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RE_ free-stream Reynolds number
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T, free-stream atmospheric-gas temperature (K)

T, body-surface temperature (K)
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T, space background temperature =0 K

T,, temperature of the tungsten RWT measured in orbit (K)
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U spacecraft velocity (m/s)
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o solar absorptivity of the tungsten RWT = 0.85

v ratio of specific heats of the atmospheric gas
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LOW-PERIGEE
AERODYNAMIC HEATING DURING ORBITAL FLIGHT
OF AN ATMOSPHERE EXPLORER

Paul S. Caruso, Jr. and Charles R. Naegeli
Goddard Space Flight Center
Greenbelt, Maryland

INTRODUCTION

The primary objective of the Atmosphere Explorer (AE) program is flight measurement of
aeronomic quantities within the Earth’s thermosphere, a region of the upper atmosphere
between 100 and 300 km. With a complement of three spacecraft (AE-C, launched in late
1973; and AE-D and ‘AE-E, launched in late 1975), data are being collected over a wide range
of inclination angles (22 to 98 degrees) and over all latitudes with incumbent seasonal and
diurnal variations. A detailed description of the spacecraft and experiments is contained in

a special issue of Radio Science (Reference 1).

The AE-C spacecraft was launched on December 15, 1973, at 2218 PST. The orbit was
inclined 68 degrees to the Equator with initial perigee of 155 km and apogee of 4297 km.
Because the spacecraft contains a unique orbit-adjust propulsion system, both perigee and
apogee altitudes can be, and have been, incrementally adjusted. The AE-C spacecraft has
been operated at a spin rate ot 4 revolutions per minute (rpm) with perigee heights as low

as 130 km and despun at 1 revolution per orbit (rpo) for perigee heights as low as 135 km.
During the first 6 months of the AE-C mission, two perigee lowerings were executed to bring
the spacecraft down to 130 km in increments of approximately 5 km. It was during these
maneuvers, in both spinning and despun modes for a period of 15 minutes on either side of
perigee, that the Temperature Alarm (TAL-C) gathered the bulk of engineering data presented
in this report. Further TAL-C instrument details are contained in References 2, 3, and 4.

Because the three spacecraft dip into the sensible portion of the Earth’s atmosphere, they
experience aerodynamic heating and pressure effects. The transient aerodynamic heating
component is sizable with respect to direct solar, albedo, and earthshine fluxes and therefore
impacts both the spacecraft and the experiment designs. Experiment geometries give rise to
a two-fold rarefied flow problem: an external flow and an internal flow. Internal flow refers
to particle motion inside the experiments and will not be treated here. External flow is
generated by particle motion around the spacecraft at orbital velocity and sets the boundary
conditions for the internal flow. The external flow field is defined in later sections of this
report.



Because low-altitude satellite interaction studies are a new areu of concern for spacecraft
design evaluation, this document reviews the state of the art of appropriate analytical and
experimental aerodynamic techniques and some models of the Earth’s atmosphere, defines
the external flow ficld, the accommodation coefficient, and the orbital thermal environment,
and presents the governing equations used for analysis. Finally, empirical and theoretical
aerodynamic heating rates of atmospheric constituents on pure tungsten wire are compared,
and the magnitudes of important dimensionless groups such as Knudsen number, speed

ratio, Reynolds number, Nusselt number, Stanton number, and recovery factor are indi

cated for the eight selected orbits.

STATE OF THE ART OF LOW-DENSITY, HIGH-SPEED FLOW

Reentry vehicles encounter a broad range of flow regimes—from the free molecular at near
vacuum conditions to the continuum regime at high density. When the flow is characterized
by single collisions between free-stream gas particles and the vehicle surface, the flow is

called free molecular (Reference 5). By virtue of the well-established laws of molecular
motion (kinetic theory), this regime is readily susceptible to analysis and has been thoroughly
examined with respect to both aerodynamic and thermodynamic phenomena (Reference 6).
Likewise, continuum aerodynamics used at low altitudes is also well-developed and essentially
relies on the Navier-Stokes equations with appropriate boundary and initial conditions. The
large region between these two limiting flow regimes is difficult to treat analytically. Two
rigorous analytical approaches have received attention in past work.

Briefly, the first approach consists of applying correction terms to the Navier-Stokes
continuum equations and boundary conditions, the first approximation resulting in a set of
higher-order equations (e.g., the Burnett equations). The other approach is to attempt to
solve the Boltzmann equation for the molecular velocity distribution, which, in effect,
results in obtaining correction terms to the Maxwell velocity-distribution equations. Both
of these methods are essentially perturbation methods. In the first approach, solutions are
obtained in terms of power series of the Knudsen number, and, in the second method,
solutions are obtained in terms of the reciprocal of the Knudsen number. Both methods will
fail for Knudsen numbers of the order of unity (Reference 0).

Semiempirical equations have also been formulated to predict heat transfer, shear, drag, lift,
and pressure distribution for blunt bodies operating in the transition flow regime. These
equations “‘are derived from models based on simplified kinetic theory; the structure of the
equations is such that they are asymptotically correct at the free-molecule and continuum
extremes, and this tends to place bounds on errors resulting from a simplified analysis”
(Reference 7).

Recently, a numerical method called the Monte Carlo direct-simulation technique has been
developed for the study of rarefied gas flows. It has been shown to be a practical way of’
treating high-speed flows in the entire transition regime (Reference 8). In the total flow field,
a relatively small number of molecules (of the order of several thousand) compared to the



number in an actual gas is set in uniform motion in a field of sufficient size to contain the
disturbance caused by the body. The molecules are distributed uniformly in space, and
their velocity components are assigned by sampling from a distribution which is Maxwellian
about the free-stream velocity. The molecular paths between collisions are computed exactly,
but collisions are treated statistically. The calculation procedure consists of holding all
molecules motionless for a time interval while collisions are computed in the field, and then
allowing the molecules to move with their new velocities for another time interval. After a
sufficient time interval has passed for the mean flow to traverse a distance of a few body
lengths, the flow is considered to be sufficiently close to the steady state. In this manner, a
collection of simulated molecules numbering many orders of magnitude less than those in
the real gas behaves like the collection of real molecules, and, by continuing the calculation
for a sufficiently long time, an accurate description of the flow field and surface properties
can be obtained (Reference 9).

