemoglobin [85] [86]. Munkholm et al. investigated the use of a coloured

green filter to minimise the effect of haemoglobin on the measurement, but found

no performance improvement [86].

Leung et al. compared sclera and skin regions and found a better correlation

between colour and bilirubin concentrations in the sclera [74]. This is due to the

absence of haemoglobin and melanin in the sclera. Apart from Leung et al. and the

work presented in this thesis, only Rizvi et al. have attempted to image the newborn

sclera [75]. However, all four studies on image-based jaundice detection in adults

have opted to image the sclera [88] [89] [91] [90]. The sclera colour is considered

a more sensitive measure of jaundice levels, but this must be traded off against the

added difficulty in image acquisition when the subject is a newborn who cannot

cooperate.

3.2.4 Jaundice Level Estimation

Generalisability of the model used

If a prediction model is trained on a set of paired colour and bilirubin values,

care must be taken to ensure that the model holds on unseen data. As well as the

danger of overfitting, there is the possibility that the sample used for training was not

representative. For example, if the model was trained on a dataset wherein all sub-

jects were of the same ethnicity, it should be confirmed that it performs equally well

in others before being deployed. This also applies to other factors that may plausibly

influence the relationship between colour and bilirubin level, including, for exam-

ple, gestational age. Even a physics-based model that is completely training-free

must be deployed within a certain scope of validity.

The two most extensively tested apps are BiliCam and BiliScan. BiliCam was
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validated in a multi-ethnic sample and across multiple sites [77]. It also used multi-

ple imaging devices, although they were all the same make and model (iPhone 5S).

Many studies have been published on BiliScan, but only one has tested the app on a

non-Chinese population, in which a relatively low performance was observed [83].

Communicating the result

Once the estimate has been arrived at, it should be communicated to the user

in a manner that is intelligible and actionable. This depends in part on whether the

intended user is a healthcare professional or a untrained individual. A TSB con-

centration may not be easily interpreted by a parent, so an instruction may be more

appropriate. Finally, the user should be made aware of the degree of uncertainty in

the estimate. This may take the form a published sensitivity and specificity, or a

measurement-specific uncertainty value with which to qualify the result.

3.3 Ambient-subtracted Sclera Chromaticity
The key advantages of using a smartphone for jaundice screening are accessibility,

and the possibility for a contact-free, objective measurement. The ubiquity of smart-

phones enables a solution that can be scaled and help identify cases of jaundice in

a variety of settings, including low- and middle-income countries particularly af-

fected by jaundice.

The approach proposed in this work is intended to fully exploit the compar-

ative advantages offered by smartphones (accessibility and scalability) while still

addressing the challenges discussed in the preceding section.

To date, work on image-based jaundice detection can be categorised into one of

two groups based on the method for achieving device- and ambient-independence:

1. Rely on a colour card to account for ambient and device variation: Additional

illumination is sometimes used to guarantee sufficient illumination, but no

attempt is made to reduce the ambient contribution to the recorded signal.

2. Block ambient light: Another source is used to illuminate the subject. A

calibration step is needed beforehand to account for the combined light and

camera properties.
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The disadvantage of a colour card approach is the need to distribute and main-

tain a colour card printed to high standards. Aune et al. estimated the cost of

printing a colour card using a calibrated printer at as little as one US dollar per

card, and noted that the card could be laminated so as to be preserved, sanitised

and reused [78]. However, reliance on a supply chain in the case of loss or dam-

age undermines the potential for easy access in less-economically developed parts

of the world. Lamination can cause specular reflections from the card. If the user

is instructed to print a card on a consumer printer the colour accuracy cannot be

guaranteed.

Systems that block ambient light involve an attachment to the smartphone.

This poses distribution and affordability challenges, although maintenance may be

less difficult than for colour cards. However, these systems are contact-based and

so may risk spreading infection.

In this work, an approach based on ambient subtraction is proposed. By imag-

ing the subject twice, once under the smartphone illumination and once under only

ambient, the ambient contribution is explicitly subtracted. This approach is most

similar to the second approach above, but does not require a contact-based mea-

surement to remove the ambient contribution. In this way it minimises the number

of accessories needed, which may reduce the barriers to adoption.

While BiliCam and the method proposed by Aune et al. both involve taking

flash and no-flash measurements, they do not attempt to explicitly subtract the am-

bient contribution. Instead, the recorded values under each condition are treated as

separate features to be input into a machine learning model.

3.3.1 Ambient Subtraction

The ambient subtraction method can be summarised as follows. Suppose there is

a scene illuminated by an illumination A, which we identify as the ambient illumi-

nation. A second illumination F (for flash) can be turned on and off at will. Two

images of the scene are captured: the first with the illumination F, the second with-

out illumination F. The illumination A is present for both captures. These images

are labelled IA+F and IA, respectively. By subtracting, pixel-wise, IA from IA+F , an
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estimate for the image of the scene under flash illumination only, ÎF , is calculated.

Let us consider a single pixel in an image, Ix, where x serves to index the

pixels. Ix corresponds to a particular point on a surface of an object in the scene

being imaged. The camera outputs an RGB triplet, [IA+F
x,R , IA+F

x,G , IA+F
x,B ], for the flash

capture, and another RGB triplet for the ambient-only capture, [IA
x,R, IA

x,G, IA
x,B].

In the ideal case, the RGB triplet measured with both light sources is simply

the addition of the two triplets under the two separate light sources. The flash-only

values can be estimated by a vector subtraction: ÎF
k = IA+F

k - IA
k .

Clearly, several assumptions must hold true for this method to return an accu-

rate estimate of IF . First of all, the camera must respond to light in a linear fashion.

If the pixel count is not proportional to the light intensity incident on the camera

sensor, then the contributions to the image from illuminations A and F cannot be

considered additive and independent. The subtraction method will thus fail. It is

reasonable to assume that manufacturers aim to build sensors with linear responses

over their expected working ranges. How well typical camera sensors conform to

this assumption of linearity is ultimately an empirical question, and one of great

importance here. Percentage of linearity is a metric that can be used to indicate

how linear pixel output is with respect to photovoltage [93]. If a given pixel is sat-

urated in one or both of the input images, ambient subtraction is impossible. This

depends on the dynamic range of the sensor, which depends on the electron well

capacity. Failure due to pixel saturation can be thought of as a particular case of

failure due to non-linearity. A final way that a camera’s response may be non-linear

is due to post-processing of the image. Gamma compression is one commonly-

used post-processing step that maps linear pixel values to non-linear values, in-

creasing contrast in shadows and decreasing contrast in highlights. To avoid this,

the ambient-subtracted image should be calculated from linear input images.

Pixelwise ambient subtraction also requires that there is no movement between

the first and second capture. The pixel at location x in the ambient-only image must

correspond to the same point on the same object as the pixel at location x in the flash

with ambient image. This means the camera must remain stationary with respect to
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the object. By averaging over a larger region of interest, small movements can be

safely ignored.

The ambient illumination must be the same for both captures. Not only must

the intensity and spectral power distribution remain constant, the direction of inci-

dence on the object must also stay the same. If there is movement of the source of

ambient light with respect to the object, the distribution of ambient light reflected

from the object will be different and subtraction will not remove the ambient contri-

bution. Areas in shadow and areas with specular reflection will also change, which

will again cause subtraction to give spurious results.

3.3.2 Subtracted Signal-To-Noise Ratio

Even if both flash and no-flash images have good signal-to-noise ratio, it is possible

that the subtracted result has a very low signal-to-noise ratio. This can happen when

the ambient light dominates the smartphone flash, either because the phone is too

far from the subject or because the ambient light is particularly bright. There is a

need to quantify the signal-to-noise ratio of the post-subtraction signal, as this is the

part of the signal that originates from the smartphone flash.

The signal is assumed to be subject to only shot noise as a simplifying as-

sumption. The signal recorded at each pixel thus has a Poisson distribution. By

the Central Limit Theorem, this image signal can be modelled as being Gaussian

distributed with mean and variance equal to the expected value of the signal. For

a particular pixel, we consider an additive noise model as in Equation 3.1, where

the recorded signal I is the sum of the “true” signal 〈I〉 and a noise term n, given

by a Gaussian with zero mean and variance given by the expected signal value,

n ∼N (0,〈I〉).

I = 〈I〉+n (3.1)

Subtracting two such signals, IA+F and IA, results in a signal with noise greater

than the noise of either of the input signals, nA+F and nA. The variance of each

must be added to give an estimate for the variance of the subtracted signal, which
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is then given by IA+F + IA. We define the subtracted signal-to-noise ratio (SSNR)

as in Equation 3.2, as the ratio of the estimate for the flash-only pixel value and the

estimate for its standard deviation. The same definition is proposed by Hui et al.

(2016) [94].

SSNR =
IA+F − IA
√

IA+F + IA
(3.2)

Equation 3.2 implies that the best SSNR is achieved when 100% of the signal

is from the flash illumination (when there is no ambient contribution at all). For

low flash signal and high ambient signal, it is more advantageous to increase the

flash contribution by one unit rather than to decrease the ambient contribution by

one unit. On the other hand, if the flash signal contribution is high and the ambient

contribution is low, the SSNR is best improved by further decreasing the ambient

contribution.

In work coauthored by this author, Nixon et al. (2020) experimentally demon-

strated an SSNR threshold of 3.4 guaranteed adequate ambient-subtracted chro-

maticity accuracy for the same two smartphone models used in this work (Samsung

S8 and LG Nexus 5X) [3]. This was determined using 172 patches from the Mac-

beth ColorChecker DC colour card as test targets. The limit was chosen such that

chromaticity error after subtraction was within one standard deviation of the error

that was observed when no ambient light was present at all. Beyond an SSNR of 3.4,

increasing SSNR ceased to improve the recovered chromaticity accuracy. The same

threshold is used in this work to discard flash/ no-flash image pairs with insufficient

SSNR.

3.3.3 Chromaticity Space

One consequence of using the subtraction method is an indeterminacy in the in-

tensity of the subtracted signal. The signal after subtraction could be increased by

reducing the flash-target distance, increasing the flash power, or imaging a more

reflective object. Without additional information – or a reference standard in the

scene – it is impossible to distinguish between these factors. Therefore, only the
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relative raw RGB values are meaningful after ambient subtraction.

Chromaticity values, denoted by lowercase letters rgb, are given by normalis-

ing the RGB values by the summation of the three. Chromaticities are invariant to

changes in light intensity and exposure time, as these affect all three channels by the

same proportion. Chromaticities are also invariant to shading due to object geom-

etry for the same reason. By using chromaticity the affect of varying the distance

between object and smartphone can also be ruled out.

The efficacy of ambient-subtracted chromaticity as a method of quantifying the

degree of yellow discolouration can be motivated on theoretical grounds by examin-

ing the image formation equation (IFE). This also reveals what implicit assumptions

exist in our approach.

The first important assumption is that we are able to avoid areas of specular

reflection in choosing a representative region of pixels to analyse. This means the

specular term of the IFE can be ignored, resulting in Equation 3.3 for the ambient-

only image. Note the superscript on the illumination variable EA(λ ,x) to differen-

tiate ambient from flash. The geometry and visibility scaling term wA
d (x) also has

this superscript, as it depends on the illumination direction of incidence (see Sec-

tion 1.4.1.5).

IA
k,x = wA

d (x)
∫

ω

EA(λ ,x)S(λ ,x)Qk(λ )dλ (3.3)

Assuming a linear camera response, the flash and ambient contributions to

pixel count should be independent, meaning they can be written as separate terms

in the ambient-plus-flash IFE (Equation 3.4).

IA+F
k,x = wA

d (x)
∫

ω

EA(λ ,x)S(λ ,x)Qk(λ )dλ +wF
d (x)

∫
ω

EF(λ ,x)S(λ ,x)Qk(λ )dλ

(3.4)

Then the subtraction of Equation 3.3 from Equation 3.4 gives the flash-only

image estimate (Equation 3.5), as long as there has been no movement so that all

geometry and position-dependent terms are the same in each image (and the ambient
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spectral power distribution has not changed between captures).

ÎF
k,x = IA+F

k,x − IA
k,x = wF

d (x)
∫

ω

EF(λ ,x)S(λ ,x)Qk(λ )dλ (3.5)

Invariant features are often calculated under the equal-energy illuminant as-

sumption [57]. This implies a white light which is consistent across the visible

spectrum. Under this assumption of white flash, we can remove the illumination

term from the integral, giving Equation 3.7. ck is the integral of surface reflectance

and CSS for channel k.

ÎF
k,x = wF

d (x)E
F(x)

∫
ω

S(λ ,x)Qk(λ )dλ (3.6)

= wF
d (x)E

F(x)ck (3.7)

Finally, taking the blue channel as an example, normalising ÎF
B gives the blue

channel chromaticity. F and x notation is dropped for clarity.

b̂ =
EwdcB

EwdcR +EwdcG +EwdcB
=

cB

cR + cG + cB
(3.8)

Equation 3.8 shows that the ambient-subtracted chromaticity is invariant to sur-

face orientation, viewing angle, illumination direction, and illumination intensity. It

depends only on CSS and object reflectance properties.

3.3.4 Imaging The Sclera

In this work, the sclera is imaged because it is free from the confounding influence

of melanin and hemoglobin. The yellow discolouration observed here is therefore

independent of the ethnicity of the subject. Although imaging the newborn eye

presents its own challenges, we seek to show that the improved sensitivity and gen-

eralisability compared to skin imaging makes it worthwhile.

From histological studies it has been noted that the majority of the yellow-

ing is due to the accumulation of biliurbin in the conjunctiva rather than the sclera

proper [95], and that the correct description of this symptom should therefore be
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conjunctival icterus rather than scleral icterus [96]. Figure 3.1 shows a cross-

sectional diagram of the eye, including an inset showing the outermost layers of

the eye. In contrast with the sclera proper, the conjunctiva and episclera are vascu-

larised and have a high content of the protein elastin, which has a high affinity for

bilirubin [97]. Therefore, it is in these layers that bilirubin accumulates [96].

In this work, the term “sclera” rather than “conjunctiva” is used when dis-

cussing sclera colour. This is consistent with similar literature on the identification

of jaundice through digital imaging. The term “sclera colour” is used with the un-

derstanding that this means the apparent colour of the sclera region of the eye (as

opposed to the iris or pupil), and that the cause for the discolouration is the bilirubin

in the translucent episclera and conjunctival layers above it.

Figure 3.1: Cross-sectional diagram of the human eye. Inset is a cross-section of the outer-
most part of the eye, including the sclera, episclera, and conjunctiva.

3.3.5 Device Independence via One-Time Calibration

After the ambient subtracted chromaticity has been calculated, the result is supposed

to be independent of the ambient light, imaging geometry and flash intensity. How-

ever, the result from one smartphone could not be compared to that from another

because it depends on the smartphone CSS and flash.

To standardise measurements across a range of devices we must introduce a
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calibration step. This involves transforming values measured under smartphone

flash that are in the camera raw space to values under a canonical illuminant in a

reference colour space. Assuming the flash and camera properties are stable over

time, this calibration only needs to be done once per device.

There are several ways to develop the required transform. In this work we pro-

pose using an X-Rite ColorChecker Classic colour card. The 24 colour patches have

known XYZ values, measured using a X-Rite ColorMunki Photo spectrophotome-

ter. By imaging the card with the smartphone we record the corresponding RGB

values in the raw space under the flash illumination only. Given the 24x3 matrix

of raw recorded values R and the 24x3 matrix of XYZ values H, a least-squares

solution for the mapping M between them can be calculated using Equation 3.9.

M = (RT R)−1RT H (3.9)

Other methods to calibrate the system require expensive specialist equipment

to characterise the spectral output of the flash and the CSS. Using a colour card

the calibration can be done with less equipment: only the smartphone and card are

needed.

In Equation 3.9, M is a 3x3 matrix. It describes a linear relationship between

the raw RGB values and the target XYZ values. This mapping will not be com-

pletely free from error. Higher order polynomial relationships can also be devel-

oped, and may offer greater accuracy.

To achieve device-independent ambient-subtracted chromaticity values, the

post-subtraction RGB values are converted to XYZ values using a 3x3 calibration

matrix. From here, the xy chromaticity values are derived. Using this approach,

polynomial mappings are not appropriate because of the indeterminacy in the scal-

ing of the post-subtraction signal. The chromaticity calculation only mitigates for

flash intensity and smartphone-subject distance if the linear relationship between

RGB and XYZ is maintained.

For the same reason, colour spaces that are non-linearly related to XYZ space

are not suitable for this application. Another suitable space in which to compare



3.3. Ambient-subtracted Sclera Chromaticity 78

ambient-subtracted chromaticities is the 1976 CIE UCS (Uniform Chromaticity

Space). This chromaticity space is more perceptually uniform than the xy chro-

maticity space. The UCS chromaticity coordinates (u’,v’) are calculated as shown

in Equation 3.10.

u′ =
4X

X +15Y +3Z
=

4x
−2x+12y+3

v′ =
9Y

X +15Y +3Z
=

9y
−2x+12y+3

(3.10)

The one-time device calibration method was performed for each device used in

the DJAN study following the method described by Nixon et al. (2019) [6]. A tripod

was used to stabilise the smartphone and the 24 colour patches of the ColorChecker

were captured using the app in an otherwise darkened room. A second image of the

ColorChecker’s grey card was taken with minimal movement in order to correct for

any non-uniformity in the intensity of the flash across the colour card [6].

