7,106 research outputs found

    Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects

    Full text link
    We introduce a method based on the deflectometry principle for the reconstruction of specular objects exhibiting significant size and geometric complexity. A key feature of our approach is the deployment of an Automatic Virtual Environment (CAVE) as pattern generator. To unfold the full power of this extraordinary experimental setup, an optical encoding scheme is developed which accounts for the distinctive topology of the CAVE. Furthermore, we devise an algorithm for detecting the object of interest in raw deflectometric images. The segmented foreground is used for single-view reconstruction, the background for estimation of the camera pose, necessary for calibrating the sensor system. Experiments suggest a significant gain of coverage in single measurements compared to previous methods. To facilitate research on specular surface reconstruction, we will make our data set publicly available

    Towards dynamic camera calibration for constrained flexible mirror imaging

    Get PDF
    Flexible mirror imaging systems consisting of a perspective camera viewing a scene reflected in a flexible mirror can provide direct control over image field-of-view and resolution. However, calibration of such systems is difficult due to the vast range of possible mirror shapes and the flexible nature of the system. This paper proposes the fundamentals of a dynamic calibration approach for flexible mirror imaging systems by examining the constrained case of single dimensional flexing. The calibration process consists of an initial primary calibration stage followed by in-service dynamic calibration. Dynamic calibration uses a linear approximation to initialise a non-linear minimisation step, the result of which is the estimate of the mirror surface shape. The method is easier to implement than existing calibration methods for flexible mirror imagers, requiring only two images of a calibration grid for each dynamic calibration update. Experimental results with both simulated and real data are presented that demonstrate the capabilities of the proposed approach

    Photometric stereo for strong specular highlights

    Full text link
    Photometric stereo (PS) is a fundamental technique in computer vision known to produce 3-D shape with high accuracy. The setting of PS is defined by using several input images of a static scene taken from one and the same camera position but under varying illumination. The vast majority of studies in this 3-D reconstruction method assume orthographic projection for the camera model. In addition, they mainly consider the Lambertian reflectance model as the way that light scatters at surfaces. So, providing reliable PS results from real world objects still remains a challenging task. We address 3-D reconstruction by PS using a more realistic set of assumptions combining for the first time the complete Blinn-Phong reflectance model and perspective projection. To this end, we will compare two different methods of incorporating the perspective projection into our model. Experiments are performed on both synthetic and real world images. Note that our real-world experiments do not benefit from laboratory conditions. The results show the high potential of our method even for complex real world applications such as medical endoscopy images which may include high amounts of specular highlights

    Influence of steps on the tilting and adsorption dynamics of ordered Pn films on vicinal Ag(111) surfaces

    Get PDF
    Here we present a structural study of pentacene (Pn) thin films on vicinal Ag(111) surfaces by He atom diffraction measurements and density functional theory (DFT) calculations supplemented with van der Waals (vdW) interactions. Our He atom diffraction results suggest initial adsorption at the step edges evidenced by initial slow specular reflection intensity decay rate as a function of Pn deposition time. In parallel with the experimental findings, our DFT+vdW calculations predict the step edges as the most stable adsorption site on the surface. An isolated molecule adsorbs as tilted on the step edge with a binding energy of 1.4 eV. In addition, a complete monolayer (ML) with pentacenes flat on the terraces and tilted only at the step edges is found to be more stable than one with all lying flat or tilted molecules, which in turn influences multilayers. Hence our results suggest that step edges can trap Pn molecules and act as nucleation sites for the growth of ordered thin films with a crystal structure similar to that of bulk Pn.Comment: 4 pages, 4 figures, 1 tabl

    Analytical solution of generalized Burton--Cabrera--Frank equations for growth and post--growth equilibration on vicinal surfaces

    Full text link
    We investigate growth on vicinal surfaces by molecular beam epitaxy making use of a generalized Burton--Cabrera--Frank model. Our primary aim is to propose and implement a novel analytical program based on a perturbative solution of the non--linear equations describing the coupled adatom and dimer kinetics. These equations are considered as originating from a fully microscopic description that allows the step boundary conditions to be directly formulated in terms of the sticking coefficients at each step. As an example, we study the importance of diffusion barriers for adatoms hopping down descending steps (Schwoebel effect) during growth and post-growth equilibration of the surface.Comment: 16 pages, REVTeX 3.0, IC-DDV-94-00

    Towards retrieving force feedback in robotic-assisted surgery: a supervised neuro-recurrent-vision approach

    Get PDF
    Robotic-assisted minimally invasive surgeries have gained a lot of popularity over conventional procedures as they offer many benefits to both surgeons and patients. Nonetheless, they still suffer from some limitations that affect their outcome. One of them is the lack of force feedback which restricts the surgeon's sense of touch and might reduce precision during a procedure. To overcome this limitation, we propose a novel force estimation approach that combines a vision based solution with supervised learning to estimate the applied force and provide the surgeon with a suitable representation of it. The proposed solution starts with extracting the geometry of motion of the heart's surface by minimizing an energy functional to recover its 3D deformable structure. A deep network, based on a LSTM-RNN architecture, is then used to learn the relationship between the extracted visual-geometric information and the applied force, and to find accurate mapping between the two. Our proposed force estimation solution avoids the drawbacks usually associated with force sensing devices, such as biocompatibility and integration issues. We evaluate our approach on phantom and realistic tissues in which we report an average root-mean square error of 0.02 N.Peer ReviewedPostprint (author's final draft

    Low-perigee aerodynamic heating during orbital flight of an atmosphere Explorer

    Get PDF
    An extensive, low-perigee orbital aerodynamic heating study was undertaken in support of the Atmosphere Explorer-C Temperature Alarm. State of the art of low-density, high-speed flows, some models of the earth's atmosphere, external flow-field definition, thermodynamic and transport properties of atmospheric gases, the accommodation coefficient orbital thermal environment, and correlation of theory and measurements are discussed. Aerodynamic heating rates are determined for eight selected orbits by means of a reduced, analytical model verified by both ground test and flight data. These heating rates are compared with classical free-molecule and first-order collision regime values

    Specular surface recovery from reflections of a planar pattern undergoing an unknown pure translation

    Get PDF
    LNCS v. 6493 entitled: Computer Vision – ACCV 2010: 10th Asian Conference on Computer Vision, Queenstown, New Zealand, November 8-12, 2010, Revised Selected Papers, Part 2This paper addresses the problem of specular surface recovery, and proposes a novel solution based on observing the reflections of a translating planar pattern. Previous works have demonstrated that a specular surface can be recovered from the reflections of two calibrated planar patterns. In this paper, however, only one reference planar pattern is assumed to have been calibrated against a fixed camera observing the specular surface. Instead of introducing and calibrating a second pattern, the reference pattern is allowed to undergo an unknown pure translation, and a closed form solution is derived for recovering such a motion. Unlike previous methods which estimate the shape by directly triangulating the visual rays and reflection rays, a novel method based on computing the projections of the visual rays on the translating pattern is introduced. This produces a depth range for each pixel which also provides a measure of the accuracy of the estimation. The proposed approach enables a simple auto-calibration of the translating pattern, and data redundancy resulting from the translating pattern can improve both the robustness and accuracy of the shape estimation. Experimental results on both synthetic and real data are presented to demonstrate the effectiveness of the proposed approach. © 2011 Springer-Verlag Berlin Heidelberg.postprintThe 10th Asian Conference on Computer Vision, Queenstown, New Zealand, 8-12 November 2010. In Lecture Notes in Computer Science, 2010, v. 6493, p. 137-14
    corecore