Although many analytical techniques are available for rarefied gasdynamic calculations,
they all have certain inherent limitations. Gasdynamic predictions are dependent on a proper
choice of the following (Reference 5):

®  The chemical and physical structure of the Earth’s atmosphere, including the
relative proportions of monatomic and diatomic gases together with charged and
uncharged particles

®  The thermodynamic, transport, and optical properties of atmospheric constituents
such as density, specific heats, thermal conductivity, viscosity, and most probable
- particle speed

®  The flow field surrounding the vehicle

®  Energy transfer processes which are influenced by ionization, dissociation, specular
versus diffuse particle reflection dynamics, and density buildup

Because of these factors, any gasdynamics analysis performed for a low-perigee spacecraft
encounter with the atmosphere requires a corresponding uncertainty analysis to place some
bandwidth on predicted values.

A great number of gasdynamics test facilities are in operation and cover a spectrum of Mach-
number, Reynolds-number, and temperature simulation. Such facilities include conventional
wind tunnels, arc tunnels, constricted-arc tunnels, rocket sleds, hotshot tunnels, ballistic

and counterflow ranges, shock tubes, and shock tunnels. References 5 and 10 contain detailed
descriptions of these facilities. Gasdynamic tests are usually conducted to obtain data for
establishing or verifying analytical techniques, to determine heat-transfer levels and distri-
butions for complex geometries, and to study gas and flow-field characteristics.

Many different types of test facilities are available, but simultaneous duplication of speed,
enthalpy, density, and gas chemistry in any one of these is most unlikely. In addition, even
in carefully designed tests, measurement errors and/or discrepancies between theory and
experiment can occur.



No aerodynamic test facility now exists that can adequately duplicate the AE spacecraft
velocity, free-stream density, and composition of the Earth’s atmosphere between altitudes
of 120 and 180 km. Moreover, hypersonic wind tunnels that approach the desired flight
parameters are size-limited, and scale modeling would therefore be required. Finally, cost,
schedule, and contamination-control constraints make aerodynamic testing of the spacecraft
and experiments prohibitive.

Because convective heating rates for low-perigee orbital flight can be duplicated, heat-flux
calibration tests in an aerodynamic molecular-beam chamber were performed on two Tempera-
ture Alarm sensor heads under conditions of partial simulation. Calibration test details are
reported in Reference 3. Note that the Temperature Alarm is not an experiment but, rather,
an engineering instrument designed to provide a thermal measurement indicative of the
temperature of low-mass cxperiment components, thus providing information to assist in the
decision process regarding real-time perigee maneuvers.

MODELS OF THE EARTH'S ATMOSPHERE

Variation of pressure, density, and temperature of the Earth’s atmosphere with altitude has
received much consideration over the years. Detailed tabulations of these parameters are
given in the U.S. Standard Atmospheres (References 11, 12, und 13). The 1962 U.S. Standard
Atmosphere presents the year-round mean properties for middle-latitude locations, with
seasonal and global variations given in the 1966 U.S. Standard Atmosphere Supplements.

Because atmospheric conditions change with latitude, longitude, altitude, and solar and
geomagnetic activity, computer models have been developed to predict density, chemical
composition, temperature, and molecular mass for given times. Two well-known models used
for prediction in the 120- to 1000-km range are the Jacchia model and the Harris and Priester
model (CIRA 1965). These models assume constant boundary conditions at 120 km
(Reference 14). However, satellite and rocket data have shown considerable variations at

120 km and ‘‘as a result, these models, while relatively adequate at heights above 250 km,
become progressively unrealistic as we proceed to lower heights” (Reference 15). Therefore,
model usefulness is limited for the Atmosphere Explorer low-perigee environment study
presented herein.

Because reasonable agreement exists between low-altitude density measurements by satellite
(Reference 16) and the 1966 U.S. Standard Atmosphere Supplements (Spring/Fall Model,
1000 K Exospheric Temperature), the latter source of atmospheric density, temperature,
and molecular mass as a function of altitude has been adopted to expedite the computations
presented in this paper. For comparison, aerodynamic heating rates based on density
measurements determined from the AE-C Accelerometer (MESA) experiment have also been
computed for six of the eight orbits selected for analysis (FF. A. Marcos, private communi-
cation, unpublished data from the Atmosphere Explorer-C Mission, June 1975).



A review of preliminary AE-C experiment data at altitudes between 130 and 200 km indicates
that the predominant species (neutral gases) in order of decreasing importance are:

. N,~ 10" m?

o]

O~ 10 m?
0, v 10 m3

Ar~ 10" m?

v B W

He ~ 10" m?3

On the basis of these estimates, it has been assumed that atmospheric constituents in the
altitude range specified above behave as a diatomic gas does. This assumption affects the
values of specific heats used in subsequent calculations.

EXTERNAL FLOW-FIELD DEFINITION

Flow-field characteristics for a body in a high-speed, rarefied gas stream are basically deter-
mined by calculation of the Knudsen number and the speed ratio. The Knudsen number

(Kn) is the ratio of the mean free path of the gas (A\) to a characteristic length. This character-
istic length may be a body dimension or a shock-ayer thickness. The speed ratio (S) arises

in place of the Mach number and is the ratio of the body velocity (U) to the most probable
speed (Cmp) of a molecule in the free stream. The most probable speed is that corresponding
to the radius of the spherical shell in velocity space containing the largest number of repre-
sentative points. In simple terms, more molecules have the speed Cmp than any other speed
(Reference 17).