3.3.6 Pipeline Overview

Figure 3.2 shows the steps required to calculate the ambient-subtracted chromaticity

of the sclera. Note that the subtraction is performed on the median value of a manu-

ally selected region of interest, not pixelwise. This is to allow for small movements

between the flash and no-flash captures - the two images are not perfectly coregis-

tered, as would be required for pixelwise subtraction. By identifying the region of

interest manually, the user can account for small movements, and ensure the same

sclera region is selected in each image. In Chapter 4, different manual segmentation

approaches are compared on clinical datasets.

The median is chosen over the mean as a summary statistic so that the result is

more robust to non-representative colour regions, such as specular reflections and

blood vessels in the sclera. The median value for a set of RGB values in the ROI can

be calculated in two ways. By taking the median value of each channel separately,

it is possible that the resulting median RGB triplet does not exist anywhere as a

recorded RGB triplet in the ROI. The geometric median generalises the median in
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higher dimensions. The geometric median in a three-dimensional space is the point

with the minimum sum of distances to all other points. Although this ensures the

resulting RGB value corresponds to a single specific pixel in the ROI, it is more

computationally expensive to calculate.

Figure 3.2: Pipeline for calculation of ambient-subtracted sclera chromaticity. Adapted
from figure in Ref. [2].

3.4 Proof Of Principle Experiments
In the previous section, the theory behind the ambient-subtracted chromaticity ap-

proach was laid out. In what follows, two proof of principle experiments are used

to demonstrate chromaticity and ambient subtraction.

3.4.1 Snooker Ball Demonstration

A set of five snooker balls were painted with a mix of white and yellow paint in

varying proportions. As shown in Figure 3.3, the blue channel shows the greatest

relative contrast between the different degrees of yellowness. This is because yellow

objects absorb blue light.

As discussed in the previous section, the absolute blue channel value cannot

be used to quantify the degree of yellowness. A more intense light or longer expo-

sure time can both increase the absolute blue channel count. Furthermore, different

points on a curved object receive light at a different angle, which causes shading.
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Figure 3.3: RGB channel images and relative contrast for five painted balls.

Using chromaticity mitigates these problems. Figure 3.4 compares the blue channel

value to the blue chromaticity value for the same snooker ball image. The line pro-

files shown in Figure 3.4 (d) demonstrate a much greater variability in the absolute

channel value than in the chromaticity value. The left side of the balls show some

degree of specular reflection, while the right is in shade. As discussed in the the-

ory section, chromaticity is invariant with respect to shading, but areas of specular

reflection have a different chromaticity compared to the bulk of the object. Fig-

ure 3.4 (e) shows that the chromaticity of the shaded area is almost the same as the
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median for the whole, but the specular region shows some deviation. The overall

percentage deviation is much less in chromaticity than in the raw channel value. In

our application, where the relative degree of yellowness must be quantified and the

absolute intensity of the recorded signal is indeterminate following subtraction, a

metric based on blue chromaticity offers good contrast.

Figure 3.4: Snooker balls: (a) original image, (b) blue channel value image, and (c) blue
chromaticity image. (d) shows how the intensity value varies in the blue chan-
nel compared to how it varies in blue chromaticity for a horizontal line profile.
(e) shows the same as (d) but as a percentage deviation from the median value
for each ball. Figure originally published in Ref. [1].

3.4.2 Jaundice Eye Colour Index

The dataset first analysed by Leung et al. (2015) (UCLH Nikon Study) was reanal-

ysed to evaluate blue chromaticity as a metric for jaundice in the sclera [74] [1]. 87

subjects with raw images available were included in the analysis, with TSB ranging

form 17µM to 304µM. As described in Chapter 2, these data were captured using

a Nikon D3200 camera. All data were collected in the Advanced Neonatal Nurse

Practicioner Clinic at University College London Hospital.

The raw NEF format images were converted to raw 16-bit linear TIFF images

using dcraw (version 9.27 by Dave Coffin 2016 [98]) and processed in MATLAB

(MathWorks, Inc.). Sclera regions were manually segmented and the median blue
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chromaticity was calculated in the camera raw space. Using a simple linear re-

gression between TSB and raw space blue chromaticity, a correlation of -0.73 was

observed.

In the original study (n=110), a regression was trained using the sclera RGB

values produced using white balance from the camera fluorescent preset and the

proprietary software of the Nikon ViewNX 2 software to convert into TIFF images.

A regression involving cross terms and quadratic terms gave a correlation of 0.75

(95% confidence interval (CI): 0.65 - 0.82).

These results showed that by using a chromaticity-based metric motivated by

first principles consideration of the image formation process, a similar predictive

power may be possible with a much simpler predictive model. This is important as

models involving fewer terms are more parsimonious and more likely to maintain

their validity across different datasets.

In the work on the adult jaundice detection system BiliScreen, Mariakakis et

al. generated features based on five colour spaces and the six ratios between RGB

channels for a total of 21 colour features [88]. Using automatic feature selection

methods they found that the green-to-blue channel ratio feature has the most ex-

planatory power. Like blue chromaticity, this involves the blue channel, which

captures the variation in yellow, and a normalisation by a channel not affected by

bilirubin absorption: the green channel. In this way, Mariakakis et al. arrive at a

similar conclusion via purely statistical methods as we have via the first-principles

considerations above.

Although blue chromaticity has been shown to effectively capture the colour

variation due to jaundice in the sclera, a definition based on a raw colour space

cannot be used as a basis for comparison. Therefore, Jaundice Eye Colour Index

(JECI), defined in Equation 3.11, is proposed as a metric by which sclera yellowness

can be objectively compared [1]. JECI is based on z chromaticity from the XYZ

colour space. The negative sign is included so that larger positive JECI values

correspond to more jaundiced individuals. An offset z0 is included such that when

z chromaticity is the same as under the D65 illuminant white point (z = z0), JECI is
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zero. To three significant figures, z0 is 0.358.

JECI = z0− z (3.11)

3.4.3 Ambient Subtraction Demonstration

In the UCLH Nikon dataset all images were captured in approximately the same

light conditions and it was not necessary to mitigate the effect of ambient light.

We have proposed ambient subtraction as a means to discount the effect of ambient

illumination. Here we show that ambient subtraction can improve the accuracy of a

chromaticity estimate of a set of printed test patches of different JECI levels.

An LG Nexus 5X smartphone is used to capture images. The screen is used

as a source of diffuse illumination and the front-facing camera is used to capture

two consecutive images, one with the screen “flash” on, one with it off. Figure 3.5

shows the Nexus 5X smartphone with screen illumination on (Figure 3.5 (A)) and

off (Figure 3.5 (B)). The ISO and exposure are set according to the first, flash image.

The ambient light is provided in a controlled manner by a TaoTronics TT-DL09

LED desk lamp, which has a variable colour temperature. Two colour temperatures

were used: 2700K (warm) and 6500K (cool). The smartphone was fixed in place

relative to the test target centre at distance of 15cm and an angle of 45°.

Figure 3.5: LG Nexus 5X with screen illumination on (A) and off (B).

The test target was a set of 11 square patches of increasing JECI value, from 0
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to 1.0 in increments of 0.1. 0 is white and 1 the most yellow. A given JECI value

corresponds to a chromaticity, so the Y value is indeterminate. The Y value for

each patch was chosen so that it would be within the printer gamut. The accuracy

of the printed chromaticities was checked using an X-Rite ColorMunki Photo, and

Figure 3.6 shows a rendering of these colours as printed.

Figure 3.6: Rendering of printed JECI patch colours as measured by X-Rite ColorMunki
Photo. JECI values range from 0 to 1 in steps of 0.1.

The pipeline shown in Figure 3.2 was used to calculate the ambient-subtracted

chromaticity for each patch under each colour temperature of ambient illumination.

Figure 3.7 shows the results in the xy chromaticity space. The coloured gamut

represents the human visual space. The results for every second patch are plotted,

with the ground truth values represented by the solid circles of their respective patch

colour. The filled circles are the results after ambient subtraction, and the empty

circles are the recorded values under the ambient light.

The accuracy of the ambient-subtracted chromaticity estimation is better than

the ambient-only chromaticity estimate for both warm (Figure 3.7 (A)) and cool

(Figure 3.7 (B)) ambient illuminations.

Although this proof of principle experiment is restricted to one smartphone and

two ambient illuminations, it shows that ambient subtraction using a smartphone is

possible and can improve the accuracy of the chromaticity estimate for a range of

colours typical of the jaundiced sclera.

Chapter 4 starts with an evaluation of the colorimetric accuracy of ambient

subtraction with the neoSCB app. The results are compared to several other meth-

ods using colour card data collected in clinical conditions in the Ghana Smartphone

Study.
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Figure 3.7: Ambient subtraction demonstration in xy chromaticity space for a range of
JECI values. Ground truth values are represented by yellow circles. Accuracy
of chromaticity estimation following ambient subtraction (filled circles) is bet-
ter than ambient-only condition (empty circles). (A) Warm colour temperature
(2700K). (B) Cool colour temperature (6500K). Figure originally published in
Ref. [2]. CIE chromaticity diagram rendered using Ref. [99].

3.5 App Development

3.5.1 Hardware Requirements

In the preceding sections, some important requirements of the smartphone were

assumed:

1. Linearity: the smartphone camera’s response to light should be linear. This is

needed for ambient subtraction.

2. Access to raw image data: without this facility, it is impossible to do a cali-

bration and unknown proprietary algorithms will influence the output colour

values.

3. Consistency and stability of flash: whether the screen or LED flash is used

as an illumination, its colour must be consistent between captures and also

stable over time.

4. Safety of flash: it must be confirmed that it is safe to image the newborn eye

with the flash.
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Ultimately, two models of smartphone were used in the clinical studies in this

thesis. For the UCLH Smartphone Study, a single LG Nexus 5X smartphone was

used. The flash was provided by the screen illumination and the front-facing camera

was used. The screen based illumination was advantageous because it provided a

diffuse and gentle illumination to the subject. On the other hand, it became clear

that it was difficult to image the subject’s eye without being able to see a preview

of the capture. The number of smartphones offering access to the raw pixel data

from the front-facing camera is also limited. At the time of writing, Google Nexus

and Google Pixel smartphone models offer front-facing camera raw support, but the

majority of Android device models do not.

An alternative approach was selected for the DJAN study in Ghana. By using

the back-facing camera a better quality image could be obtained by an inexperienced

user, and a greater majority of smartphones would be able to support raw capture in

this mode. A set of four devices of the same make and model were used (Samsung

S8). Although it is confirmed in this study (see Section 3.5.4) and elsewhere that a

smartphone flash does not pose a risk to the newborn eye, a diffuser was added to the

flash for the sake of the study to avoid any discomfort for the subjects or concern

from their parents. This diffuser was designed and made by Miranda Nixon-Hill

(UCL Centre for Doctoral Training in Medical Imaging). The diffuser is made from

Figure 3.8: The flash diffuser for the Samsung S8. (A) Diffuser fitted in place. (B) Diffuser
before attachment.
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acrylic and fitted to the shape of the phone case. The edge is painted black to prevent

light entering the camera directly from the edge of the diffuser. Figure 3.8 shows

the diffuser design and how it is attached to the smartphone.

3.5.2 Development Process and Features

The first app version was developed by this author for use in the UCLH Smartphone

Study. The app was coded in Java in the Android Studio Integrated Development

Environment (version 3.0.1). Two images were captured in quick succession using

a predefined exposure setting. The screen was entirely white and at full brightness

for the first capture and entirely off for the second. When not in use, the screen is

on. The screen turns off momentarily for the second capture. This is to allow the

subject to acclimatise to the brightness and to avoid a short bright flash that could be

overstimulating. The volume key was used to initiate the capture sequence so that

the user would not have to touch the screen to take an image, as this could block the

light. Images were saved in both raw (Adobe DNG) and JPEG formats.

The second version of the app was developed for the Samsung S8 back-facing

camera for use in the DJAN study. Contributions to the development process were

made by Alister Lam (Frugal Spark Ltd), Josephine Windsor-Lewis (UCL Biomed-

ical Engineering), and Fiona Young (UCL Natural Sciences). As in the previous

version, the flash is on continuously until the second capture. This has an added

benefit when using the back-facing camera, as the capture preview screen can be

used to position the smartphone so that the flash specular reflection is not on the

sclera. This version has an auto-exposure routine which sets the exposure time and

ISO setting according to the flash image conditions. This means the flash image is

well exposed in a variety of ambient conditions, and the no-flash image is not over

exposed. A welcome screen on starting the app and a review screen after capture

ensure that the battery is not drained by the flash remaining in torch mode. As in

the previous version, both DNG and JPEG formats are saved for both captures.

After capture, the user is able to see both images to assess their suitability. By

panning and zooming on the flash image, a green box is positioned in the sclera ROI

on both flash and no-flash images. This means that a real time calculation can be
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performed by the app. The SSNR is calculated using the ROI in each image. If it is

sufficient, and an RGB-XYZ mapping is found for the specific device being used, a

chromaticity value or bilirubin estimate can be calculated for the user immediately.

Appendix B includes more details and the usage guidance for this version of

the neoSCB app.

3.5.3 App Walk-Through

Screenshots from the latest app version, neoSCB v1.0, running on a Samsung S8,

are shown in Figure 3.9 and Figure 3.10 below.

On starting the app, the user sees a splash screen (Figure 3.9 (A)), followed by

a welcome screen (Figure 3.9 (B)). Once the user is ready to take a measurement,

they press the Continue button. From this point until the capture of the flash image

the flash is on continuously in torch mode. Figure 3.9 (C) shows the camera preview.

When the sclera is in view and the subject is still, the photo capture button at the

bottom is pressed. This automatically captures a flash/ no-flash image pair.

Once the capture sequence is concluded, the app shows the review screen (Fig-

ure 3.10 (A)). The lower, flash image can be swiped and pinched in order to pan

and zoom the image relative to the green square. These view changes affect the

no-flash image in the same way. Once the green square is satisfactorily positioned

in the sclera in both images, the user presses the star-shaped calculate button. The

SSNR and Scleral-Conjunctival Bilirubin (SCB) values are calculated according to

the process laid out in this chapter. The result is displayed as in Figure 3.10 (B). The

red box shows a disclaimer. This warns the user that the app is still under develop-

ment and should therefore not be used to make consequential clinical decisions.
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Figure 3.9: Screenshots from a Samsung S8 running the neoSCB app. (A) Splash screen.
(B) Welcome screen. (C) Camera preview screen.
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Figure 3.10: Screenshots from a Samsung S8 running the neoSCB app. (A) Review screen
before positioning region of interest (green box). (B) Review screen after
green box has been positioned and SCB and SSNR have been calculated.

3.5.4 Safety Measurements

It is important to verify that the flash illumination is safe for the eye. The interna-

tionally accepted committee which defines exposure limits for laser radiation and

broadband optical radiation is the International Commission for Non-Ionizing Ra-

diation Protection (ICNIRP).

Smartphone back-facing flash illumination is LED-based. LEDs are treated as

incoherent optical sources by all safety guidelines. Unlike lasers, they have broad-

band spectra and are not collimated [100]. The 2013 ICNIRP guidelines for inco-

herent optical radiation are therefore appropriate for LEDs [101].

There are two types of damage to the retina that can arise from incoherent vis-

ible light. The first is photothermal damage. This arises due to the thermal energy

deposited in the retina by wavelengths between 380nm and 1400nm. This energy

dissipates as heat over some timescale, so it is the rate of deposition of thermal en-
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ergy that is the crucial factor in determining source safety. The second mechanism

is photochemical damage. This is sometimes referred to as “blue light” damage

because the wavelengths that cause it are between 300nm and 550nm. Photons of

these wavelengths cause the damage when absorbed by the pigmented layer of the

retina [102]. This form of damage is purely dose dependent, meaning that either a

longer exposure or a higher irradiance can increase the overall photochemical dam-

age [101].

Some wavelengths are more efficient in causing either photochemical or pho-

tothermal damage than others. Action spectra are defined for each mechanism of

damage. The purpose of these is to weight the source radiance at each wavelength

by the relative potential to do harm at that wavelength. This spectrally weighted

radiance is known as the effective radiance. The effect of light of different wave-

lengths is cumulative, so an integral or summation across the spectrum is needed to

estimate the potential danger. Equation 3.12 shows such a summation. The effec-

tive thermal radiance (LR, in watts per steradian per square meter) is the sum across

all wavelengths (λ , in nm) of the product of the thermal action spectrum (R(λ )) and

the spectral radiance (Lλ , in watts per steradian per square meter per nanometer).

LR = ∑
λ

Lλ ×R(λ )×∆λ (3.12)

A similar equation to Equation 3.12 is used to calculate the effective radiance

for photochemical damage, with the blue light action spectrum B(λ ). A modified

blue light action spectrum is used when the subject has no crystalline lens. This is

called the aphakic condition, and may occur during, for example, an eye surgery.

The lens absorbs a large fraction of incident ultraviolet light, so without it the retina

becomes more vulnerable to photochemical damage. The aphakic action spectrum,

A(λ ), is also used for newborns, as the lens of children under the age of two has

a much higher transmittance in violet and ultraviolet [101]. Figure 3.11 shows all

three action spectra for retinal hazard on a logarithmic scale.