The AE-C spacecraft (figure 1) is a 16-sided convex body that approximates a short, right-
circular cylinder. In flight, the spacecraft is always aligned with the velocity vector normal
to the cylinder axis. For cylindrical configurations in cross flow, it is generally accepted
that the characteristic dimension is the diameter (D). Thus, in the free stream,

Kn,, =— (1)

where D = 1.36 m for the AE-C configuration. Because the AE-C length to diameter ratio

is small (L/D =~ 0.84),some flow irregularities can be expected at the edges of the spacecraft.
The foregoing Knudsen number definition also applies to the Temperature Alarm because

the instrument sensor head protrudes only about 0.1 ¢cm from the main spacecraft surface;
therefore, the spacecraft itself determines the flow regime for the TAL-C sensors. In addition,
the instrument is located near the center of the spacecraft and is therefore in an ideal location
for keeping edge effects to a minimum.
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Figure 1. Atmosphere Explorer-C (AE-C) spacecraft,

As mentioned previously , the two best-defined flow regimes are the continuum and the free-
molecular flow regimes. For continuum flow, the Knudsen number is much less than unity,
whereas, for free-molecular flow, it is much greater than unity. Between these two limiting
cases lie several intermediate regimes in which viscous effects may or may not be important,
and the flow may or may not rightfully be considered rarefied (Reference 18).

To calculate the free-stream Knudsen numbers (Kn_) for the AE-C spacecraft and TAL-C,
the mean free path as a function of perigee altitude must first be computed. From kinetic
theory (References 12 and 19), the mean free path (A_) is given by the relationship

- M
Ao = 2)
J2rNa? o,

Free-stream Knudsen number versus AE-C low-perigee altitudes is illustrated in figure 2.

The requirement that the free-stream Knudsen number be much greater than 1 is not always
sufficient to ensure free-molecular flow. One rationale is that . if the body is cool, the mean
free path near the body (A ) will be less than A_. Thus, to ensure free-molecular flow in
this case requires that Kn > 1 (Reference 18). Because the AE-C spacecraft and TAL-C



are cool-walled bodies (that is T, <T,,where T is the temperature of the spacecraft exter-
nal solar array, and T_ is the free-stream gas temperature before collision with the spacecraft)
it appears at first glance that use of wall conditions for definition of AE-C spacecraft and
TAL-C flow regimes be considered. However, it has been shown that drag data are not well-
correlated by this approach. Rather, the data correlate with theory when stagnation con-
ditions are used (Reference 20). In high enthalpy flows (high flight velocities), particles are
not well-accommodated to the surface and act as if they have a stagnation temperature, TO.
This does not mean that the body is at the stagnation temperature of the gas but that there

is a microscopic gassurface effect at the spacecraft boundary.

In Reference 20, it has been shown that, to second order, the mean free path based on stag-
nation conditions (A, ) is given by the expression

A 37

(4]

3
Lo O mS, + 1 *-‘2@; (1 +§l) (3)

where A is given by the previous equation, and S, is the speed ratio based on the gas stag-
nation temperature. S0 is calculated from

See
S, = —— (4)
TO/Too
Seo = v (5)
*© C
mp
2RT_,
C = (6)
mp M
T -
and =1 +(7—)Si (7)
" Y

The expression for the ratio A /A, in equation 3 is applicable for blunt bodies with S_>2
and thus can be used for the AE-C spacecraft and TAL-C gasdynamic analyses for all perigee
heights encountered. These quantities have been calculated as a function of altitude for
eight selected low-perigee passes (Appendix).



It now remains to define the flow regimes encountered by the AL-C spacecraft and TAL-C
during typical low-perigee maneuvers. For the eight selected orbits, Kn_ varies from approx-
imately 10 to 79, and Kn, varies from 7 to 54 between altitudes of 135.7 and 180 km,
respectively. Comparison of these calculated Knudsen numbers with flow-field definitions
given by Hayes and Probstein (Reference 18) and Wuest and Koppenwallner (Reference 21)
indicates that the spacecraft and TAL-C are probably in the freec-molecular flow regime at
the upper end of the altitude range stated above and possibly in the first-order collision
regime toward the lower end of the above altitude range. By way of explanation, in free-
molecular flow analyses, all intermolecular collisions are neglected, whereas, in the first-order
collision regime, free-stream molecules may have one collision with reflected or emitted
molecules and all subsequent collisions are neglected.

An alternate representation of flow regimes, developed by Klett (Reference 22), is illustrated
in figure 3. This method of flow-field determination requires the calculation of the free-
stream Reynolds number by

Ub
Re  =— (8)
Voc
with v_=1/3VX, 9

8RT,
and V =\/ (10)
™™

The mean molecular speed (V) is equal to 1.128 times the most probable particle speed defined
earlier. Free-stream Reynolds number versus altitude is illustrated in figure 4 for a typical
low-perigee pass.

Examination of the pictorial flow-tield definition of figure 3 reveals that the AE-C spacecraft
and TAL-C are in the free-molecular flow regime for altitudes above 145 km and in nearly
free-molecular flow (first-order collision regime) from 145 km down to 135.7 km. This deter-
mination of flow regimes corresponds well with that based on Kn_ and Kn, specified previously.

The foregoing conclusions about the external flow field permit the use of equations derived
from kinetic theory for calculation of transport and thermodynamic properties of atmospheric
gases, as well as determination of in-flight orbital aerodynamic heating rates.

THERMODYNAMIC AND TRANSPORT PROPERTIES OF ATMOSPHERIC GASES

Thermodynamic properties such as free-stream density and temperature have been obtained
from the sources previously described. Because preliminary AE-C results indicate that the
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altitude profile for a low-perigee pass. typical AE-C despun low-perigee pass.

neutral gas mixture is predominantly diatomic and that N2 is the single most important
constituent, total specific heat of the gas at constant volume is given by the expression
(Reference 23):

‘ s , 8,/2T, 2 I

CV:R(2 sinh (8, /2T ‘

(11)

where 0, is the characteristic temperature for vibration and is equal to 3390 K for N, . From
the ideal gas law, the specific heat at constant pressure (Cp) is then found from

Co=C, +R (12)

The ratio of specific heats () is defined as

7 =C,/C, (13)
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for a typical low-perigee pass.

Transport properties such as kinematic viscosity and thermal conductivity can be treated
from a molecular point of view. These properties are then explained in terms of the trans-
port across some imagined surface within the gas of momentum and energy by the molecules
crossing the surface. The viscosity of a gas arises not from any frictional forces between its
molecules, but rather from the fact that they carry momentum across a surface as a result

of their random thermal motion. Similarly, the gas thermal conductivity arises from the

fact that molecules also carry an excess of energy across a surface (Reference 17). The
relationship used to determine the kinematic viscosity of a rarctied gas has been presented

in equation 9. The thermal conductivity of free-stream atmospheric gases is approximated
from References 17 and 23.

VooPo G,

k, =——— 14
- v (14)

The thermodynamic and transport properties defined above have also been tabulated in the
Appendix as a function of altitude for the eight selected orbits.
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THE ACCOMMODATION COEFFICIENT

The many and varied missions of near-Earth and planetary-space probes during the past decade
have caused additional emphasis to be placed on the relatively old problem of momentum
and energy exchange between rarefied gas flows and the surfaces on which they impinge.
The distinction between normal and tangential accommodation coefficients is used for calcu-
lating forces and moments in rarefied flow. For energy considerations, an overall accommo-
dation coefficient is usually employed. In order to compute free-and near-free-molecular
convective heat fluxes for the AE-C spacecraft and TAL-C tungsten resistance-wire thermom-
eter, a knowledge of appropriate thermal accommodation coefficients is required because
heat-flux magnitude is directly proportional to this quantity. The thermal accommodation
coefficient o is “‘a measure of the extent to which the mean energy of the molecules that hit
the surface and are reflected or reemitted is accommodated toward an energy corresponding
to the temperature of the wall” (Reference 18). In equation form,

o= (15)

Thus, if the gas molecules are assumed to hit a smooth, hard surface and leave with their
normal velocity component reversed and their tangential velocity component unchanged
(specular reflection process), E = Ei and a = 0. On the other hand, if the molecules issue
with a Maxwellian velocity distribution corresponding to a temperature close to that of the
surface (diffuse reflection process), E =E anda=1.

For engineering surfaces, the diffuse assumption has proven to be more realistic, but specifi-
cation of a is a major difficulty because it is a function of many variables. Among these are:
(1) molecular weight and structure of impinging gas molecules, (2) energy level of the in-
coming molecular stream, (3) surface orientation with respect to the gas stream, (4) physical
structure of the solid surface (lattice structure, roughness), (5) presence of physically adsorbed
or chemisorbed layers, and (6) temperature level of the solid surface (Reference 24).

Theory and limited experimental data suggest that the accommodation coefficient is signif-
icantly less than 1 for light gases, such as hydrogen and helium, that impinge on clean sur-
faces (References 25 and 26).

Both tangential and normal momentum-accommodation coefficients have been measured for
N2’r ions striking aluminum surfaces at speeds ranging from slightly below to about twice
Earthsatellite speed. The coefficients were shown to be strongly dependent on the incident
particle energy with both components decreasing rapidly with energy in the range of interest
for Earth satellites. Moreover, accommodation of the normal component of momentum de-
creased rapidly as the incidence angle approached the grazing angle. In contrast, accommo-
dation of the tangential momentum increased as the incidence angle approached the grazing
angle, but the effect of incidence angle on the tangential component was generally less than
for the normal component (Reference 27). With respect to molecular reemission, distributions

11



of lobal form have been found for many gas and surface combinations and for various beam
energies and surface temperatures, instead of the classical Knudsen cosine distribution. A
systematic approach of the reflected maximum toward the surface has been observed as the
energy of the incident stream is increased, and this event is accompanied by a systematic
narrowing of the reflected lobe. “The position of the reflected maximum changes approx-
imately as does the position of the specular direction for changes in the direction of the
incident stream” (Reference 28).

When the incident energy of the impinging molecules is sufficiently large for the hard-sphere
model to be valid, the mass ratio (mass of incoming molecules divided by the mass of surface
molecules) will depend on the nature of the outermost layer of atoms on the surface, and
not on the actual material used in constructing the surface. Because oxygen is fairly abundant
at ground level and because atomic oxygen is one of the main atmospheric constituents at
the orbital altitudes of near-Earth spacecraft, the surfaces of all metals except gold may be
covered by at least one monolayer of adsorbed oxygen. For nonmetals and painted surfaces,
the outermost layer of atoms is not easily defined (Reference 25). In addition, “‘surfaces
covered by adsorbed gas films exhibit diffuse scattering behavior, yet may exhibit lobal
scattering patterns when the gas film is removed by heating. Lobal patterns may [also] be
observed on dirty surfaces when the energies of the incident particles are sufficiently high”
(Reference 28).

The temperature level of the solid surface also has an effect on the degree of accommodation
that takes place. ‘‘As the stagnation temperature of the incident molecules becomes large in
comparison with the wall temperature (as is the case for the AE-C spacecraft and TAL-C
tungsten resistance wire thermoineters), there is less tendency for the temperature of a [gas]
molecule to be adjusted toward that of the surface and it may be expected that the reflection
then tends to be elastic, although not necessarily specular” (Reference 29). Experiments per-
formed on surfaces at room temperature have shown a diffuse scattering of incident molecules,
whereas, at high temperature, scattering was shown to be remarkably specular. The difference
in these observed distributions between hot and cold surfaces is probably caused by the
presence of adsorbed gaseous contaminants at low temperatures (Reference 30).

This brief review of the literature illustrates the complexity of quantifying the accommodation
coefficient for spacecraft application. Cook (Reference 25) reports that the accommodation
coefficient at the surface of most satellites probably exceeds 0.8 at altitudes up to about

400 km at all times of day and for all levels of solar activity. There are known exceptions to
this general statement by Cook, however. Because the subject matter of this report concen-
trates on aerodynamic heating rates to a TAL-C 99.99-percent pure tungsten resistance-wire
thermometer, some pertinent information is evaluated in the following. Hyson (Reference
31) states that, although « is usually 0.9 for air on metal, it is much lower for tungsten

[ = 0.35 for nitrogen on tungsten (Reference 32) and a = 0.57 for air on tungsten (Reference
33)]. Roberts (References 34 and 35) did extensive tests to measure accommodation coeffi-
cients of monatomic gases such as helium on tungsten wire. His experiments showed that

the accommodation coefficient for a clean wire is considerably smaller than for a wire covered



with films of adsorbed gas. Moreover, the accommodation coefficient of a clean wire (cleaned
by heating to a high temperature) “shows a definite drift with time. presumably owing to the
gradual buildup of adsorbed films from residual impurities in the [test] gas” (Reference 34).
He also showed experimentally, as Knudsen did, that the measured value of the accommo-
dation coefficient increases as surface roughness increases. Some experimental data from
Reference 34 are presented in table 1 for helium on tungsten where the test gas is essentially
free of oxygen and nitrogen.