To determine if a source is safe, the effective radiance is compared to an ex-

posure limit defined by the ICNIRP. These limits depend on the length of exposure



3.5. App Development 92

Figure 3.11: Action spectra for retinal hazard. R(λ ) is the photothermal action spectrum,
B(λ ) is the photochemical action spectrum, and A(λ ) is the aphakic photo-
chemical action spectrum. Data from Ref. [101].

and the image size on the retina. For the reasons mentioned above, the photother-

mal limit is expressed as a radiance, while the photochemical limit is expressed as

radiant dose (a time-integrated radiance).

It is well established that LEDs do not have sufficient radiant power to cause

retinal photothermal damage [100]. Photochemical damage is more of a concern,

especially if there is significant power in the UV region of the spectrum. White

LEDs use a UV emission at 390nm or blue emission at 450nm in combination with

a phosphor. A peak in the 460-480nm region coincides with the peak of the B(λ )

action spectrum, and in the aphakic case, UV radiation is particularly harmful (see

Figure 3.11).

Point (2018) considered both the aphakic adjustment and the geometry of the

newborn eye to investigate whether the blue light exposure limits were safe for new-

borns [103]. Point concludes that limits should be lower by a factor of 2.8 to account

for the newborn pupil diameter and focal length. A similar factor of 3 was arrived

at by Mactier et al. (2008) by considering the biometry of the newborn eye [104].
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Point found little difference between effective radiance of white LEDs under apha-

kic and phakic conditions due to the low output in the violet and ultraviolet. In

contrast, he found the aphakic adjustment became important for the calculation of

the effective radiance of halogen and fluorescent lights.

Irradiance measurements were performed using a Spectrometer (HR2000+,

Ocean Optics, Inc,. Florida, USA) of the Samsung LED flash at a separation of

10cm. The fibre probe was mounted in line with the LED and translated perpendic-

ular to this axis until a peak irradiance was observed in the SpectraSuite software

user interface, whereupon the three measurement repeats were made with and with-

out the acrylic diffuser. Figure 3.12 shows the resulting average relative irradiance

and the average relative effective irradiance after weighting by the action spectra

B(λ ) and A(λ ).

The peak irradiance output of the Samsung S8 back-facing flash is at 445nm.

The introduction of the diffuser attenuates the LED by a factor between 40 (at

380nm) and 15 (at 700nm): there is a greater attenuation at (more dangerous)

Figure 3.12: Spectral measurements of Samsung S8 LED flash relative irradiance and rela-
tive effective irradiance under blue light phakic and aphakic assumptions with
and without diffuser.
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shorter wavelengths. Figure 3.12 shows minimal difference between the relative

effective irradiance after weighting by phakic and aphakic blue light action spec-

trum. The difference is only significant below 400nm, where, as noted by Point,

power output for (blue-phosphor) white LEDs is low.

Several studies have investigated fundus photography using a smartphone as an

indirect ophthalmoscope, and most use the back-facing LED torch for illumination

without employing a diffuser [105] [106] [107]. Goyal et al. (2019) used this ap-

proach to investigate retinopathy of prematurity among premature newborns [108].

Even with a medically induced dilation of the pupil such applications are deemed

safe.

Kim et al. (2012) evaluated the safety of the iPhone 4 (Apple Inc., Cupertino,

USA) flash for use as an indirect ophthalmoscope [109]. They calculated retinal ir-

radiances would be two orders of magnitude below the relevant safety standard for

ophthalmic instruments produced by the International Organisation for Standardisa-

tion (ISO 15004-2.2) for both photothermal and photochemical mechanisms. Hong

et al. (2017) concluded that the iPhone 6 and 6S were safe by a similar margin for

a one-minute exposure [110]. The ISO standard is itself one order of magnitude

below the damage threshold [111]. Kim et al. also note that the retinal irradiance

from the smartphone is an order of magnitude less than standard indirect ophthal-

moscopes [109].

In conclusion, the safety of LED smartphone flashes is well documented. Indi-

rect ophthalmoscopes provide a widely used point of comparison for the safe use of

an LED on the neonatal eye. The spectrometer measurement geometry was not suf-

ficiently well specified to calculate the absolute effective radiance of the Samsung

S8 flash. However, the measurements showed that the flash has a typical LED pro-

file with very little UV component. They also showed that the diffuser attenuated

the irradiance by two orders of magnitude, guaranteeing a high margin of safety.



3.6. Summary 95

3.6 Summary
In this chapter the key challenges in smartphone camera-based jaundice detection

were explored, leading to a proposal for a method based on ambient subtracted

sclera chromaticity. This method is motivated by the need to create a system that

leverages the affordability and accessibility of smartphones to be usable in LMICs

by avoiding the use of accessories or add-ons. In the literature, one of two ap-

proaches were adopted for achieving device- and ambient-independent colour read-

ings: colour cards and contact-based, ambient light blocking housings. Ambient

subtraction after a one-time calibration combines the advantages of both to give

a contact-free solution that does not require a colour card to be distributed to all

potential users and maintained in complex clinical and home environments.

The theory of ambient-subtracted chromaticity was outlined, giving insight

into the advantages as well as the assumptions behind the approach. Two proof

of principle experiments demonstrated the advantages of a chromaticity metric and

the feasibility of ambient subtraction. A simple sclera chromaticity-based metric

was shown to correlate with bilirubin levels in a clinical dataset.

Several questions posed by this exploration remain unanswered: Is ambient

subtraction still feasible in a real-world clinical context with moving subjects and

varied lighting? How else could ambient illumination be mitigated without a colour

card? Does thresholding based on subtracted signal-to-noise (SSNR) guarantee suf-

ficient accuracy? How much more sensitive is the sclera measurement site com-

pared to the skin? How should the sclera be segmented? Does specular reflection

need to be avoided entirely due to its influence on chromaticity?

In Chapter 4 these questions will be explored using the datasets from UCLH

Smartphone Study (LG Nexus 5X front-facing camera) and the DJAN study in

Ghana (Samsung S8 back-facing camera with LED diffuser).



Chapter 4

Development of SCB Model to

Predict Total Serum Bilirubin from

Chromaticity

4.1 Overview

In this chapter the relationship between ambient-subtracted sclera chromaticity and

TSB is modelled using clinical data from Ghana. First, the ambient-subtraction ap-

proach is compared to some other approaches to correct for the influence of ambient

light, one of which also makes use of a flash/ no-flash image pair. Next, sclera chro-

maticities for DJAN subjects are plotted, as measured via ambient subtraction and

via colour card mapping. Various models for TSB prediction from chromaticity are

compared. The finalised model is validated on the UCLH dataset.

4.2 Real-world Subtraction Evaluation

One of the aims of this thesis is to explore low-cost methods for accurate colorime-

try that do not involve the use of a colour card. Ambient subtraction was introduced

in Chapter 3 as a candidate solution. In this section, ambient subtraction is com-

pared to other methods that do not require a colour card. The methods are compared

using images from the DJAN study in Ghana. Colour cards were included in the first

phase of data collection as a reference. Given the known colour values of the card,
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it is possible to quantify the accuracy of the methods against a ground truth.

The methods are listed below. They are all calculated from the image data of

one or both of the flash/ no-flash pair.

1. MaxRGB Division of each channel by the maximum recorded value in that

channel is used to white balance the image. This assumes that there exists at

least one object that is maximally reflective for each channel.

2. Grey World Division of each channel by the average of that channel across

all pixels is used to white balance the image. This assumes the average colour

of the objects in the scene is neutral.

3. White Patch Reference A neutral reference standard is included in the cap-

ture. Division of each channel by the patch mean value is used to white

balance the image. This assumes that the same light source is illuminating

the reference patch as is illuminating the rest of the scene.

4. Petschnigg White Balance [112] This method involves a flash/ no-flash im-

age pair. If the flash colour is known a priori and corrected for, then the

difference image is proportional to surface albedo1. The ratio between am-

bient pixel value and albedo isolates the influence of ambient light, and is

calculated per pixel. The average of the ambient light estimate across the

image is used calculate global white balance multipliers. This approach as-

sumes that objects are diffuse and that the scene is illuminated by a single

colour illumination.

5. Ambient Subtraction The method described in Chapter 3 also involves a

flash/ no-flash image pair. If the flash colour is known a priori and corrected

for, then the difference image is proportional to surface albedo. This is similar

to a local application of the method of Petschnigg et al.. No assumption needs

1Albedo is defined as the fraction of incident electromagnetic energy reflected by a surface. It
is often quoted integrated over a wavelength range. Here, the albedo is three-dimensional, with
values across the red, green, and blue channels of the CSS. It is an illumination-independent surface
property.
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to be made about the number of illuminations in the scene as a whole, but the

illumination and albedo are assumed to be constant within the ROI.

4.2.1 Methods

The colour card was an X-Rite ColorChecker Passport. All colour card images asso-

ciated with a DJAN study subject that were fully visible in the capture and without

saturated regions were included in this analysis. The colour card was measured with

a ColorMunki Photo to determine ground-truth XYZ values. Median RGB values

for each patch were extracted from a linear 16-bit TIFF developed by dcraw, with

no white balance applied. Figure 4.1 shows a picture of the colour card used and

the number assigned to each patch.

Figure 4.1: Picture of X-Rite ColorChecker Passport with patch numbers.

In each case, following the white balance step, the 3x3 linear mapping found in

the DNG metadata was used to convert RGB values to XYZ values. Following this,

xy chromaticity values were calculated and compared to ground truth chromaticity

values by quantifying the distance in xy space. The metadata mapping (rather than

the one-time calibration mapping developed under flash illumination) was used in

order to compare these methods strictly by their white balance accuracy.
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4.2.2 Implementation

In the general case, when performing white balance, we seek a kernel W(x) of

multipliers to apply to an ambient-only image IA to give a white balanced image

Iwb. This is expressed in Equation 4.1 for colour channel k.

Îwb
k (x) = Wk(x)IA

k (x) (4.1)

MaxRGB White Balance A triplet of white balance multipliers is calculated

from the maximum value of each channel and applied globally, as shown in Equa-

tion 4.2.

W mv
k =

1
maxx Ik(x)

(4.2)

In the implementation of this algorithm, the image is first resized to have a

height of 64 pixels using bicubic interpolation, while keeping the aspect ratio con-

stant. MATLAB’s imresize function is used. This makes is less likely that the

maximum value is a small area of specular reflection or a defective pixel, and has

been shown to improve performance [65].

Grey World White Balance A triplet of white balance multipliers is calculated

from the average channel value and applied globally, as shown in Equation 4.3.

W gw
k =

∑k ∑x Ik(x)
3∑x Ik(x)

(4.3)

White Patch White Balance A triplet of white balance multipliers is calcu-

lated from the average value of each channel in the reference neutral and applied

globally, as shown in Equation 4.4.

W wp
k =

∑k ∑x∈wp Ik(x)
3∑x∈wp Ik(x)

(4.4)

Petschnigg Albedo Ratio White Balance

Petschnigg et al. (2004) note that the difference image, which is the flash-only

estimate ÎF given by ambient subtraction, is proportional to the albedo of the surface
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αk(x) if the flash colour eF is accounted for [112].

αk(x) =
IA+F
k (x)− IA

k (x)
eF

k
=

ÎF
k (x)
eF

k
(4.5)

The ambient illumination at x, eA(x), is then given by the recorded value in the

no-flash image divided by the albedo at each channel k:

eA
k (x) =

IA
k (x)

αk(x)
(4.6)

eA(x) has unknown scale due to the geometric shading factor and flash-object

distance being unknown. To calculate white balance multipliers, the ambient colour

is averaged over the set of pixels ζ for which the no-flash image IA
k (x)> τ1 and the

object albedo αk(x)> τ2. τ1 and τ2 are thresholds chosen to increase the robustness

of the estimate. In this implementation we follow Petschnigg and set both thresholds

to 0.02 [112]. Equation 4.7 gives the multipliers for the albedo ratio method of white

balance proposed by Petschnigg.

W ar
k =

∑k ∑x∈ζ eA
k (x)

3∑x∈ζ eA
k (x)

(4.7)

Ambient Subtraction The ambient subtraction method introduced in Chap-

ter 3 is not strictly a method for white balance. A white balance kernel is not

sought. Instead ambient subtraction is applied only to a specific region of interest

to recover the local surface albedo as defined in Equation 4.5.

4.2.3 Results

Figure 4.2 shows the mean chromaticity error for each of the white balance methods

outlined above for each colour card patch. Patches for which the SSNR is less than

the 3.4 threshold are not included. Ambient subtraction using the mapping to XYZ

provided in the image metadata is compared to ambient subtraction using a custom

mapping from the one-time calibration step.

Table 4.1 compares the mean, median, and 95th percentile chromaticity error

across all patches. Only one of the neutral patches, patch 22, is included so as
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Figure 4.2: White balance comparison via mean chromaticity error per patch.

Table 4.1: Performance metrics for six white balance and ambient subtraction methods.

Chromaticity Error Across All Images and Patches
Median Mean 95th Percentile

maxRGB 0.044 0.060 0.163
Grey World 0.026 0.026 0.048
White Patch 0.016 0.016 0.031
Albedo Ratio 0.027 0.034 0.081

Ambient Subtraction
(metadata mapping) 0.022 0.025 0.054

Ambient Subtraction
(calibration mapping) 0.015 0.021 0.052

not to overweight the error in recovering neutral chromaticity. As we can see in

Figure 4.2, the white patch method, which is based on patch 21, is most accurate

in recovering neutrals. maxRGB white balance performs the worst overall. Using

a predefined mapping is found to be more accurate than a metadata mapping when

using ambient subtraction. Ambient subtraction with a predefined mapping has the

smallest median chromaticity error overall. White patch white balance has a lower

mean and 95th percentile chromaticity error.
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4.2.4 Discussion

The results suggest that the ambient subtraction approach outlined in Chapter 3

gives more accurate chromaticity recovery than simple grey world or maxRGB

white balance algorithms. This is true not in general but for our specific application

of imaging a newborn at close range. For example, flash/ no-flash methods would

not be effective for correcting for ambient illumination in large scenes because the

flash would not illuminate far-away objects. By testing the algorithms on colour

card image data collected concurrently with the clinical data, we can be confident

that these results will also apply to the human subject data.

Grey world and maxRGB approaches both assume a single ambient light

source throughout the image. This assumption is likely to be violated in a situa-

tion with a distinct foreground and background such as an image of a face. It is

fairly common in indoor settings for both natural and artificial light to be present

to varying degrees in different parts of an image. Furthermore, grey world assumes

a broad gamut of colours will be present in the image. The images collected are

dominated by either the face of the subject or fabric that is often colourful.

The flash/ no-flash method of Petschnigg et al., referred to as the albedo ratio

method, also assumes a single source of ambient illumination. On the other hand,

by ignoring pixels with a small subtracted value, the foreground will have more

influence on the white balance multipliers than the background. This makes it more

likely that the ambient light estimation will be relevant to the object of interest.

However, for our application, there is no need to calculate white balance multipliers

for the entire image and using data from the entire image. Instead we are able

to identify a single region of interest and calculate an ambient-independent albedo

chromaticity for that region. Across this region it is more likely that there is only a

single ambient illumination colour.

Hui et al. demonstrate that it is possible to achieve a per-pixel white balance

kernel W(x) using a flash/ no-flash image pair [94]. They note that the albedo

chromaticity is the same as the image chromaticity in an ideally white-balanced

image. Following this observation, and assuming that the channel intensity of the



4.2. Real-world Subtraction Evaluation 103

no-flash image is unchanged after white balance, the ratio of albedo chromaticity

to no-flash image chromaticity gives a per-pixel triplet of white balance multipli-

ers. This approach has the advantage of making no assumption about the number

of independent sources of ambient illumination in the scene; the multipliers may

be different for each pixel. The main drawback of this approach is the need for

registered images.

The methods of Hui and Petschnigg, as well as grey world and maxRGB, are

all proper white balance methods in that the result is a kernel that can be applied to

one image (say, the no-flash image) as a whole. The relative intensity is preserved

in different regions of the image so the white-balanced result has an output that can

be viewed. Importantly, the image intensities in the white-balanced images are not

absolute but relative, so only the chromaticity can be related to the object of interest.

In our application, there is no need for a viewable image, so it is sufficient to directly

calculate the ambient-subtracted chromaticity. Thus, returning to the grouping of il-

lumination mitigation methods introduced in Section 1.4.2.3, our approach is better

described as an invariant technique rather than a colour constancy technique.

The white patch white balance method allows for knowledge of the absolute

intensity of the scene because it has a known reflectance. As discussed, this advan-

tage must be traded off against the need to have a well-maintained reference neutral

available in all circumstances in which the screening app is used.

The methods of Hui and Petschnigg and the ambient subtraction method all

require knowledge of the flash colour, and so a reference neutral is required for a

one-time calibration. A trained individual would be able to maintain a neutral card

and calibrate as many smartphones as needed. There would be no need to position

the card in the image shot or disinfect it between uses.

The results also show the benefit of using a device-level mapping developed

from a colour card under the flash illumination. The performance is notably better

compared to application of flash multipliers followed by a model-level, metadata-

derived mapping. As both approaches require a calibration step, the full colour card

mapping is preferable.
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4.3 Sclera and Skin Chromaticity

In what follows, the sclera and skin chromaticities recovered using ambient sub-

traction are compared to those recovered using a mapping developed from a colour

card.

Chest images were not collected after Phase 1 of the DJAN study. Likewise,

colour cards were only employed for Phase 1. In Phase 1a, the colour card was

included in each shot. In Phase 1b, the colour card was imaged separately after the

chest and sclera images.