Table 1
Accommodation Coefficient of Helium on Tungsten

‘« (Clean Surface) ‘o (Dirty Surface)

Roughness 0.07 0.19
Increasing 0.12 0.40

0.18 055

Results are also given for the variation of the accommodation coefficient of helium on tungsten
for temperatures between 295 K and 79 K. At the latter temperature, the very low value of
0.025 was obtained. Results indicate that, if the observed variation continued down to abso-
lute zero, the accommodation coefficient would approach zero because collisions of gas atoms
with a solid surface become more and more nearly perfectly elastic (Reference 35). Although
the Roberts’ experimental data are not for a diatomic gas, they exhibit consistent trends that
should be expected for atmospheric gases impinging on TAL-C tungsten wires at low-perigee
altitudes.

EMPIRICAL ORBITAL AERODYNAMIC HEATING RATES FOR A TUNGSTEN WIRE

This section defines the orbital thermal environment for a tungsten resistance-wire thermometer
(RWT) flying broadside to the free stream at orbital altitudes between 135 and 180 km, and
establishes the techniques employed to determine orbital aerodynamic heating rates from

RWT temperature data telemetered to the ground from the AE-C spacecraft . Eight orbits
(211,895,911, 1352, 1371, 1375, 1558, and 2271) have been selected for analysis because
flight data gathered during two perigee lowerings have shown that the above orbits are repre-
sentative of the low-perigee phase of the mission. Finally,a heat balance for the RWT is
established, and an error and uncertainty analysis is presented.

Orbital Thermal Environment

The TAL-C tungsten RWT receives the usual thermal radiative inputs from direct solar, al-
bedo, and earthshine fluxes. These external radiative fluxes are typical for near-Earth-orbiting
satellites and can be determined with reasonable accuracy from existing computer programs

13



with input based on actual flight attitude parameters. The All Planet Flux Program developed
at NASA/GSFC (Reference 36) was employed for these calculations.

During one phase of the mission, however, the spacecraft dips into sensible regions of the
Earth’s atmosphere (130 to 180 km) and experiences appreciable transient free-molecular
heating. The magnitude of this aerodynamic input is primarily a function of spacecraft
velocity, atmospheric density, and the local accommodation coefficient. The spacecraft
velocity, in turn, varies with the orbital parameters but is well known from tracking-station
data. The atmospheric density varies to some degree with absence or presence of sunlight,
as well as with solar and geomagnetic activity indices, but flight data from the AE-C accel-
erometer for orbits 895,911,1352, 1371, 1558, and 2271 have shown that density values
from the 1966 U.S. Standard Atmosphere Supplements (Spring/Fall Model, 1000 K Exo-
spheric Temperature) are adequate estimates for engineering heat-transfer calculations.
Finally, the effective accommodation coefficient for atmospheric gases on tungsten can be
determined by taking the ratio of the excess absorbed energy (the amount over and above
that attributable to thermal radiation necessary to satisfy the heat balance of the tungsten
wire) to the theoretical classical free-molecular limit.

Heat Balance for the RWT

Much effort has been expended to generate an acceptable thermal mathematical model for
the TAL-C tungsten RWT. Analytical and test work has shown that the heat balance of a
fine tungsten wire wrapped around more massive low-conductivity support pegs is conduction-
dominated. Consequently, the sensitive parameters in the analysis relate to the conductive
heat transfer between the wire grids and the support pegs and to the solar absorptivity of
tungsten wire. The conductive coupling includes a contact resistance between the RWT and
the Vespel support pegs, as well as an axial conduction along the length of the RWT. This
coupling (K*) was chosen so that the temperature response of the RWT predicted by the
analytical model showed reasonable agreement with flight data from orbit 2271 (figure 5),
and this value was used in all subsequent flight-data analysis. Another important parameter,
the solar absorptivity (o) of fine tungsten wire, was determined from ground test data by
comparing the amount of electrical power needed to achieve a certain RWT temperature
with an equivalent amount of incident, simulated solar power at a4 known intensity needed
to induce the same temperature.

Although the thermal capacitance of the support pegs was also determined during ground
solar-simulation testing, there still remained an uncertainty as to the temperature/time response
of the support pegs during orbital heating because the exact flight thermal loading, including
absorbed aerodynamic heating, could not be simulated on the ground. However, because of
the short duration of the orbital aerodynamic heating and because the temperature of the
supports (T*) can be determined at the onset and conclusion of acrodynamic heating, it was
possible to approximate the temperature/time response of the supports as a straight line
connecting these end points.
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Figure 5. Comparison of flight and analytical temperature profiles based on
selected conductive coupling between RWT and support pegs.

Finally, the radiative exchange between the RWT and deep space, as well as between the RWT
and the sensor housing, was dropped from the analytical model because this total radiative
contribution to the heat balance of the RWT was minimal compared to other inputs (less than
10 percent of the total heat balance) and because the flux budgeted for these inputs fell far
short of the error associated with temperature-derived aerodynamic fluxes. A plot of power
versus steady-state temperature for an electrically heated RWT in a vacuum environment
demonstrated a high degree of linearity, which further indicates that the heat balance of the
RWT in its flight configuration is conduction-dominated and that radiative factors are
minimal.