For the sclera chromaticity data, 361 subjects are included. This represents the

subset of the DJAN database with a complete no-flash colour card image without

saturation in any of the patches and with a suitable sclera region of sufficient SSNR

for subtraction. In cases with multiple suitable repeats for a given capture session,

the chromaticity values are averaged. The equivalent number for chest images is

Figure 4.3: xy chromaticity for sclera (361 neonates) and sternum (192 neonates) as mea-
sured by app with colour card method. CIE chromaticity diagram rendered
using Ref. [99].
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Figure 4.4: xy chromaticity for sclera (361 neonates) and sternum (192 neonates) as mea-
sured by app with ambient subtraction method.

192. This is relatively small because many images pairs fail to meet the SSNR

threshold.

Figure 4.3 shows the xy chromaticity values obtained using the colour card

method and Figure 4.4 shows the xy chromaticity values obtained using the ambi-

ent subtraction method. In both cases, the sclera chromaticity values form a cluster

ranging from the white point, D50, towards more yellow hues of increasing satura-

tion. Meanwhile, skin chromaticity values are more red in hue and fewer points are

near the white point. The subtraction-derived data are less tightly clustered for both

sclera and skin. Some sclera chromaticity values exist on the blue side of the white

point.

For sclera, the colour card median chromaticity is (0.396,0.386), with an x

chromaticity range of [0.339,0.464] and a y chromaticity range of [0.347,0.425],

while the ambient subtraction median chromaticity is (0.412,0.400), with an x chro-

maticity range of [0.310,0.496] and a y chromaticity range of [0.338,0.441].
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For skin, the colour card median chromaticity is (0.439,0.374), with an x chro-

maticity range of [0.332,0.484] and a y chromaticity range of [0.317,0.395], while

the ambient subtraction median chromaticity is (0.455,0.379), with an x chromatic-

ity range of [0.371,0.503] and a y chromaticity range of [0.340,0.405].

4.3.1 TSB-chromaticity Correlations

In this section, the correlations between TSB and chromaticity are reported in order

to complete the descriptive account of the data. The task of developing a predictive

model is undertaken in the next section, Section 4.4.

Table 4.2 shows the correlations with TSB for sclera chromaticity recovered

via ambient subtraction and colour card methods for 361 neonates. Table 4.3 dis-

plays the same information for the chest skin data from 192 neonates.

For both methods and measurement sites, y and x chromaticities are positively

correlated with TSB and z chromaticity is negatively correlated with TSB. Equally

consistent is the relative strength of these correlations: y shows the strongest corre-

lation, followed by z and finally x.

Ambient subtraction results give consistently weaker correlations than colour

card results. For skin data the discrepancy is particularly wide, and x and z corre-

lations do not reach significance. For sclera data, the choice of method affects the

y correlation most, with coefficients of 0.55 and 0.63 for ambient subtraction and

colour card methods, respectively.

The skin and sclera data subsets are different, which means a strict comparison

is not possible. However, it is obvious that skin chromaticity provides a weaker

correlation with TSB than sclera chromaticity for both methods.

These results confirm the hypothesis that the sclera is a better measurement

Table 4.2: Sclera chromaticity correlation with TSB for the two methods, n = 361.

Sclera Chromaticity
Variable

Correlation with TSB:
Ambient Subtraction

Correlation with TSB:
Colour Card

x 0.45 (p<0.01) 0.44 (p<0.01)
y 0.55 (p<0.01) 0.63 (p<0.01)
z -0.55 (p<0.01) -0.58 (p<0.01)
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Table 4.3: Skin chromaticity correlation with TSB for the two methods, n = 192.

Skin Chromaticity
Variable

Correlation with TSB:
Ambient Subtraction

Correlation with TSB:
Colour Card

x 0.06 (p=0.42) 0.23 (p<0.01)
y 0.22 (p<0.01) 0.32 (p<0.01)
z -0.12 (p=0.09) -0.28 (p<0.01)

site than the skin. Also as expected, z chromaticity is negatively correlated with

TSB because bilirubin absorbs in the blue region of the spectrum.

In the absence of ground truth reflectance spectrum measurements of the sclera,

we cannot conclude that colour card chromaticity results are more accurate than

ambient subtraction chromaticity results. On the other hand, we can conclude that

they correlate better with TSB.

The two methods agree on important features of the chromaticity distribution,

including the relative strength of the x, y, and z correlations with TSB. Given that the

aim of this work is to produce a accessory-free technique, the ambient subtraction

method is preferred.

Based on these considerations, the focus of the subsequent analysis will be on

ambient-subtracted sclera chromaticity data.

4.4 Modelling the Relationship between Chromatic-

ity and TSB

Once device- and ambient-independent colour descriptors have been measured, the

next step is to relate them to jaundice severity. The goal is to estimate the TSB as

accurately as possible via the tissue colour measurement. In this work, the ambient-

subtracted sclera chromaticity is the focus. The TSB estimate derived from sclera

colour will be referred to as the scleral-conjunctival bilirubin or SCB. This con-

cept is introduced in analogy with the TSB estimate derived from a transcutaneous

bilirubinometer, which is the transcutaneous bilirubin or TcB. As noted in Sec-

tion 3.3.4, bilirubin accumulates more in the conjunctiva than the sclera itself [95].

Scleral-conjunctival bilirubin is used here as a catch-all term.
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The aim of this section is to create a prediction model for TSB based on chro-

maticity values. Simple linear models are considered first, followed by multiple

linear models. Various candidate models are compared using cross validation to

quantify the likely out-of sample prediction error. The DJAN study dataset is used

for training and validating the model, while the UCLH Smartphone dataset is used

as an independent dataset to test the resulting prediction model.

4.4.1 Simple Linear Regression

By considering simple linear models it is possible to compare the explanatory power

of different features separately, which can help guide the development of more com-

plicated models. One discussed in Chapter 3 is the Jaundice Eye Colour Index

(JECI), which is proportional to z chromaticity. We also consider regression against

x and y chromaticity. The final simple linear model is based on a total least squares

(TLS) fit to the data in xy space. This is equivalent to the axis in xy space that ex-

Figure 4.5: Sclera xy chromaticity for 595 neonates measured by the app with ambient sub-
traction. The marker colour corresponds to TSB, with higher TSB correspond-
ing to lighter markers. The total least squares and JECI axes are included.
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plains the most variation in the chromaticity, or the first principle component. The

predictor variable in this model corresponds to the position of the datapoint when

projected onto this axis.

Figure 4.5 shows the xy chromaticity of 595 neonates from the DJAN study us-

ing the ambient subtraction method. The marker colour corresponds to the bilirubin

level, with black representing the minimum value (10µmol/L), and white repre-

senting the maximum value (472µmol/L). The cyan line shows the axis of maximal

variation found from a total least squares fit. The blue line shows the JECI axis,

with the zero point for JECI, which is the D50 white point, shown as a blue circle.

The dashed black lines indicate lines of equal z chromaticity, and thus equal JECI.

For each variable, a simple linear model regression model is trained against

TSB. Table 4.4 reports the correlation with TSB and the mean absolute error using

10-fold cross validation. The best performing model is based on y chromaticity,

while the worst is based on x chromaticity.

Table 4.4: Performance of simple linear models for TSB prediction.

Model Predictor
Variable

Correlation with TSB Cross-Validated Mean
Absolute Error

(µmol/L)
x 0.22 (p<0.01) 71
y 0.67 (p<0.01) 55

z or JECI 0.47 (p<0.01) 65
TLS Score, f(x,y) 0.33 (p<0.01) 69

It is noteworthy that the principle axis of chromaticity variation does not cor-

relate well with TSB, as it is expected that bilirubin is the main source of variation

in newborns. It is possible that performing a TLS analysis in a more perceptually

uniform chromaticity space such as u’v’ may change this result.

4.4.2 Effect of Phototherapy

The relationship between sclera chromaticity and TSB may be confounded by the

phototherapy status of the neonate. In the DJAN study infants undergoing pho-

totherapy were imaged alongside infants not undergoing phototherapy. Of the 595

neonates imaged with valid TSB readings and suitable image pairs, 248 had under-
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gone phototherapy at some point, and 347 had not.

TcB readings are not recommended for babies exposed to phototherapy [36].

Several studies have noted that the exposure of the skin to phototherapy causes a

subsequent underestimation of TSB by TcB examination due to a bleaching effect

of the light on the skin [113] [114]. Hulzebos et al. found that the TcB estimate of

bilirubin decreases faster than the TSB in babies undergoing phototherapy and that

the discrepancy persists for a while after the end of treatment [25]. They also note

a large variation in the magnitude of this underestimation that is independent of age

and ethnicity.

For this reason, several imaging-based studies have excluded babies undergo-

ing phototherapy [77] [78]. In this study, the sclera is the tissue of interest rather

than the skin. It is plausible that the bleaching effect does not effect the sclera in the

same way as the skin, not least because the eyes are protected during phototherapy.

Figure 4.6 shows the y chromaticity regressed against TSB for both photother-

Figure 4.6: y chromaticity against TSB for phototherapy (n=248) and non-phototherapy
(n=347) treated neonates. The vertical dashed line is the y chromaticity of the
D50 white point.
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apy (blue squares) and non-phototherapy (red diamonds) neonates. The overall

correlation is 0.67, as quoted in Table 4.4. The phototherapy-exposed babies tend

to have a wider variation in y chromaticity for a given TSB value. The sclera

colour saturation - a measure of chromaticity distance from the white point - of pho-

totherapy babies is significantly lower than non-phototherapy babies in this dataset

(one-sided, unpaired t test, p<0.01), even though there are relatively few low-TSB

phototherapy-exposed babies. This is consistent with the observation of Hulzebos

et al. that phototherapy causes TSB underestimation and an increase in the estima-

tion variance [25]. Although this is not conclusive, it would appear a bleaching-like

effect, whereby the superficial tissues decrease in bilirubin quicker than systemic

bilirubin, is seen in the sclera as well as the skin.

To determine if the relationship between chromaticity and TSB is significantly

different for babies undergoing phototherapy, the difference between the regression

slopes of the two groups is tested. For the y chromaticity, z chromaticity, and TLS

score, the interaction with a dummy variable representing the phototherapy status

was significant via an F test at p<0.01. This implies a statistically different rela-

tionship with these colour metrics and TSB concentration. Phototherapy status was

not found to influence the regression line between x chromaticity and TSB at the

0.01 significance level. Table 4.5 summarises these findings and shows the cor-

relation between the individual variables and TSB for phototherapy (n=248) and

non-phototherapy (n=347) groups. Based on these analyses the remainder of this

chapter will focus on non-phototherapy babies.

Table 4.5: Comparing single explanatory variable correlation with TSB for phototherapy
and non-phototherapy groups.

Model Predictor
Variable

Correlation vs
TSB:

Phototherapy
Babies

Correlation vs
TSB: Non-

Phototherapy
Babies

Significant
Effect of

Phototherapy
on Fit?

x 0.43 (p<0.01) 0.20 (p<0.01) No
y 0.54 (p<0.01) 0.78 (p<0.01) Yes

z or JECI 0.52 (p<0.01) 0.58 (p<0.01) Yes
TLS Score, f(x,y) 0.47 (p<0.01) 0.37 (p<0.01) Yes
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4.4.3 Multiple Linear Regression

Chromaticity is a two-dimensional feature, so using only one predictor variable

necessarily involves a loss of information. Including more terms in the predic-

tion model may improve prediction accuracy. Table 4.6 shows the correlation with

TSB and cross-validated mean absolute error (MAE) for various multiple linear

regression models for SCB with increasing numbers of terms. The correlation

rises as more terms are included, but more complex models are penalised by the

cross validation procedure. SCB(x,y,x2) has the equal-best MAE with fewest terms.

However, the SCB(y) model is almost as predictive and only uses one variable.

Over the 10-fold cross validation the MAE±SE is 51±2 for SCB(y) and 47±2 for

SCB(x,y,x2), and the RMSE±SE is 64±3 for SCB(y) and 59±3 for SCB(x,y,x2).

Given the small difference in these figures of merit, the more parsimonious model

SCB(y) is preferred.

Table 4.6: Performance of multiple linear models for TSB prediction.

Number
of

Features

SCB Model Correlation with
TSB

Cross-Validated
Mean Absolute
Error (µmol/L)

1 SCB(y) 0.78 (p<0.01) 51
2 SCB(x,y) 0.78 (p<0.01) 49
3 SCB(x,y,xy) 0.79 (p<0.01) 48
3 SCB(x,y,x2) 0.81 (p<0.01) 47
3 SCB(x,y,y2) 0.79 (p<0.01) 50
4 SCB(x,y,xy,x2) 0.81 (p<0.01) 47
4 SCB(x,y,xy,y2) 0.79 (p<0.01) 49
4 SCB(x,y,x2,y2) 0.81 (p<0.01) 47
5 SCB(x,y,xy,x2,y2) 0.82 (p<0.01) 47

Henceforth, unless otherwise mentioned, SCB will refer to the model derived

from a regression between ambient-subtracted y chromaticity and TSB for the 347

non-phototherapy babies. This prediction model is given in Equation 4.8.

SCB =−1882+5236y (4.8)

In the remainder of this chapter this model will be evaluated.
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4.5 SCB Model Evaluation and Validation

4.5.1 Effect of Segmentation

The method for sclera segmentation could greatly effect the chromaticity estimation

and thus the TSB estimation. In this work, the sclera was segmented manually.

It is interesting to investigate how much variation might result if the approach to

segmentation was changed. For example, for a given sclera image, one user may

exclude and include different parts of the image from another, and an automatic

segmentation algorithm would be different again.

To investigate variation due to segmentation strategy, we compare two manual

approaches. In the first approach, the entire sclera is included, regardless of un-

representative regions such as eyelashes, blood vessels, or specular regions. In the

second approach, the user is more discerning, and attempts to draw a contiguous

segmentation that does not include any of these unrepresentative regions. These

shall be referred to the full and judicious segmentation methods, respectively. In

the analyses thus far, the judicious segmentation method was used. In the follow-

ing, the chromaticity and TSB estimation results for the judicious and full methods

are compared. The aim is to quantify the variability introduced by segmentation

and determine if one method is superior in its TSB estimation accuracy.

Figure 4.7 shows an example sclera and a judicious and full segmentation of

that sclera. The purple region is the judicious segmentation, which avoids the spec-

ular region of the upper left side and the blood vessels on the right side. The full

segmentation includes all the area of the judicious segmentation as well as the red

area.

Two points related to the manual segmentation should be emphasised. First,

the judicious segmentation does not fully mitigate the influence of specular reflec-

tion and blood vessels, but rather minimises their effect. Second, both the full and

judicious segmentations are subjective. The judicious segmentation requires more

judgement from the user, and would therefore likely vary more between users asked

to segment the same image. A full segmentation would likely lead to greater intra-

user repeatability. However, even the location of the edge between the sclera and
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Figure 4.7: Illustration of sclera ROI segmentation methods. Left: the original image.
Right: The segmented image. In purple is the judicious segmentation. The
full segmentation comprises the red and purple regions together.

iris is not completely objective.

In the following comparison we consider image pairs for 141 non-phototherapy

subjects for which both a full and judicious segmentation was performed and that

resulted in a sufficient SSNR. A single image pair per subject was considered, with

no averaging between repeats.

Judicious segmentations comprised on average 25,000±16,000 pixels, while

full segmentations comprised on average 44,000±28,000 pixels. Judicious seg-

mentations were on average 61% the size of full segmentations.

y chromaticity for full segmentations was significantly lower than for judicious

segmentations (two-sided, paired t test, p<0.01). The 95% confidence interval for

the y bias was [-0.0017,-0.0032], which leads to a [-9µmol/L,-17µmol/L] offset

SCB value for full segmentations as compared to judicious segmentations via Equa-

tion 4.8.

For the 141 subjects under consideration, using SCB Equation 4.8, the bias in

TSB estimation worsens from -24µmol/L to -37µmol/L when using full rather than

judicious segmentation, and the MAE increases from 63µmol/L to 70µmol/L.

These results could indicate that specular areas are causing an underestima-

tion in the saturation of the sclera colour when full segmentation is used. This

would lead to a subsequent underestimation of TSB. However, the saturation is not

significantly different between the two segmentation approaches at the 0.01 level

(p=0.41). Furthermore, comparison of the SCB bias and MAE is not strictly fair
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as the SCB equation was derived based on judicious segmentation, not the full seg-

mentation. Instead, it is possible to compare the correlation of the y chromaticity

with TSB directly. Full segmentation y chromaticity correlated with TSB with a co-

efficient of 0.46 compared to judicious segmentation at 0.50. The difference in the

proportion of variance explained is not significant. The low correlation coefficient

in both cases compared to previously quoted values can be explained by the fact

that we are considering a restricted subsample of the dataset (n=141), and the TSB

range is limited at the low end, with the lowest value recorded being 101µmol/L.

Even though the chromaticity estimates are different, it is not possible to con-

clude from these data alone that judicious segmentation is significantly better than

full segmentation for predicting TSB. Using a less robust summary statistic than the

median may increase the difference between the two approaches and indicate one as

superior. We expect the median to have mitigated the influence of unrepresentative

regions of the sclera (vessels, specular reflections, eyelashes, and blemishes).

The other quantity that it is useful to estimate is the variability introduced by

different segmentation strategies at the per-subject level. In the absence of inter-

and intra-user repeat segmentation data, comparing full and judicious segmenta-

tions may provide something approaching a practical upper bound for the variability

introduced by manual segmentation.

The mean absolute difference between SCB as defined in Equation 4.8 using

full and judicious segmentations is 18µmol/L. This is approximately one third of

the 10-fold cross validated MAE for the SCB model predictions, 51µmol/L, imply-

ing that variance due to segmentation could constitute a significant fraction of the

prediction error.

Another measure of the spread is the standard deviation of the differences,

which is 23µmol/L. Together with a bias of -13µmol/L, we find that the 95% limits

of agreement between the two segmentation methods are [-59µmol/L,33µmol/L].

In this section, the aim has been to determine the effect of segmentation on

TSB estimation accuracy and repeatability. A judicious segmentation did not pro-

vide significantly higher predictive accuracy for TSB than a full segmentation of
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the sclera, although the proportion of variance explained was found to be slightly

higher. Full sclera segmentation may vary less between users and is easier to de-

scribe to untrained individuals. Further investigations are recommended into auto-

matic segmentation algorithms and pixel filtering after segmentation.

4.5.2 Effect of Repeats

In the previous section, the SCB variability due to segmentation was analysed by

comparing two different approaches. In this section, the variation between repeat

captures of the same subject within the same capture session is investigated. The

effect on the SCB accuracy of averaging repeats over several captures is quantified.

For this investigation, the 185 capture sessions for which there were three us-

able image pairs of the subject were included (non-phototherapy subjects, with suf-

ficient SSNR). Judicious segmentations were applied.

To estimate the accuracy in the case of a single image pair, one pair is cho-

sen at random from the three pairs for each of the 185 subjects using MATLAB’s

datasample function. The MAE and correlation are calculated using these pairs

and the SCB equation. This random sample was performed 15 times. The mean

MAE was found to be 52µmol/L, and the mean correlation coefficient was 0.77.

When instead the chromaticity estimates from all three image pairs were averaged,

the resulting SCB estimate gave a MAE of 46µmol/L and a correlation coefficient

of 0.82. This suggests that averaging repeated measures can improve prediction

accuracy.

The within-subject standard deviation of repeat measurements is 36µmol/L.

The variance of the difference between two consecutive measurements is double

the within-subject variance. From this we can estimate the maximum (worst-

case) likely difference to be 99µmol/L, and 95% of repeats will have a signifi-

cantly smaller difference: The mean absolute deviation from the average value is

19µmol/L.

These data indicate that there is considerable variation in the SCB estimate

even for repeated measures of the same subject on the same occasion. Averaging

repeats is therefore highly valuable as a means of reducing this variance, and has
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been shown to improve the estimate correlation with TSB. The only disadvantage

of repeated measurements is the longer capture time. Capture time data are investi-

gated in Chapter 5, where the practical usability of the app is considered.

4.5.3 Performance Consistency

Having analysed the repeat variability, effect of segmentation, and effect of pho-

totherapy, the consistency of the technique with respect to various clinical proper-

ties must also be evaluated. In the following analysis (n=347), non-phototherapy

babies with sufficient SSNR are included. Judicious segmentations are used and

where repeats are available, an average in chromaticity space is performed. The

consistency of the performance with respect to TSB level, postnatal age, gender,

birth weight, and gestational age is tested.

It is desirable to have a consistent SCB accuracy for babies of both high and

low TSB level. A Bland-Altman plot is shown in Figure 4.8 for 347 subjects. The

limits of agreement are [-125µmol/L, 125µmol/L]. Clearly, this is a clinically sig-

nificant potential for disagreement, and so the technique can not replace serum

bilirubin measurement as a diagnostic tool. There is a tendency for underestima-

tion at high TSB, above approximately 300µmol/L. This may be a result of a non-

linear relationship between TSB and bilirubin pigment in the superficial tissues.

After a certain point, there may be a saturation effect or at least a significant di-

minishing of the rate of change of pigmentation. Some evidence for this exists in

the literature. TcBs have been found to progressively underestimate TSB at higher

levels [115] [116] [117]. The Draeger JM-105 does not quote a TcB value above

340µmol/L [118], presumably because estimation accuracy decreases. Sufian et

al. fit a separate linear model between chromaticity and TSB above approximately

220µmol/L [85]. A similar trend in visible in the Bland Altman analysis of Bili-

Cam [77] [76]. Dong et al. showed that the BiliScan app is unreliable above a TSB

18mg/dL (308µmol/L), and that the result was never quoted above that value [80].

Although these studies relate to skin-based estimation of bilirubin, a similar effect

is plausible in the sclera.

There is no significant correlation between the SCB error, that is SCB-TSB,
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Figure 4.8: Bland-Altman plot for 347 DJAN subjects.

and postnatal age for the 344 subjects with a postnatal age recorded (p=0.07).

There is no significant difference in the mean SCB error between male (n=192)

and female (n=155) groups (unpaired two-sample t test, p=0.31).

There is no significant correlation between the SCB error and birth weight for

the 347 subjects with a birth weight recorded (p=0.11).

For the 345 subjects with a gestational age recorded, there is a significant cor-

relation with the SCB error (p<0.01). The correlation is 0.2, with a 95% confidence

interval of [0.1,0.3]. This implies that SCB is providing an underestimate for babies

with shorter gestational ages. The SCB error for premature babies in our sample

(less than 37 weeks gestational age, n=46) is significantly biased compared to the

term babies (n=299), with a mean relative offset of -44µmol/L (95% confidence

interval [-64µmol/L, -25µmol/L]). One possible explanation for this relationship

relates to the thickness of the sclera. It is often observed that premature babies have

a blue tint to their sclera. This is because the immature sclera is relatively thin,

allowing the choroidal pigment underneath to affect the colour. In the estimation of

jaundice, a more blue sclera will counteract the yellowing due to bilirubin and lead
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to an underestimate. A factor to correct for gestational age, where gestational age

is known, may improve estimation accuracy. Alternatively, guidance to avoid using

the app on premature babies could be provided.

In the remainder of this thesis, premature babies of less than 35 weeks ges-

tational age are excluded from the analysis. Near-term babies between 35 and 37

weeks remain in the analysis along with term babies. This is partly due to the ob-

served underestimation in premature babies described above, and partly to facilitate

fair comparison with results from TcBs: NICE guidelines recommend against the

use of TcBs in premature babies with a gestational age of less than 35 weeks [36].

This means the set of subjects with sufficient SSNR and no history of photother-

apy reduces in size from 347 to 336. The subset of those subjects with three good

repeats reduces in size from 185 to 179.

4.5.4 Validation on UCLH Data

The development of the SCB model has relied on data from the DJAN study in

Ghana. Specifically, it was trained on the 347 babies without phototherapy treated

for whom there was sufficient SSNR in at least one image pair. 10-fold cross valida-

tion was used to simulate the out-of-sample performance. The cross-validated MAE

was 51µmol/L, the limits of agreement were [-125µmol/L, 125µmol/L], and the

correlation with TSB was 0.78 (95% confidence interval: [0.73,0.81]). The model

will now be evaluated on data collected at UCLH to assess how well it generalises

to data that has been collected in a different context and that was not involved in the

model training process.

From 41 eligible subjects, 38 image sets had sufficient SSNR for inclusion.

The image pairs from the UCLH study are subject to the same analysis as the

DJAN data, and the SCB model is not altered. The resulting correlation plot is

shown in Figure 4.9. A correlation of 0.76 is observed (95% confidence interval:

[0.58,0.89]). This is in agreement with the training correlation performance. The

MAE is 65µmol/L.

A previously published analysis of the UCLH dataset by this author achieved a

correlation of 0.75 (n=37) [2]. That analysis was also based on ambient-subtracted
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sclera chromaticity but did not employ the SSNR threshold method and used a dif-

ferent model to relate chromaticity to TSB.

Figure 4.9: SCB correlation with TSB for UCLH data (n=38). The identity line (dot-
dashed) and the line of best fit (blue) are included for reference.

Figure 4.10 shows the Bland-Altman plot for the UCLH SCB data. The limits

of agreement ([-169µmol/L,133µmol/L]) and the bias with 95% confidence interval

are indicated. The results are consistent with zero bias in the model for this test

dataset.

The UCLH dataset was captured in a completely different context to the DJAN

dataset. Most notably, a different modality of capture was employed. For the UCLH

dataset the ambient subtraction was achieved with a screen-as-illumination modality

with front-facing camera. For the DJAN dataset the back-facing camera and LED

flash was used with a diffuser. Furthermore, different smartphones were used (LG

Nexus 5X and Samsung S8). The two datasets were collected in different countries

and the majority ethnicity of the two subject groups differed. The SCB model based

on ambient-subtracted y chromaticity after SSNR threshold performed equally well

on the UCLH dataset. This validates the performance consistency of the app.
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Figure 4.10: Bland-Altman agreement plot for SCB and TSB for UCLH data (n=38). The
95% confidence interval for the bias contains zero.

4.5.5 Comparison with Literature

Table 4.7 shows a comparison between the neoSCB app performance and the per-

formance of three recent smartphone app studies. All apps apart from the neoSCB

app involve the use of a colour card and measured the skin colour, however, they

are the most well-documented and validated smartphone methods in the literature

and so are a suitable class with which to compare.

The study by Aune et al. included only term neonates. Those by Taylor et

al. and Ren et al. included both term and near-term neonates. None of the studies

involved neonates who had undergone phototherapy. These criteria align with the

decisions made in the analysis of the DJAN and UCLH datasets. One point of

divergence between the datasets is that the majority ethnicities were different in

each case. The study by Taylor et al. involved a multi-ethnic sample, the UCLH

study and the study by Aune et al. were majority Caucasian, the study by Ren

et al. was majority Chinese, and the DJAN study was majority Black African. It

is essential that a screening app is validated on a range of ethnicities to ensure
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consistent performance. BiliCam showed consistent performance across all ethnic

groups [77]. On the other hand, Picterus was found to have significantly higher

correlation with TSB among Caucasian subjects than non-Caucasian subjects in

the study by Aune et al. [78], and the learning-based BiliScan was found to have

a lower correlation in a non-Chinese population by Swarna et al. [83]. Although

neoSCB is not a skin-based app and uses a parsimonious model, it is important to

demonstrate consistent performance between populations. The model trained on the

majority Black African (DJAN) dataset performs comparably well on the majority

Caucasian (UCLH) dataset, but wider validation is still needed.

Table 4.7: Table comparing quoted TSB prediction performance for various jaundice de-
tection apps alongside SCB app performance.

Study: App Pearson’s r (95%
Confidence

Interval)

n Limits of
Agreement
(µmol/L)

Taylor et al. (2017):
BiliCam [77]

0.91 (0.89 – 0.92) 530 [-62, 62]

Aune et al. (2020):
Picterus [78]

0.84 (0.79 – 0.88) 185 [-84, 84]

Ren et al. (2020):
BiliScan [82]

0.78 (0.92/ 0.73
day/ night)

247 (183/ 64
day/ night)

[-81, 98]

DJAN study:
neoSCB

0.78 (0.74 – 0.82) 336 [-122, 126]

DJAN study:
3-repeat neoSCB

0.83 (0.78 – 0.87) 179 [-110, 121]

UCLH study:
neoSCB

0.76 (0.58 – 0.89) 38 [-169, 133]

The neoSCB app correlation is comparable to that of BiliScan as evaluated by

Ren et al. [82], and marginally lower than the result quoted by Aune et al. [78]. The

best performance is reported by Taylor et al. (BiliCam), both in terms of correlation

with TSB and limits of agreement with TSB measurement [77].

The methods of Aune et al. and BiliCam involve several image captures. If we

consider only DJAN data for which an average chromaticity from three image pairs

is available, the SCB correlation with TSB is 0.83 (95% confidence interval: [0.78,

0.87]), with limits of agreement of [-110µmol/L, 121µmol/L] (n=179). Figure 4.11

shows the scatter plot of the correlation between TSB and three-repeat SCB.
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Figure 4.11: SCB correlation with TSB for three-repeat DJAN data. n=179. The identity
line (dot-dashed) and the line of best fit (red) are included for reference.

4.6 Summary
In this chapter, a simple model relating TSB to y chromaticity was developed and

validated on unseen data. Ambient subtraction following a one-time calibration was

shown to recover chromaticity better than some common white balance algorithms.

The between-repeat variability was shown to be high, suggesting that multiple re-

peat measurements would improve performance accuracy. When averaging across

three repeats, a correlation between SCB and TSB of 0.83 was achieved. This is

competitive with other studies that have estimated TSB from RGB smartphone im-

ages.

All jaundice detection app studies in Table 4.7 have concluded that smartphone

imaging is not sufficiently accurate to provide a measurement that could replace a

serum bilirubin measurement, and neoSCB is no different. As a screening method,

smartphones do, however, show promise. In the next chapter, the neoSCB app is

evaluated as a screening tool and compared to existing screening methods: the TcB

and visual inspection.



Chapter 5

Screening Performance of the

neoSCB App

5.1 Overview

In Chapter 4, the neoSCB app estimation accuracy was quantified. The limits of

agreement between SCB with TSB were too wide for them to be used interchange-

ably. In this chapter, the potential of the neoSCB app as a screening tool is analysed.

The chapter begins with a discussion of the requirements of a screening tool

and quantifies the performance using two different approaches to classification:

thresholding SCB and discriminant analysis in chromaticity space. The neoSCB

screening performance on DJAN and UCLH datasets is compared to that of other

recently published smartphone camera-based jaundice screening tools.

The neoSCB app is then compared to TcB and visual inspection using data

collected as part of the DJAN study. The effect of phototherapy on TcB performance

and on app performance is shown. Visual inspection responses are analysed and

some of the comparative advantages of smartphone screening are expounded.

Finally, the real-world applicability of the neoSCB screening app is discussed.

A model for the effective deployment of the app in existing healthcare pathways

is suggested. The practicality of three-repeat image capture protocol is considered

with an analysis of the total time taken. Data from real-time results are used to

compare real-time ROI selection to offline sclera segmentation.
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5.2 Screening Neonates at Risk

5.2.1 Screening and Decision Thresholds

The aim of screening for neonatal jaundice is to identify at-risk neonates and refer

them in a timely manner for further diagnosis and treatment. The two most widely

used approaches for screening are visual inspection and TcB. Visual inspection is

not reliable as the sole means of screening for jaundice [36]. For a quantitative

screening tool such as the TcB, an appropriate numerical decision threshold must

be applied. The TSB level at which a neonate becomes at risk of kernicterus de-

pends on several factors. Prematurity is one factor that increases the vulnerability

of the newborn to the negative consequences of hyperbilirubinaemia. The postnatal

age is also relevant in interpreting the risk associated with a TSB reading, as a high

value in the first one or two days of like can be indicative of a pathological form of

jaundice or a rapidly climbing TSB level. Given these and other factors, there is no

one threshold of interest that can be used to screen newborns at risk. NICE guide-

lines recommend against using the TcB for neonates less than one day old or with

a gestational age of less than 35 weeks [36]. For term and near-term babies greater

than one day old, the decision threshold adopted is 250µmol/L. This is equivalent

to the phototherapy treatment threshold for a neonate of 35 weeks gestational age.

In the following analysis, the screening threshold used is 250µmol/L. As well

as being clinically relevant for the above reasons, it facilitates easy comparison be-

tween TcB screening studies and other jaundice detection studies, which often quote

screening performance for this threshold. This screening threshold must be distin-

guished from the decision threshold. The screening threshold is the TSB level above

which we would like to refer neonates. The decision threshold is the numerical out-

put of the TcB, app, or other device above which we refer a neonate. Sometimes

the decision threshold may be lower than the screening threshold to account for the

measurement error of the screening device and reduce the false negative rate.

Figure 5.1 shows the correlation between SCB and TSB for the DJAN results

(n=336). The screening threshold is marked with a vertical line at 250µmol/L. The

decision threshold is shown as a horizontal line at 198µmol/L. Data points in the



5.2. Screening Neonates at Risk 126

upper left and lower right quadrants formed by these lines are misclassified, the

others are correctly classified. The sensitivity is 0.94, which means of the 79 babies

with TSB greater than or equal to 250µmol/L, 94% (74) are correctly identified

as such. The specificity is 0.73: approximately one in four babies with TSB less

than 250µmol/L would be referred by the neoSCB unnecessarily. The decision

threshold can be varied to preferentially increase either the sensitivity or specificity

at the expense of the other.

Figure 5.1: Correlation plot for SCB and TSB for 336 DJAN subjects. Screening and deci-
sion thresholds are indicated with vertical and horizontal lines, respectively.

5.2.2 ROC Curves

A receiver operating characteristic (ROC) curve is used to graph the screening per-

formance of a technique in terms of sensitivity and specificity for the entire range

of possible decision thresholds. For a decision threshold at the highest end of the

range, no subjects test positive. The specificity is one, as all babies not at risk

are correctly identified as such, but the sensitivity is zero, as all at-risk babies are

missed. At the other end of the range, the sensitivity is one but the specificity is

zero.
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Figure 5.2: ROC curve for neoSCB from DJAN data (n=336). Brace annotation from
Ref. [119].

Figure 5.2 shows the ROC curve generated from the same data as in Figure 5.1.

The point on the curve corresponding to a decision threshold of 198µmol/L is indi-

cated. This point was chosen to maximise Youden’s Index, which is a measure of

screening performance given by sensitivity + specificity - 1. Positive and negative

predictive values express the probability that the test result is correct given the test

result outcome. For example, given the result is negative, the probability that the

newborn is not at risk is 0.97.