With these findings in mind, the original 22-node analytical model used for determination of
aerodynamic heating rates per unit-projected area (Ap) versus altitude was smlphfled so that
the requxred program inputs could be limited to tables of external radiative fluxes (QSOLAR ,
QALBEDO, QIR) and RWT temperature (T ) versus time or altitude. Thus, the simplified
heat balance used to generate aerodynamlc heating rate (thRO) versus altitude for the eight
selected orbits took the following form:

_ g . . ;
arko ~ A (Ty -T%) - [O‘s (Qgorar ¥ Qurpepo) * EQIR] (16)
p

Although this equation was used to compute a discrete aerodynamic heating rate at each
specified altitude, the final tabulated aerodynamic heating profiles (figures 6 to 13) were
smoothed by application of a least-squares cubic-curve-fit routine to the above collection of
discrete aecrodynamic heating rates for each orbit.
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Estimation of Uncertainties and Errors

The major analytical uncertainty is related to difficulty in specifying the temperature/time
response of the RWT support pegs during orbital radiative and/or convective heating. Even
though, by careful selection of orbital conditions, the support temperature was known at

the onset and conclusion of aerodynamic heating, the precise shape of the temperature/

time curve could not readily be determined and was therefore approximated as a straight

line connecting the end-point temperatures. The uncertainty attributable to the temperature/
time response of the supports is random with the magnitude of uncertainty estimated for

a 1-sigma (@) confidence level from the following equation:

N*
= @) 2 (17)
7= i=1 (Q4gro = YAERO
N* - 1

In addition to the foregoing uncertainty, the largest single error is attributable to omission
of radiative exchange between the RWT and space and between the RWT and sensor housing.
Radiation loss errors (qRAD ) are not random and were conservatively calculated using peak
aerodynamic heating conditions. In equation form,

o
T (T‘&r - T‘ép) (18)

or

B

=— g¥* 2
N o*e (2T

&

4
_TS

) (18a)

: 4
“draAD w
where o* is the Stefan-Boltzmann constant, T, is the temperature of the sensor housing
measured in orbit by a flight thermistor, and T, is the space background temperature of
0 K.

Other uncertainties and errors have been considered negligible with respect to those specified
above. The uncertainties and errors per unit-projected arca for the eight selected orbits are
given in table 2.

THEORETICAL ORBITAL AERODYNAMIC HEATING RATES

The AE-C spacecraft and TAL-C instrument most probably encounter free-molecular flow
conditions in the upper part of the altitude range investigated here (145 to 180 km) with-
nearly free-molecular flow (first-order collision regime) conditions prevailing toward the
lower end of the included altitude range (135.7 to 145 km). Because of the difficulty in
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Table 2
Uncertainty and Error Estimates

Orbit Number o 9rAp MAX.|9AERO MAX. % Max. % Max.
(mW/cm?) (mW/cm?) (mW/cm?) Uncertainty Error

211 14.38 -1.58 19.32 £22.67 -8.18

895 *3.63 -2.46 40.16 + 904 -6.13

911 +1.99 -5.77 59.46 + 3.35 -9.70
1352 £6.15 -5.36 73.70 + 8.34 -7.27
1371 +8.20 -5.80 136.66 * 6.00 -4.24
1375 6,02 -4.92 129.31 t 4.66 -3.80
1558 +8.45 -4.29 100.63 t* 840 -4.26
2271 +5.92 -091 42.72 +13.86 -2.13

precisely defining the transition altitude between these two flow regimes, theoretical
aerodynamic heating rates were calculated under both free-molecular and near-free-
molecular assumptions for the entire altitude range.

Atmospheric density values used in the following mathematical formulas have been deter-
mined from drag measurements derived from an accelerometer (MESA) flown on the AE-C
spacecraft (F. A. Marcos, unpublished data from the Atmosphere Explorer-C Mission, June
1975) when data were available, and from the 1966 U.S. Standard Atmosphere Supplements
(Reference 13).

Finally, the effective accommodation coefficient as a function of altitude was found by
taking the ratio of the empirical aerodynamic heating rate to the theoretical free-molecular
aerodynamic heating rate for each of the two density assumptions.

Free-Molecular Flow Formulation

On the basis of kinetic theory, the free-molecular heat flux to a surface oriented normal to
the free stream is given by

RT 3/2
Qone = _ M/ 2, Y a+n Tw
M S+ -
2 (r-1n 2(v-1) T

(19)

. L2
e (Swsin0)? +\/7rvSw sin 0 [1 +erf (S_ sin 0)] - e (5,sin0)
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where
6 is the angle the free-stream velocity vector makes with the surface
and

erf () is the error function defined as
2 2
erf(x) = —— e dx (20)
Vo

For application to the TAL-C tungsten RWT, empirical heating rates have been calculated
on the basis of the surface projected area; therefore, sin 8 will be set equal to unity in equa-
tion 19. Moreover, because S_ is a large value (actually greater than 10 for each orbit se-
lected), the error function of S_ approaches the limiting value of 1 (Reference 37), and
equation 19 can be simplified to (Reference 38):

3
. _ - RT, & Y (yt+1) T
Uy = G0,/ s |st 4 — 21)

W
M T o(r- 2Ay-D T,

By use of equation 7 and the definition of the free-stream speed ratio (equations 5 and 6),
equation 21 can be reduced further to yield

‘ (y+1) T,
=Y%ap_U3)1- —

|
Y

Because T, /TO ~ 0.01 and (y + 1)/2y ~ 0.87 for the orbits selected, the free-molecular-
heating rate is given within 1 percent of the previous formulation by the approximation

éFM ~ YBap_U3 (23)

Because the accommodation coefficient of atmospheric constituents on tungsten as a function
of orbital altitude is not known a priori, the free-molecular-heating rates presented in figures
6 to 13 for density values based on the 1966 Standard Atmosphere Supplements (qFM 1966 )
and for density values based on drag measurements from AE-C (g M MESA ) assume an « of
unity with the effective accommodation coefficient given by the respective ratios

9 AERO 9 AERO
e an

A M 1966 9Fm MESA
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Near Free-Molecular Flow Formulation

If the Knudsen number is large but not large enough to ensure the full validity of the free-
molecular flow formulation, analysis based upon kinetic theory can still be performed, taking
only first-order collisions into account. As previously defined, a first-order collision is one
between a free-stream molecule and a reflected or emitted molecule where each molecule is
allowed to have one intermolecular collision, but all second or subsequent collisions are
neglected (Reference 18).

The near-free-molecular heat flux (dNFM ) to a surface is given in terms of the free-molecular
heat flux by the following relationship (References 39 and 40).