The area under curve (AUC) of the ROC curve is used to summarise screening

performance in a decision threshold-agnostic way. A perfect screening technique

would have an AUC of one. A device that randomly output a value would have an

AUC of 0.5. The AUC measured in Figure 5.2 is 0.90.

5.2.3 Discriminant Analysis Approach

Thus far we have considered an approach analogous to the TcB. Like a TcB value,

an SCB value is an estimate for TSB, and the screening decision is made by choos-

ing an appropriate threshold for the SCB value. An alternative approach would
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be to classify the newborns based on their sclera chromaticity: a one-step process

rather than a two-step process. One such way to achieve this is discriminant anal-

ysis, which predicts class (less than or more than 250µmol/L) based on continuous

variables (x and y chromaticity).

Figure 5.3: Discriminant analysis in xy chromaticity space. Neonates with TSB less than
250µmol/L are represented in black, at-risk neonates in yellow. The linear and
quadratic discriminant lines are in blue and magenta, respectively. The D50
white point is indicated in white.

Figure 5.3 shows the DJAN data labelled by their class, with yellow circles

representing babies with a TSB value above 250µmol/L. A linear discriminant and

quadratic discriminant are fitted. The linear discriminant is a straight line, whereas

the quadratic discriminant is a curve. The circles above these lines would be classi-

fied as being at risk and test positive. In fitting these models, the cost of misclassi-

fication of babies not at risk was down-weighted to 0.17 the cost of misclassifying

a baby at risk to match the sensitivity of the SCB approach. The sensitivity for

both the linear and quadratic discriminant models was 0.94. The specificities were

0.70 and 0.72 for linear and quadratic discriminant models, respectively. The AUC

of the discriminant approach is 0.90. The performance of the discriminant model
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approach is almost the same as that achieved using the SCB threshold approach.

As there is no improvement in performance, the SCB method is preferred because

it can be used in an analogous way to the TcB. It is also easier to compare the

neoSCB performance to other screening apps, which typically estimate bilirubin

concentration and quote the correlation with TSB as a performance metric.

5.2.4 Comparison with Literature

Table 5.1 shows the screening performance of neoSCB for the DJAN (training and

validation) and UCLH (test) datasets alongside that of three other jaundice screen-

ing apps. The screening performance in the UCLH dataset is consistent with that of

the DJAN dataset when the sensitivity and specificity confidence intervals are taken

into account.

Table 5.1: Table comparing quoted screening performance for various jaundice detection
apps alongside SCB app performance.

Study: App Sensitivity (95% CI);
Specificity (95% CI)

Screening
Threshold

ROC
AUC

Taylor et al. (2017):
BiliCam (n=530) [77]

1.00;
0.76

291µmol/L
(17mg/dL)

0.99

Aune et al. (2020):
Picterus (n=185) [78]

1.00;
0.69

250µmol/L 0.93

Ren et al. (2020):
BiliScan (n=247) [82]

0.75;
0.87

256µmol/L
(15mg/dL)

0.89

DJAN study: neoSCB
(n=336)

0.94 (0.91 – 0.97);
0.73 (0.68 – 0.78)

250µmol/L 0.90

DJAN study: 3-repeat
neoSCB (n=179)

1.00 (0.95 – 1.00);
0.76 (0.70 – 0.82)

250µmol/L 0.92

UCLH study: neoSCB
(n=38)

0.89 (0.79 – 0.99);
0.79 (0.65 – 0.92)

250µmol/L 0.84

Figure 5.4 shows the ROC curve for the subset of the DJAN data with three

suitable image pairs (n=179). SCB values are calculated via an average of the three

chromaticity estimates. The sensitivity and specificity are quoted for a decision

threshold that maximises Youden’s Index (197µmol/L).

The three-repeat neoSCB protocol has the same sensitivity/ specificity as Bili-

Cam (1.00/ 0.76). However, it is difficult to directly compare screening performance

based on the sensitivity and specificity results as different heuristics for choosing a
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Figure 5.4: ROC curve for three-repeat neoSCB from DJAN data (n=179).

decision threshold are used in each study. Aune et al. report 100% sensitivity with

69% specificity, while Ren et al. report 75% sensitivity with 87% specificity. In

the former case, sensitivity is increased at the expense of specificity, while in the

latter case the specificity is higher than the sensitivity. The AUC is a more suitable

metric for comparison in this case. Based on AUC, BiliCam has the best screen-

ing performance, BiliScan and neoSCB have similar performance, and Picterus has

marginally better performance than these two. The AUC of three-repeat neoSCB

(0.92) is comparable to that of Picterus (0.93). It is important to note that BiliCam

uses a higher screening threshold of 291µmol/L (17mg/dL), which further compli-

cates direct comparison. However, the comparison based on AUC screening metrics

is consistent with the relative TSB estimation accuracy of these studies laid out in

Table 4.7 of Chapter 4.

5.3 Comparison to TcB
The screening performance of the neoSCB app must be evaluated in the context of

the existing screening methodologies to determine if it is potentially valuable. In
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this section, the neoSCB app performance will be compared to TcB performance

on the DJAN dataset.

JM-105 (Draeger UK) measurements were taken alongside neoSCB measure-

ments for all DJAN subjects enrolled. Figure 5.5 shows the correlation between the

TcB and TSB readings for eligible subjects. Eligible subjects were term or near-

term neonates who had not undergone phototherapy and for which a TSB value

was successfully recorded. The Pearson’s r was 0.93 for these 323 subjects. The

decision threshold is the same as the 250µmol/L screening threshold for standard

usage. These thresholds are shown as solid lines in Figure 5.5. The JM-105 dis-

plays a warning rather than display values greater than 340µmol/L. This is evident

in Figure 5.5, and a dotted line indicates this value.

Figure 5.5: Correlation between TSB and JM-105 TcB values. The solid lines represent
the screening and decision thresholds. The dotted line at 340µmol/L is the line
above which the JM-105 does not display a numerical value.

To compare neoSCB and the JM-105, the subjects for which a TcB warning

was displayed are considered as positive tests, as per the usage protocol. Term and

near-term subjects with a suitable image pair with sufficient SSNR and no history of

phototherapy were included. Table 5.2 shows the confusion matrices for the JM-105
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and neoSCB app for screening 336 DJAN neonates for a TSB≥250µmol/L. For the

neoSCB app, a decision threshold of 198µmol/L maximised Youden’s Index. The

neoSCB sensitivity (95% C.I.) is 0.94 (0.91–0.97) and the JM-105 sensitivity is

0.96 (0.94–0.98). The neoSCB specificity (95% C.I.) is 0.73 (0.68–0.78) and the

JM-105 specificity is 0.81 (0.76–0.85). This indicates that the neoSCB performance

is slightly inferior to that of the JM-105.

Table 5.2: neoSCB and JM-105 confusion matrices for predicting neonates with
TSB≥250µmol/L.

neoSCB test+ test– total JM-105 test+ test– total
≥250µmol/L 74 5 79 ≥250µmol/L 76 3 79
<250µmol/L 69 188 257 <250µmol/L 50 207 257

total 143 193 336 total 126 210 336

If we restrict the dataset to include only those 179 subjects for which three

repeat image pairs were available, the performance of the neoSCB app improves

relative to the JM-105. The sensitivity of the neoSCB is 1.00 (0.95–1.00) and the

JM-105 sensitivity is 0.97 (0.95–1.00). The neoSCB specificity (95% C.I.) is 0.76

(0.70–0.82) and the JM-105 specificity is 0.79 (0.73–0.85). By averaging three

repeats, the neoSCB app screening performance is statistically indistinguishable

from that of the JM-105 TcB.

Table 5.3 compares the screening performance of the neoSCB app with the

screening performance of the JM-105 for the DJAN dataset and three-repeat DJAN

dataset. It also includes the equivalent data from Taylor et al. (2017), as this study

contained a similar direct comparison between TcB and app sensitivity and speci-

Table 5.3: Table comparing TcB and jaundice screening app sensitivity and specificity for
this study and that of Taylor et al. [77].

Study n Screening
Threshold

Screening
Method

Sensitivity;
Specificity

Taylor et al. (2017) [77] 312 291µmol/L
BiliCam 1.00; 0.76

TcB 1.00; 0.75

DJAN study 336 250µmol/L
neoSCB 0.94; 0.73

TcB 0.96; 0.81

DJAN study (3 repeats) 179 250µmol/L
neoSCB 1.00; 0.76

TcB 0.97; 0.79
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ficity, although using a different screening threshold. Taylor et al. used two models

of TcB: Philips BiliCheck and Draeger JM-103 [77].

5.3.1 Effect of Phototherapy

TcB measurement is not advised for babies undergoing phototherapy. How-

ever, several studies have investigated this space because of the potential advan-

tages of being able to monitor the effect of phototherapy without repeated blood

tests [114] [29]. One of the hypothesised advantages of imaging the sclera rather

than the skin was that the bleaching effect would not be observed in the sclera, as the

eyes are covered during phototherapy. In Chapter 4, it was shown the phototherapy-

exposed babies had significantly different relationship between sclera chromaticity

and TSB than non-phototherapy babies, leading to the conclusion that the sclera-

based TSB estimation was also affected by phototherapy.

Figure 5.6 shows Bland-Altman plots for both neoSCB and JM-105 DJAN

data. Both phototherapy and non-phototherapy babies are included. Subjects with-

out a numerical TcB value or sufficient image pair SSNR were excluded, as were

premature babies with a gestational age of less than 35 weeks. Only subjects with

three suitable image pair repeats were used. The remaining 245 data points are

colour coded according to their phototherapy status.

The bias and limits of agreement in Figure 5.6 are calculated from only non-

phototherapy subjects. The majority of all data points falling outside these limits

of agreement, which ought to encompass 95% of all differences, are from subjects

who have undergone phototherapy. Almost all of these outliers represent underesti-

mations on the part of the screening technique.

The bias among non-phototherapy babies is higher in the JM-105 data

(33µmol/L, 95% C.I.: [31µmol/L, 36µmol/L]) than the neoSCB data (17µmol/L,

95% C.I.: [14µmol/L, 21µmol/L]). This is consistent with the observations of Tay-

lor et al. and Olunsaya et al. that TcB devices (BiliChek and JM-103 in their cases)

overestimate TSB in Black African neonates [117] [34]. However, without similar

JM-105 data from neonates with less pigmented skin, it is impossible to say whether

this is an overestimation due to ethnicity. The neoSCB data has a wider limits of
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agreement than the JM-105 data. The neoSCB limits of agreement are -71µmol/L

to 105µmol/L, while the JM-105 limits of agreement are -24µmol/L to 91µmol/L.

Figure 5.6: Bland-Altman plots for neoSCB and JM-105 data (n=245). Neonates exposed
to phototherapy are indicated in blue. The horizontal lines representing the
mean bias and limits of agreement are calculated for the non-phototherapy
neonates only.

In this section, the neoSCB app was found to have comparable screening per-

formance in terms of sensitivity and specificity to the JM-105, provided three re-

peats were averaged. Phototherapy was shown to have a detrimental effect on both

neoSCB app and TcB accuracy, causing potentially dangerous underestimations of

bilirubin levels.

5.4 Comparison to Visual Inspection
In cases where a TcB is available and jaundice is suspected, visual inspection should

not be used as the sole method to screen for jaundice. However, in many cases,

a TcB is not available. This may be due to economic constraints on healthcare

provision, or simply because the newborn is in the home setting following discharge

from hospital. It is in these circumstances that a smartphone-based solution stands

to have the greatest impact.

NICE guidelines state that visual inspection should be performed by carers,

healthcare professionals and parents, and should involve examining the naked baby

in bright light. The examiner may lightly blanch the skin by pressing, and should

also check the sclerae and gums [36].
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In the DJAN study, the staff member using the app and a parent of the baby

were separately asked, “Do the baby’s eyes seem yellow?”. The response was

recorded as a binary yes/no. While this question does not capture whether or not

the parent would have sought medical advice based on the sclera colour (or, indeed,

whether they already had done), it may provide a simple upper bound on the sen-

sitivity of the untrained eye to discolouration due to jaundice. Likewise, asking the

healthcare professional conducting the study whether the eyes appear yellow does

not capture whether they would have referred the neonate based on their observa-

tions. Indeed, healthcare professionals incorporate feeding patterns, behaviour, pa-

tient risk factors and history into such decisions in the absence of a TcB. However,

by asking the same question to both groups it permits an analysis of any discrepancy

between lay and professional examiners.

Figure 5.7 shows two box plots of the range of TSB values for the Yes and No

responses to the question, “Do the baby’s eyes seem yellow?” with Figure 5.7 (a) for

the parent’s response and Figure 5.7 (b) for the staff member’s response. From the

724 subject capture sessions, 716 had a response recorded from both a parent and

a staff member. For the parent’s No responses, the median TSB was 116µmol/L,

with a minimum value of 10µmol/L and a maximum of 407µmol/L, while Yes re-

sponses had a TSB range of 97µmol/L to 540µmol/L with a median of 229µmol/L.

For the staff opinion, the ranges were similar. The No staff response subjects had

TSB values between 10µmol/L and 339µmol/L (median 109µmol/L). The Yes

staff response subjects had TSB values between 99µmol/L and 540µmol/L (me-

dian 229µmol/L). A similar proportion of subjects were identified as having yellow

eyes by both staff and parents (70% and 67%, respectively). In 45 cases (6.3%)

there was a discrepancy between the staff member and parent’s opinion. Staff were

slightly more likely to notice icterus.

The range of No values for both inexperienced and experienced examiners

covers the whole range of clinically relevant TSB values, although the majority

are below 200µmol/L. No examiner determined the sclera to be yellow for values

below 97µmol/L. There is little agreement on the threshold beyond which conjunc-



5.4. Comparison to Visual Inspection 136

Figure 5.7: Box plots of TSB for responses to visual assessment question (n=716).
(a) Parental opinion. (b) Staff member opinion.

tival icterus becomes visible. In adults, Ruiz et al. estimated the threshold to be

3.1mg/dL, or 53µmol/L [120]. Although their study involved 62 examiners, there

were only six subjects. In neonates, Azzuqa and Watchko found that conjunctival

icterus became visible at approximately 14mg/dL, or 239µmol/L [121]. However,

only one of the four examiners was blinded to the TSB value, and no neonates with

TSB less than 171µmol/L were enrolled.

If one naively takes the presence of conjunctival icterus as a positive screening

test result for TSB≥250µmol/L, the sensitivity would be 0.98 for staff and 0.96

for parents. However, the specificity is low at 0.41 and 0.43 for staff and parents,

respectively. If this were the only heuristic for blood test referral the number of

false alarms would be impractical. In the home setting, variable lighting conditions

could make visual inspection less reliable still.

Comparing visual inspection with the three-repeat neoSCB protocol where re-

sponses were available (n=177), the sensitivity is similar (1.00 for neoSCB, 1.00 for

staff, 0.94 for parents) and the specificity is higher for neoSCB (0.75 for neoSCB,

0.58 for staff, 0.62 for parents). Given the availability of smartphone devices in the

home setting, the neoSCB app could bring peace of mind to parents and carers, and

reduce the number of false alarms, which lead to costly and sometimes dangerous

travel in remote parts of the world. Furthermore, the objective nature of the app

recommendation may lead to better compliance than an instruction to seek medical

advice “at the first sign of a yellow sclera”.
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5.5 Applicability and Usability

In this chapter, we have evaluated the screening performance of the neoSCB app and

shown it to be superior to naive visual inspection of the sclera and comparable to the

JM-105 TcB. To show that it has potential in real-world scenarios, it is important to

identify the precise clinical pathways in which the app might feature, as well as the

environment in which it might be used and the users who might take advantage of

it.

An existing model for the use of a screening device is that laid out by NICE

for the use of the TcB. Term or near-term neonates who have not undergone pho-

totherapy and are at least one day old can be screened at the 250µmol/L level. This

may take place in the postnatal ward, an outpatient clinic, or the home setting. In

all cases, a trained healthcare professional is the user. A similar usage model could

be implemented for the neoSCB app. A key advantage would be the relative acces-

sibility and low expense of the app relative to the TcB. This would mean all visiting

midwives and poorly resourced hospitals would have access to an objective means

of screening for jaundice. Restricting users to healthcare professionals would carry

benefits: one could ensure that the smartphone was well calibrated at all times, that

it was used according to a protocol, and that the recommendation was acted on with

the proper urgency.

Given the ubiquity of smartphones, it would be possible for anyone to be a

user of the app in principle. After verifying the suitability of their personal smart-

phone, new parents could download the neoSCB app and have it calibrated before

the mother and neonate are discharged from hospital. This would allow for monitor-

ing at will during the first two weeks of life, allaying anxiety for parents and flag-

ging dangerous hyperbilirubinaemia sooner. This would require an intuitive and

user-friendly app experience, including instructions for appropriate usage at each

stage, including repeat captures. In the event of a positive test, the app could auto-

matically contact relevant healthcare professionals to follow up. A history of tests

could be stored and discussed with a visiting midwife, who would be better placed

to interpret trends in bilirubin over time. Further studies are required to determine if
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the app is usable with minimal instruction. Further app development could integrate

the neoSCB output with a patient ID and history, as TcB devices now offer.

In the DJAN study all subjects were imaged by two dedicated research nurses.

Their feedback helped improve the app usability to a great extent. For example,

a shutter sound that accompanied the capture was removed because it made the

subject flinch, blurring the second image in the image pair, and the gap between the

flash and no-flash images was reduced to make the pair quicker to capture.

In a clinical environment, time is often constrained. To be practical, the app

should not take too long to capture images. While the image capture itself is brief,

it is also necessary to count the time taken to line up a suitable capture, which is

complicated in the case of a moving or sleeping neonate. Furthermore, we have

determined that competitive performance requires three repeat captures. Collecting

all three must not be impractically time consuming.

272 subjects in the DJAN study had three repeats captured where a real-time

Figure 5.8: Histogram of time taken for three repeats and real-time result generation
(n=269).
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ROI selection lead to three quoted SCB values. 269 of these had the time recorded at

the beginning and the end of the capture session. The histogram of the time taken to

complete the process (capture, ROI selection, and recording the result successfully

three times) is shown in Figure 5.8. The median time taken was three minutes.

95% of measurement sets took place within nine minutes. The longest time taken

was 32 minutes. It appears that in the majority of cases the time taken to achieve a

screening result is feasible.

5.5.1 Real-time ROI Selection and Result

Thus far, the sclera ROI has been drawn in a post-hoc analysis of the image data

captured. Performance variability and trade-offs between a judicious and full sclera

segmentation approach were discussed in Chapter 4. In the following, the accuracy

of results generated through a real-time ROI selection are analysed.

The latest version of the neoSCB app supports real time ROI selection by pan-

ning and zooming of the captured image to position a square ROI box in the sclera.

Raw pixel data are extracted from the flash and no-flash images according to this

selection, and a SCB result is quoted in real-time. If the SSNR is insufficient, the

result is not displayed and the user is prompted to take the image pair again. Instruc-

tions were given to the DJAN study research nurses capturing the data to position

the ROI box such that it occupied the largest region of sclera possible, whilst en-

suring that the box was fully inside the sclera in both the flash and no-flash images.

See Appendix B for the full neoSCB usage guide, which includes examples.

The position of the ROI box on the flash image is also used on the no-flash

image, which is displayed at the same time. By forcing the ROI box to be in the

same position in each image, the user is made aware if excessive movement occurs

between the two captures, as it will be impossible to position the box within the

sclera in both images.

Figure 5.9 shows the correlation between TSB and the real-time estimate given

by the neoSCB app and recorded on the datasheet. Three repeats were taken for

each subject and have been subsequently averaged. Clearly, SCB overestimates

TSB consistently. This is because an earlier SCB model trained on insufficient data
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Figure 5.9: Real-time SCB averaged across three repeats vs TSB (n = 272).

was being trialled in the neoSCB app. Nevertheless, the correlation is strong at 0.80

(p<0.01), and given an appropriately adjusted decision threshold, sensitivity and

specificity are comparable to the latest SCB model with judicious segmentation.

In order to determine if real-time ROI selection is viable, it is necessary to

isolate the effect of segmentation from the effect of the under-trained model. To

this end, Figure 5.10 shows the correlation between the real-time SCB values and

the SCB values using the same model (and same images) but with offline, judi-

cious segmentations. Points are distributed along the line of equality. The mean

absolute difference between SCB values using offline and in-app ROI selection is

20µmol/L. This is only slightly higher than the mean absolute difference between

judicious and full segmentation SCB values observed in Section 4.5.1 (18µmol/L).

This shows that the real-time ROI selection using the app interface is not signifi-

cantly decreasing the screening performance despite the relative lack of fine control

compared to offline segmentation.
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Figure 5.10: SCB values calculated from users’ real-time in-app segmentation correlation
with SCB values calculated from offline (judicious) segmentation (n=272).

5.6 Summary
In this chapter the screening performance of the neoSCB app is shown to be as

good as the JM-105 if three image pair repeats are averaged. The sensitivity was

1.00 (0.95-1.00) and the specificity was 0.76 (0.70-0.82).

The effect of phototherapy on SCB was to cause significant underestimation,

negating the hypothesis that the sclera would not be affected by phototherapy while

covered. As expected, phototherapy also caused significant underestimation in JM-

105 measurements.

Visual inspection of the sclera for conjunctival icterus by both parents and staff

was found to be effective in identifying neonates above the 250µmol/L. However,

specificity was lower than that quoted by TcB and image-based screening methods.

The neoSCB app was shown to be practical and effective in screening. The

time taken to generate a result over three image pair repeats was less than 9 minutes

in 95% of cases. Real-time ROI selection was shown to be convenient and deliver

performance only slightly inferior to an offline judicious segmentation.
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General Conclusions

Summary

In this thesis, the conception, development, and demonstration of the neoSCB

jaundice screening app has been described. The app has screening performance

comparable to a latest-generation TcB device while costing a fraction of the price.

It has been trained on the largest database of images of jaundiced sclerae ever col-

lected, which is also the largest study on image-based jaundice screening in a ma-

jority Black African population.

In developing the neoSCB app, the central focus has been to truly leverage

the key advantage of the smartphone in a global context: accessibility. This has

informed several decisions: the use of the Android operating system; the use of

either front or back-facing camera; the lack of dependence on internet connectivity;

the lack of need for accessories such as light-blocking phone housing or colour

cards. Each of these decisions helps maximise the potential reach of the app, which

is essential to reducing jaundice-related death and disability in parts of the world

without reliable distribution networks, internet connectivity, or high-end phones.

The central challenge has been achieving device- and ambient-independent

colour measurements without light-blocking phone housing or colour cards. To

this end, a novel ambient subtraction approach was implemented. Colour card-

based approaches such as BiliCam, BiliScan, and Picterus must contend with the

cost, maintenance, and distribution of purpose-made colour cards, or risk inaccurate

colour using commercial printers. Ambient subtraction has been shown to provide
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accurate chromaticity measurements following a one-time calibration.

Contributions and findings

The primary contributions of this work are the development of the neoSCB

app and the demonstration of its screening efficacy. The correlation of TSB with

three-repeat SCB values was 0.83 (0.78-0.87). The sensitivity in identifying new-

borns with TSB≥250µmol/L was 1.00, with a lower bound of 0.95. The specificity

was 0.76 (0.70-0.82). For the same 179 subjects, the sensitivity (specificity) of

the Draeger JM-105 was found to be 0.97 (0.79). This result shows a comparable

performance of the neoSCB app to the state-of-the-art TcB device.

It was shown that the app would result in significantly fewer false alarms than

if parents were instructed to check for a yellow sclera discolouration. In our sam-

ple, parents were able to notice icterus in 96% of babies with TSB≥250. However,

they also observed icterus in a large fraction of babies safely below the threshold.

If parents were to seek medical attention based on their visual inspection of the eye,

there would be a significant number of false alarms (false positive rate 0.57, n=716).

These findings are consistent with other studies on the visual identification of jaun-

dice [39] [44]. There is a health and economic cost associated with unnecessary

hospital visits, especially in remote areas and in times of pandemic. Conversely,

when a newborn is in need of jaundice treatment, the objectivity of an app decision

may translate to better care-seeking behaviour from parents compared to a subjec-

tive visual assessment. In particular, the COVID-19 pandemic may lead to poorer

neonatal health outcomes because parents are reticent to seek medical attention for

fear of viral exposure. An app such as neoSCB may mitigate this risk [122].

The neoSCB app is the first standalone app to screen for neonatal jaundice

via the sclera. This obviates the need to account for skin pigmentation, which has

been a source of error in similar apps using either machine learning or physics-

based models to correct for it [82] [78]. Furthermore, the DJAN study results show

that sclera chromaticity is a better predictor of TSB than skin chromaticity in Black

African neonates. This work also demonstrates that it is feasible to capture newborn

sclera images in a reasonable time frame in a clinical setting.
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By imaging the sclera, we have shown a simple linear chromaticity-based TSB

prediction model delivers competitive results. The SCB model derived from DJAN

study data was chosen among a set of candidate models using 10-fold cross val-

idation. It was shown to perform equally well on unseen data collected using a

different model of smartphone in a different population (UCLH Smartphone study,

n=38). It is essential that a model for TSB estimation generalises to unseen data.

Other smartphone app-based approached have noticed a loss of performance among

different ethnic groups or times of the day [82], or have employed cross validation

in training their model but not yet tested on an independent test dataset [77].

Another contribution of this work is the image processing pipeline used to

derive ambient- and device-independent chromaticity data from flash/ no-flash im-

age pairs. Explicit subtraction of the ambient light contribution with a mapping

to xy chromaticity provides an image feature invariant to ambient illumination and

shading. Our novel contribution is the application of this approach to a medical

imaging problem. Further, it is shown that a consumer smartphone is a practical

device for this image processing system, and that flash-as-illumination and screen-

as-illumination modalities are both feasible. This enables future research into ap-

plications of low-cost chromaticity measurement in situ.

This work has provided further evidence that phototherapy leads to a subse-

quent underestimation from TcBs. The DJAN study is the first to investigate the

effect of phototherapy on the relationship between sclera colour and TSB. Like TcB

measurements, SCB measurements following phototherapy were more variable and

on average suffered from an underestimation bias.

The key findings of this work can be summarised as follows:

• It is feasible to capture a flash/ no-flash image pair of the newborn sclera

using a smartphone in a clinical setting (using both flash-as-illumination and

screen-as-illumination modalities)

• Ambient subtraction can be used to obtain accurate chromaticity measure-

ments following a one-time calibration, without the need for a reference card

in frame



145

• Sclera chromaticity is better correlated with TSB than skin chromaticity in

Black African neonates

• As with TcB measurements, SCB measurements based on the sclera chro-

maticity have a greater variability and tend to underestimate TSB following

phototherapy

• For babies with gestational age ≥35 weeks, the neoSCB app has screen-

ing performance comparable to the JM-105 in identifying babies with TSB

≥250µmol/L

Future work

The greatest limitation of the neoSCB app is the estimate variability. While

this is mitigated by taking three repeats, more study is required into the relative

contribution to this variability from various factors (segmentation approach, SSNR

level, etc.), so that it can be reduced to a minimum.

Real-time segmentation by the app user was shown to be adequate: correlation

with TSB was not significantly worse than when segmentation was performed man-

ually afterwards. However, minimising the number of subjective judgements may

decrease estimate variability and lead to fewer errors. More research is needed into

automatic sclera identification algorithms, and what level of user involvement in

the segmentation process is optimal for repeatability and accuracy. Possible simple

user input could include drawing a box around the eye, seeding the segmentation

at any point in the sclera, or confirming the output segmentation does not include

non-sclera pixels. Machine vision could be used to trigger image capture auto-

matically by dynamically monitoring the camera preview for the presence of the

sclera and the quality of the illumination. This could make image capture using

the front-facing neoSCB modality much easier. In addition, pre-capture tracking of

the sclera would improve image quality if the scene metering for auto exposure and

auto focusing was based on the region of interest.

Filtering the pixels in the segmented ROI to exclude specular regions and blood

vessels could improve the SCB estimate accuracy. This could be done using a
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simple threshold on the histogram of recorded colour values, as investigated by

Mariakakis et al. [88]. At present, a bulk median estimate for the sclera colour is

used. While this limits the influence of small regions that are unrepresentative of the

sclera colour, it would fail in cases where bleeds or specular reflections constitute

a larger fraction of the total ROI. The comparison of judicious and full segmenta-

tions did not show a large difference in performance, implying that the bulk median

approach is robust to the proportions of unrepresentative pixels typically observed.

The colour metric derived from the ROI could be further improved by making use of

the spatial information recorded in the image. This idea is based on the observation

that unrepresentative pixels are not randomly distributed through the ROI: a pixel is

more likely to be affected by specular reflection if it is adjacent to another specular

pixel. In future, superior TSB estimates could be made by combining both spatial

and colour information.

The definition of SSNR proposed in this thesis can be used to improve ambient-

subtracted chromaticity estimates [3], and the use of a real-time feedback on SSNR

improved the quality of images captured with the neoSCB app. Future work could

investigate ways of refining the definition of SSNR. Currently, SSNR is calculated

based on the sum of RGB channels. However, measurements from different colour

sensors have different SNR. Treating these separately could improve the SSNR cal-

culation. Secondly, the current definition of SSNR does not take into account the

fact that values are averaged over a region of interest. Estimates derived from more

pixels should have higher SNR.

One way in which the neoSCB app could be improved to increase SSNR would

be to use different exposure settings for the flash and no-flash images. At present,

the ISO and exposure time are determined for the flash image and then fixed for

the no-flash image. While this guarantees that the linear values can be directly sub-

tracted, it would improve the SNR in the no-flash image if it had its own exposure

settings. For subtraction, the no-flash image values could be scaled down by a factor

based on the ratio of exposure times (and ISO values) in the two images.

More and more smartphones provide access to raw capture capabilities. How-



147

ever, the requirement for raw capture imposes some limit of the potential for scal-

ability. Being able to use both front and back camera mitigates this problem to

some extent (some smartphones only provide raw access capabilities on the back

facing camera). The neoSCB app should notify the user if their smartphone does

not support raw capture.

The smartphone active illumination and camera spectral sensitivity functions

determine the space of possible recorded chromaticities. This work showed that

the neoSCB app worked on two different smartphones: the LG Nexus 5X us-

ing the front-facing camera and screen-as-illumination, and the Samsung S8 using

the back-facing camera and flash-as-illumination. Although this indicates that the

method can be used on a variety of devices, more work is needed to identify the

effect that varying CSS and illumination SPD can have on estimation accuracy so

that the app only runs on suitable smartphones. The one-time calibration step could

be modified so that it also verifies the suitability of the smartphone hardware.

More studies are required to determine the usability of the app among parents

and healthcare professionals unfamiliar with it. These studies should be used to in-

form the app interface in future, including any instructions and disclaimers. Future

versions could automatically alert a healthcare professional following a positive test,

alleviating the need for the user to interpret and act on the test result. Future app

versions should also include a guided calibration process with adequate instruction

for the untrained user to carry out the calibration.

In this work, a framework for jaundice estimation based on a two-step process

was presented. In the first step, an image-based colour measurement is made. In

the second step, this colour measurement is related to jaundice severity. These two

steps are independent. It would be fruitful to measure the spectral reflectance of the

jaundiced newborn sclera at a range of bilirubin levels to quantify and potentially

improve the accuracy of the first step. A set of spectral reflectance measurements

would also help improve the mapping between native RGB and XYZ, which could

be optimised for objects in that region of the colour space.

Future work should investigate how the relationship between sclera colour and
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TSB may be different in premature babies and babies with high TSB. In this work,

we have noticed an SCB underestimation of TSB in premature babies consistent

with the observation that premature babies often have thinner, bluish sclerae. The

results also suggest a biological saturation effect at high TSB whereby increasing

blood serum bilirubin concentrations no longer translate into increasingly saturated

colour measurements in the sclera. These physiological hypotheses must be further

investigated and, if confirmed, incorporated into future SCB models.

Table 6.1: Summary of future work.

Category Description

Technical
Improvements

• Allow ISO and exposure time to change between flash
and no-flash captures then scale before subtraction

• Optimise CCM for spectra of jaundiced sclerae

• Improve definition and calculation of SSNR

Understanding
and modelling

bilirubin-
chromaticity
relationship

• Understand and model the effect of prematurity on sclera
colour to avoid underestimation in premature babies

• Investigate correcting SCB underestimation at high TSB

App
improvements

• App to guide user through one-time calibration

• App to store history to infer TSB trend rate and direction

• App to alert healthcare professional automatically in
case of positive screening result

• Develop real-time automatic region of interest selection

Further
validation

• Test on a wide variety of smartphone models

• Study to determine usability of neoSCB app by un-
trained individuals

• Study to determine if access to neoSCB app translates to
better neonatal outcomes
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Outlook and uptake of technology

Results from this work indicate that the neoSCB app is an effective screening

tool at the 250µmol/L threshold for term and near-term babies who have not under-

gone phototherapy. These are the same parameters within which NICE guidelines

recommend the usage of TcB devices. A usage protocol very similar to that of

the TcB could be trialled in hospitals, which could significantly increase the num-

bers of healthcare professionals with access to an objective means of screening in

situ. There would be some advantages in restricting use to healthcare profession-

als: It would ensure that the result of the screening decision could be acted on in a

prompt fashion, and that the smartphones remained properly calibrated. Ultimately,

empowering parents to screen for jaundice using their own devices could have an

even greater impact. Pre-discharge smartphone vetting and guidance in the use of

the neoSCB app could allow parents to make objective measurements in the home

setting during the first two weeks of life. This would be invaluable in identifying

problematic cases of jaundice early and avoiding false alarms.

Smartphones cameras represent a untapped opportunity to measure jaundice

objectively in situations where the only available approach is visual inspection. It

is hoped that this thesis can contribute to decreasing jaundice-related death and dis-

ability worldwide by putting the power to screen newborns in the hands of parents

and caregivers.



Appendix A

Data Collection Sheets

Figure A.1 shows the data collection sheet for the UCLH Smartphone Study. Fig-

ure A.2 shows the data collection sheet for the DJAN Study. This is the final version

of the DJAN data collection sheet (created August 2019). Real time neoSCB app

SCB and SSNR results can be recorded for three repeats per capture session. One

individual can be imaged on four separate occasions, with consecutive capture ses-

sions represented by columns labelled A, B, C, and D.
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Figure A.1: Data collection sheet for UCLH Smartphone Study.
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Figure A.2: Final version of data collection sheet for DJAN Study.



Appendix B

neoSCB User Guide

The following pages reproduce the neoSCB app user guide created in August 2019.