3 . Ya
Anrm Ty 1 T, 1
=|1+2{—]— -0.14148_[—| — (24)

Qpu T, /S T Kn_

where the quantity in brackets is denoted as ¢ in the Appendix.

Near-free-molecular heating rates (dNFM 19es and c']NFM mesa ) for each selected orbit range
from about 97 percent of the free-molecular value at 180 km to about 75 percent of the free-
molecular value at 135.7 km.

CORRELATION OF THEORY AND MEASUREMENT BY MEANS OF
DIMENSIONLESS GROUPS

Dimensionless groups (Reference 41) provide an invaluable aid in correlation of AE-C flight
data with theory and ground test data reported in the literature on cylinders in rarefied high-
speed flow.

For convective heat transfer in a rarefied atmosphere, dimensionless groups, such as Nusselt
number and Stanton number, are useful for data analysis and correlation. The Nusselt number
provides a convenient way of determining the convective heat-transfer coefficient for a body
exposed to a gas stream. In mathematical terms,

Nu_ = (25)

where h_ is the average convective heat-transfer coefficient based on free-stream conditions,
and the other quantities are as previously defined. For a cylinder in hypersonic flow where
Kn_ >>1and S_ > 4, it has been shown (Reference 42) that the convective heat-transfer
coefficient based on freestream conditions is given by the relation

a(y+1)p, C,U

} = J
e 2n M (26)
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This equation can be applied equally well to either the AE-C spacecraft or the TAL-C tungsten
resistance-wire thermometer if the appropriate « is used. Likewise, to calculate Nu_, the
appropriate characteristic dimension must be selected. Nusselt numbers based on flight data
correlate reasonably well with the literature when the effective diameter of the spacecraft

is selected as the characteristic dimension.

To compute values of average heat-transfer coefficient (h*) and Nusselt number (Nu*) on
the basis of flight results for comparison with theoretical values given by equations 25 and
26, the following relationship was employed

daER0 A, = h*A (T, - Ty) (27)
Thus,
daERO
hE = —— (28)
m(Tg -Ty)

where T, is the recovery temperature of the body discussed later in this section. Table 3
lists theoretical and flight Nusselt numbers versus altitude for a typical low-perigee orbit
(orbit 1371).
Table 3
Theoretical and Empirical Nusselt
Number Versus Altitude

Altitude Nu_ (a=1) Nu*
(km)

180.0 0.140 0
175.1 0.164 0.048
170.0 0.205 0.088
165.0 0.254 0.135
160.0 0.317 0.201
155.0 0.408 0.280
150.0 0.539 0.398
145.0 0.723 0.584
140.0 1.011 0.818
135.7 1.419 1.125

Average convective heat-transfer coefficient and Nusselt number are plotted as a function of
altitude in figures 14 and 15. In addition, Nusselt number is plotted as a function of Rey-
nolds number in figure 16.
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Figure 16. Nusselt number versus Reynolds number
for a typical low-perigee pass.

Figures 14 and 15 show that flight values for the heat-transter coefficient and Nusselt number
are lower than the theoretical values based on an accommodation coefficient of unity. This
fact implies that the actual accommodation coefficient for atmospheric gases on tungsten
wire is considerably less than 1. The graphs also show that the accommodation coefficient
decreases as altitude increases and approaches zero at about 180 km.

When Nusselt number is plotted versus Reynolds number (figure 10), values based on flight
data are also lower than those based on free-molecular flow theory. Although absolute mag-
nitudes differ, flight data follow the trends exhibited in the wind-tunnel test data correlation
of Reference 43 where supersonic heat transfer from transverse cylinders in rarefied air flow
is presented as a function of Reynolds number. The slight kink in the flight Nusselt number
versus Reynolds-number curve at Nu = 0.664 and Re_ = 2.16 (figure 16) suggests the possi-
bility that this deviation from a straight-line profile represents a slight change in the character
of the flow at an altitude between 140 and 145 km. Such a change in flow regime from free
molecular to near-free molecular in the foregoing altitude range is consistent with the con-
clusions presented earlier.

Another dimensionless group that is useful in forced—<onvection heat-transfer correlations
is the Stanton number. This quantity is equal to the heat transferred to the fluid divided by
the heat transported by the fluid (Reference 41). In equation form,
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h_M
St = (29)
mepU

Table 4 lists theoretical and flight Stanton numbers versus altitude for a typical low-perigee
orbit (orbit 1371).
Table 4
Theoretical and Empirical Stanton Number
Versus Altitude

Altitude St (@=1) St*
(km)

180.0 0.280 0
175.1 0.272 0.079
170.0 0.276 0.118
165.0 0.278 0.147
160.0 0.274 0.174
155.0 0.275 0.189
150.0 0.277 0.205
145.0 0.275 0.222
140.0 0.274 0.221
i35.7 0.274 0.218

The theoretical free-stream Stanton numbers calculated from equation 29 agree favorably
with Oppenheim’s formulation for convective heat transfer in free-molecular flow past a
transverse cylinder (Reference 37). From Oppenheim,

St_ =0.159
Tyt (30)

forS_ >5. Ifa=1andy=14,then St_ =0.273, and this value compares closely with
the theoretical values given in table 4.

Figures 17 and 18 illustrate theoretical and flight Stanton numbers versus altitude and Rey-
nolds number, respectively. Figure 17 illustrates that flight Stanton numbers also imply
that the accommodation coefficient for atmospheric gases on tungsten wire is considerably
less than 1. Moreover, Stanton number decreases abruptly with increasing altitude because
the accommodation coefficient is not constant, but also decreases with altitude. Figure 18
shows that, as Reynolds number increases, flight Stanton number increases until a plateau
of about 0.22 is reached for Reynolds numbers greater than about 1.92.