The guide was created by Fiona Young (UCL Natural Sciences) with contributions

from this author and Miranda Nixon-Hill (UCL Centre for Doctoral Training in

Medical Imaging). It includes a guide for using and navigating the app, examples

of what constitutes a poor image pair compared to a good image pair, capture tips,

how to improve the SSNR if it is insufficient, and a listing of known bugs at the

time of writing.



NEOSCB USER GUIDE 

AUGUST 2019 

1 GENERAL INFORMATION 

This guide applies to version 1.0 of the neoSCB app (neonatal Scleral-Conjunctival Bilirubinometer). 

The app allows the user to choose a region of interest (ROI) in the sclera and receive a total serum bilirubin 
concentration estimate in real time.  We call this estimate the SCB (Scleral-Conjunctival Bilirubin). 

It is important to note that the SCB estimate must not to be used to inform clinical decisions in any way.  
The app is intended for research purposes only. 

This document describes how to use the app (Section 2) and how to take the best possible images (Section 3). 

The app is still under development and the developers are aware of some intermittent bugs.  Section 4 
describes these bugs and how to deal with them. 

2 USING THE APP 

START SCREEN 

The starting screen (Figure 1) is what you see when you open the app. Click when ready to 
take a pair of photos. 

CAMERA SCREEN 

Here you can position the camera and take a pair of photos (Figure 2). Click the camera icon or press 
either of the volume keys when ready to capture. Ensure that the subject does not move until the display 
changes to the selection display. Two photos are taken, one with and one without flash. There is a short delay 
between images.  It is very important that the camera and subject do not move during this time. 

Figure 1 Start screen Figure 2 Camera screen Figure 3 Selection and analysis screen 



SELECTION AND ANALYSIS SCREEN 

This is where region of interest (ROI) selection happens and the results 
of the analysis are displayed. Both the non-flash (top) and flash 
(bottom) images are shown. 

ROI selection 

Zoom and pan around the LOWER image until the green square is 
positioned over an appropriate region of sclera. The green square 
represents the region of interest (ROI) that will be used for the pixel 
colour analysis.  To zoom, press two fingers together on lower image 
and move them away from each other as if stretching them apart. To 
pan, simply drag your finger across the lower image.  

ROI selection can only be performed on the bottom (flash) image. The 
top image is displayed to show where the selected ROI appears on the 
non-flash image (see Figure 4). This is important if some movement 
occurs (see section 3). The ROI should be chosen such that ONLY sclera 
is present in the ROI for BOTH images. 

Analysis 

Once happy with the ROI position, tap the button at the bottom 
with the star icon to perform pixel analysis 

If analysis was successful, the results will be displayed above the 
images. 

Analysis may be unsuccessful if the subtracted signal-to-noise 
ratio (SSNR) is too low. If SSNR is too low a warning message is 
displayed (Figure 5) and the results are not calculated. 

If this is the case, first try moving the ROI, if possible, to a different 
region, as SSNR is calculated for the ROI only. If the warning 
message persists, retake the images with either 

a. Reduced ambient lighting (e.g. moving to a 
darker room or more shaded spot) or 

b. The camera closer to the subject 

GOING BACK 

To take a new image pair, return to the camera screen from the selection screen by tapping the back button 
once. Alternatively, the entire process can be restarted from the start screen by tapping back twice. Only have 
the camera screen open when ready to take photos, as the flash will drain battery power if the camera screen 
is left open for prolonged periods. 

  

Figure 4 Example of bad ROI selection, 
where ROI includes non-sclera regions in 
one of the images 

Figure 5 Low SSNR warning 



3 TAKING GOOD IMAGES 

MOVEMENT 

Ensure that the camera and subject remain still while the two images are being taken. If there is too much 
movement between the two images then they are unusable and new images should be taken (Figure 6). If it is 
difficult to select an ROI that is fully sclera for both images then there is too much movement and new photos 
must be taken. Also ensure that the subject does not blink during image acquisition. 

LIGHTING 

Ambient lighting should be kept to a minimum if possible, to 
maximise the difference between flash and non-flash. If there 
is too much ambient light, the SSNR warning will show (Figure 
7). In this case, retake the photos in a darker environment or 
with the camera closer to the subject. 

 

CAMERA POSITION 

Hold the camera horizontally if 
possible and ensure that the 
specular reflection cause by the 
flash is positioned over the iris (as 
shown in Figure 8) and not over 
the sclera. 

Holding the camera as close to the subject as possible will improve the signal to 
noise ratio. 

Figure 6 Examples of good and bad image pairs 

Figure 7 Bad and good lighting conditions. The greater the 
difference between flash and non-flash the better. 

Figure 8 Specular reflection 
positioned over the iris 



4 BUGS 

 

1. Non-Flash image brighter than flash image 
Cause 
 

Different exposure settings for flash and non-flash images 
 

Symptoms 
 

- Non-flash image (top image on ROI selection display) 
appears brighter than flash image 

- SSNR too low warning displayed 
 

Solution 
 

Go back and retake image pair. 

2. Files misnamed (Blank non-flash image) 
Cause 
 

? 
 

Symptoms 
 

Non-flash image will be blank / won’t show up on the Selection 
screen (see Figure 9). 
 

Solution 
 

Go back and retake image pair. 

3. Empty byte file 

Solution Go back and retake image pair. 

 
Figure 9 Blank non-flash image 



Appendix C

UCLH Smartphone Study Statistics

Histograms for the data collected in the UCLH Smartphone Study follow. Fig-

ure C.1 shows the histogram of TSB values, Figure C.2 shows the histogram of

gestational ages, and Figure C.3 shows the histogram of postnatal ages.

Figure C.1: Histogram of TSB values for UCLH Smartphone Study (n=41).



159

Figure C.2: Histogram of gestational age for UCLH Smartphone Study (n=41).

Figure C.3: Histogram of postnatal age for UCLH Smartphone Study (n=41).
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[84] Mustafa Aydın, Fırat Hardalaç, Berkan Ural, and Serhat Karap. Neonatal

jaundice detection system. Journal of medical systems, 40(7):1–11, 2016.

[85] AT Sufian, GR Jones, HM Shabeer, EY Elzagzoug, and JW Spencer. Chro-

matic techniques for in vivo monitoring jaundice in neonate tissues. Physio-

logical measurement, 39(9):095004, 2018.

[86] Sarah B Munkholm, Tobias Krøgholt, Finn Ebbesen, Pal B Szecsi, and

Søren R Kristensen. The smartphone camera as a potential method for tran-

scutaneous bilirubin measurement. PloS one, 13(6):e0197938, 2018.

[87] Pouria Padidar, Mohammadamin Shaker, Hamid Amoozgar, Mohammad-

hossein Khorraminejad-Shirazi, Fariba Hemmati, Khadijeh Sadat Najib, and

Shahnaz Pourarian. Detection of neonatal jaundice by using an Android OS-

based smartphone application. Iranian Journal of Pediatrics, 29(2), 2019.

[88] Alex Mariakakis, Megan A Banks, Lauren Phillipi, Lei Yu, James Taylor, and

Shwetak N Patel. Biliscreen: smartphone-based scleral jaundice monitoring

for liver and pancreatic disorders. Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies, 1(2):1–26, 2017.

[89] Md Messal Monem Miah, Rafat Jamal Tazim, Fatema Tuj Johora,

Md Ibrahim Al Imran, Sanzida Sayedul Surma, Fariba Islam, Rashid Shabab,

Celia Shahnaz, and Arik Subhana. Non-invasive bilirubin level quantification

and jaundice detection by sclera image processing. In 2019 IEEE Global Hu-

manitarian Technology Conference (GHTC), pages 1–7. IEEE, 2019.



Bibliography 171

[90] Md Redwan Sammir, Kazi Md Towhidul Alam, Pradipta Saha, Md Mush-

fiqur Rahaman, and Quazi Delwar Hossain. Design and implementation of a

non-invasive jaundice detection and total serum bilirubin measurement sys-

tem. In 2018 10th International Conference on Electrical and Computer

Engineering (ICECE), pages 137–140. IEEE, 2018.

[91] Amit Laddi, Sanjeev Kumar, Shashi Sharma, and Amod Kumar. Non-

invasive jaundice detection using machine vision. IETE Journal of Research,

59(5):591–596, 2013.

[92] Grand Challenges Canada. Saving Lives at Birth: A Grand Challenge for De-

velopment. https://www.grandchallenges.ca/programs/saving-lives-at-birth/

(accessed: 2020.10.09).

[93] Timothy York and Raj Jain. Fundamentals of image sensor performance.

jain/cse567-11/ftp/imgsens/index. html, 2011.

[94] Zhuo Hui, Aswin C Sankaranarayanan, Kalyan Sunkavalli, and Sunil Hadap.

White balance under mixed illumination using flash photography. In 2016

IEEE International Conference on Computational Photography (ICCP),

pages 1–10. IEEE, 2016.

[95] Ramesh C Tripathi and Linas A Sidrys. Conjunctival icterus, not scleral

icterus. JAMA, 242(23):2558–2558, 1979.

[96] John J Kuiper. Conjunctival icterus. Annals of internal medicine,

134(4):345–346, 2001.

[97] Anthony S Fauci et al. Harrison’s principles of internal medicine, volume 2.

McGraw-Hill, Medical Publishing Division New York, 2008.

[98] D Coffin. DCRAW application, 2016.

[99] Stephen Westland. Computational colour science using MATLAB

2e, 2020. https://www.mathworks.com/matlabcentral/fileexchange/40640-



Bibliography 172

computational-colour-science-using-matlab-2e/, MATLAB Central File Ex-

change (accessed: 2020.10.24).

[100] International Commission on Non-Ionizing Radiation Protection et al.

Light-Emitting Diodes (LEDS): Implications for safety. Health Physics,

118(5):549–561, 2020.

[101] International Commission on Non-Ionizing Radiation Protection et al. IC-

NIRP guidelines on limits of exposure to incoherent visible and infrared ra-

diation. Health Physics, 105(1):74–96, 2013.

[102] William T Ham, Harold A Mueller, and David H Sliney. Retinal sensitivity

to damage from short wavelength light. Nature, 260(5547):153–155, 1976.

[103] S Point. Blue light hazard: are exposure limit values protective enough for

newborn infants. Radioprotection, 53(3):219–224, 2018.

[104] Helen Mactier, Sanjay Maroo, Michael Bradnam, and Ruth Hamilton. Ocu-

lar biometry in preterm infants: implications for estimation of retinal illumi-

nance. Investigative ophthalmology & visual science, 49(1):453–457, 2008.

[105] Luis J Haddock, David Y Kim, and Shizuo Mukai. Simple, inexpensive tech-

nique for high-quality smartphone fundus photography in human and animal

eyes. Journal of ophthalmology, 2013, 2013.

[106] Shan-Jiun Lin, Chung-May Yang, Po-Ting Yeh, and Tzyy-Chang Ho. Smart-

phone fundoscopy for retinopathy of prematurity. Taiwan Journal of Oph-

thalmology, 4(2):82–85, 2014.

[107] Andrew Bastawrous. Smartphone fundoscopy. Ophthalmology, 119(2):432–

433, 2012.

[108] Anubhav Goyal, Mahesh Gopalakrishnan, Giridhar Anantharaman,

Dhileesh P Chandrashekharan, Thomas Thachil, and Ashish Sharma.

Smartphone guided wide-field imaging for retinopathy of prematurity in



Bibliography 173

neonatal intensive care unit–a Smart ROP (SROP) initiative. Indian journal

of ophthalmology, 67(6):840, 2019.

[109] David Y Kim, François Delori, and Shizuo Mukai. Smartphone photography

safety. Ophthalmology, 119(10):2200–2201, 2012.

[110] Sheng Chiong Hong, Giles Wynn-Williams, and Graham Wilson. Safety of

iPhone retinal photography. Journal of medical engineering & technology,

41(3):165–169, 2017.

[111] Ophthalmic instruments – Fundamental requirements and test methods – Part

2: Light hazard protection. ISO 15004-2:2007, International Organization for

Standardization, Geneva, CH, February 2007.

[112] Georg Petschnigg, Richard Szeliski, Maneesh Agrawala, Michael Cohen,

Hugues Hoppe, and Kentaro Toyama. Digital photography with flash and

no-flash image pairs. ACM transactions on graphics (TOG), 23(3):664–672,

2004.

[113] Gaurav Nagar, Ben Vandermeer, Sandy Campbell, and Manoj Kumar. Effect

of phototherapy on the reliability of transcutaneous bilirubin devices in term

and near-term infants: a systematic review and meta-analysis. Neonatology,

109(3):203–212, 2016.

[114] L Casnocha Lucanova, K Matasova, M Zibolen, and P Krcho. Accuracy of

transcutaneous bilirubin measurement in newborns after phototherapy. Jour-

nal of Perinatology, 36(10):858–861, 2016.

[115] William D Engle, Gregory L Jackson, Dorothy Sendelbach, Denise Manning,

and William H Frawley. Assessment of a transcutaneous device in the eval-

uation of neonatal hyperbilirubinemia in a primarily Hispanic population.

Pediatrics, 110(1):61–67, 2002.

[116] William D Engle, Gregory L Jackson, Elizabeth K Stehel, Dorothy M Sendel-

bach, and M Denise Manning. Evaluation of a transcutaneous jaundice meter



Bibliography 174

following hospital discharge in term and near-term neonates. Journal of peri-

natology, 25(7):486–490, 2005.

[117] James A Taylor, Anthony E Burgos, Valerie Flaherman, Esther K Chung,

Elizabeth A Simpson, Neera K Goyal, Isabelle Von Kohorn, Nui Dhepya-

suwan, et al. Discrepancies between transcutaneous and serum bilirubin

measurements. Pediatrics, 135(2):224–231, 2015.

[118] Medicines and Healthcare Products Regulatory Agency. JM103 and JM105

jaundice meters – risk of misinterpretation of measurement in hyperbiliru-

binemia cases. Medical Device Alerts, 2018. https://www.gov.uk/drug-

device-alerts/jm103-and-jm105-jaundice-meters-risk-of-misinterpretation-

of-measurement-in-hyperbilirubinemia-cases/ (accessed: 2020.11.03).

[119] Pal Naeverlid Saevik. Curly brace annotation, 2020.

https://www.mathworks.com/matlabcentral/fileexchange/38716-curly-

brace-annotation/, MATLAB Central File Exchange (accessed: 2020.10.24).

[120] Mario A Ruiz, Sammy Saab, and Leland S Rickman. The clinical detection

of scleral icterus: observations of multiple examiners. Military medicine,

162(8):560–563, 1997.

[121] Abeer Azzuqa and Jon F Watchko. Bilirubin concentrations in jaundiced

neonates with conjunctival icterus. The Journal of pediatrics, 167(4):840–

844, 2015.

[122] Xiao-Lu Ma, Zheng Chen, Jia-Jun Zhu, Xiao-Xia Shen, Ming-Yuan Wu, Li-

Ping Shi, Li-Zhong Du, Jun-Fen Fu, and Qiang Shu. Management strategies

of neonatal jaundice during the coronavirus disease 2019 outbreak. World

Journal of Pediatrics, pages 1–4, 2020.


	Introduction
	Motivation and Aims
	Thesis Objectives and Overview
	Jaundice Background
	What is Jaundice?
	Disease Burden
	Screening and Diagnosis Methods
	Limitations of Existing Methods
	Advantages of Smartphone-based Screening

	Digital Colour Imaging
	Digital Image Formation Pipeline
	Consistent Colour

	Review of Image-based Jaundice Detection Research

	Clinical Imaging Studies
	Overview
	Clinical Datasets Used In This Thesis
	Study 1: UCLH Nikon Study
	Study 2: UCLH Smartphone Study
	Study 3: DJAN Smartphone Study
	Comparison of Datasets
	Objectives of Clinical Dataset Analyses


	Development of the neoSCB App
	Overview
	Challenges To Be Addressed
	Image Capture
	Image Processing: ROI Selection
	Image Processing: Extracting Colour Information
	Jaundice Level Estimation

	Ambient-subtracted Sclera Chromaticity
	Ambient Subtraction
	Subtracted Signal-To-Noise Ratio
	Chromaticity Space
	Imaging The Sclera
	Device Independence via One-Time Calibration
	Pipeline Overview

	Proof Of Principle Experiments
	Snooker Ball Demonstration
	Jaundice Eye Colour Index
	Ambient Subtraction Demonstration

	App Development
	Hardware Requirements
	Development Process and Features
	App Walk-Through
	Safety Measurements

	Summary

	Development of SCB Model to Predict Total Serum Bilirubin from Chromaticity
	Overview
	Real-world Subtraction Evaluation
	Methods
	Implementation
	Results
	Discussion

	Sclera and Skin Chromaticity
	TSB-chromaticity Correlations

	Modelling the Relationship between Chromaticity and TSB
	Simple Linear Regression
	Effect of Phototherapy
	Multiple Linear Regression

	SCB Model Evaluation and Validation
	Effect of Segmentation
	Effect of Repeats
	Performance Consistency
	Validation on UCLH Data
	Comparison with Literature

	Summary

	Screening Performance of the neoSCB App
	Overview
	Screening Neonates at Risk
	Screening and Decision Thresholds
	ROC Curves
	Discriminant Analysis Approach
	Comparison with Literature

	Comparison to TcB
	Effect of Phototherapy

	Comparison to Visual Inspection
	Applicability and Usability
	Real-time ROI Selection and Result

	Summary

	General Conclusions
	Appendices
	Data Collection Sheets
	neoSCB User Guide
	UCLH Smartphone Study Statistics
	Bibliography