It is advantageous for calculation of heat-transfer rates in rarefied flow to introduce the
concepts of recovery temperature and recovery factor. In the absence of heat transfer from
a body (adiabatic assumption), the temperature that the body attains is called the recovery
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temperature. A mathematical expression for the recovery temperature (T) can be found
by setting q = 0 in equation 21 with T,, = T, . Therefore,

T 2(v-1) Y
— = |S$2 + —— (31)
T, (r+1) (y-1)
The recovery temperature is therefore different from the stagnation temperature (To) given
similarly by equation 7:
To -1
= =+ 2 (7)
T, v

Computations presented in the Appendix have shown that TR> To for the eight selected
AE-C low-perigee orbits analyzed here. This surprising fact is explained in the literature and
has been confirmed by ground tests on insulated cylinders in rarefied flow. Stalder, et al.
(Reference 44) point out that, because of the net energy deficiency of the reemitted effusive
stream for a given wall temperature, a body in free-molecular flow will attain a temperature
higher than that attained in a continuum flow. This phenomenon is in direct contrast

to the corresponding phenomenon which occurs under continuum-flow conditions in which
an insulated body can have, at most, a temperature equal to the stream total temperature

and normally does not even attain this temperature because of the outward flow of heat in the
boundary layer.

The recovery temperature and stagnation temperature have been incorporated into a dimen-
sionless group called the recovery factor. The recovery factor (r) is expressed mathematically
as

T, -T_

__R = (32)
R

so’thatr<1ifTR <To,r=lifTR =T0,andr>1ifTR>T0.

The recovery factor for the AE-C spacecraft and TAL-C tungsten wires computed from
equations 7, 31, and 32 is approximately 1.16. This value compares favorably with the re-
covery factor for free-molecular flow past a transverse circular cylinder given by Oppenheim

(Reference 37) as
+ 1
é—) r=2.00 (33)
Y



for S_ > 5. Thus, if ¥ = 1.4 in the above equation, thenr=1.167.

Note that all static and dynamic flight parameters introduced in this document have been
tabulated as a function of altitude for the eight selected AE-C orbits. These tables are con-
tained in the Appendix.

SUMMARY AND CONCLUSIONS

The Atmosphere Explorer (AE) spacecraft are unique because. by means of an on-board
orbit-adjust propulsion system, they are capable of dipping into the sensible portion of the
Earth’s atmosphere. During such perigee maneuvers, the spacecraft and scientific instruments
experience transient aerodynamic heating that is sizable with respect to direct solar, albedo,
and earthshine fluxes. Concerns about survival of experiment low-mass tungsten grid wires
during these maneuvers and difficulties in analytically modeling such components led to the
inclusion of an engineering measurement unit called the Temperature Alarm (TAL). The
Temperature Alarm subsystem has been described in detail in previous papers (References
2,3, and 4).

The AE-C spacecraft on which this document is based has been operated at a spin rate of

4 rpm with perigee heights as low as 130 km and has been despun at 1 rpo for perigee heights
as low as 135 km. During the first 6 months of the mission, two perigee lowerings were
executed to bring the spacecraft down to 130 km in increments of 5 km. [t was during these
maneuvers, in both spinning and despun modes for a period of 15 minutes on either side of
perigee, that the TAL-C gathered the bulk of engineering data used for aerodynamic heating
determination as a function of perigee altitude.

For perigee heights between 155 km and 130 Km, flight-temperature measurements (Refer-
ence 4) indicate that orbital aerodynamic heating of low thermal mass elements results in
temperature extremes substantially lower than those predicted. For example, at an altitude
of 130 km, a conservative preflight prediction for the peak temperature of a tungsten
resistance-wire thermometer exposed to aerodynamic heating only was about 573 K. Actual
in-flight measurements were of the order of 373 K. The maximum temperature experienced
to date on a tungsten resistance-wire thermometer has been approximately 423 K, and this
case included aerodynamic heating at 135 km in the despun mode, as well as a sizable energy
contribution from direct solar at perigee. Temperature predictions have been judged to be
ultraconservative because analytical treatment of conductive coupling and contact resistance
is intractable for fine-wire elements wrapped around more massive supports; therefore,
conservative assumptions were made in the analyses. Moreover, conservative classical free-
molecular heating rates, in which the accommodation coefficient of atmospheric constituents
on tungsten is assumed to be unity, were employed in thermal analyses because flight data in
this regime are not available.

Much effort has been expended to generate an acceptable thermal mathematical model for
the TAL-C tungsten resistance-wire thermometer. Analytical work has shown that the heat
balance of a fine tungsten wire wrapped around more massive, low conductivity support pegs



is conduction-dominated. Consequently, the sensitive parameters in the analysis relate to

the conductive heat transfer between the wire grids and the support pegs, as well as to the
solar absorptivity of tungsten wire. The conductive coupling was estimated from analysis

of selected orbital data, and the solar absorptivity of fine tungsten wire and the thermal
capacitance of a support peg were determined by ground testing. With this information in
hand, the analytical model used for determination of aerodynamic heating rates versus
altitude was simplified so that required program inputs could be limited to tables of external
radiative fluxes and resistance-wire thermometer temperatures versus time or altitude. There-
fore, based on in-flight orbital temperature data from the TAL-C, aecrodynamic heating rates
(figures 6 to 13) have been determined for eight selected orbits by means of a reduced thermal
analytical model verified by both ground test and flight data. These heating rates are com-
pared with the classical free-molecular values.

It has been concluded that, for engineering purposes, the aerodynamic heating rate of atmo-
spheric gases at perigee altitudes between 170 and 135 km on pure tungsten wire is 25 to 60
percent of the value set by the classical free-molecular limit where MESA flight densities were
used in the computations. Such low values for the accommodation coefficient of tungsten
during orbital flight give credence to the trends that are reported in Reference 32 through

35 and discussed in this document.

At higher altitudes, the aerodynamic heating rate decreases further and becomes negligible
at altitudes above 182 km. Relative to the more usual orbital thermal input attributable to
direct solar radiation, the aerodynamic heating rate at the lowest altitude attempted with
the spacecraft despun (135 km) is the equivalent of about 1.2 solar constants incident on a
tungsten wire with a solar absorptivity of 0.85.

Correlation of Nusselt and Stanton numbers based on flight data with those from free-
molecular flow theory indicates that flight values are considerably lower than the theoretical
limiting values based on perfect accommodation (&= 1). Even though absolute magnitudes
may differ, flight data follow the trends expected when Nusselt and Stanton numbers are
presented as a function of altitude or Reynolds number.
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