9,674 research outputs found

    Collaborative spectrum sensing optimisation algorithms for cognitive radio networks

    Get PDF
    The main challenge for a cognitive radio is to detect the existence of primary users reliably in order to minimise the interference to licensed communications. Hence, spectrum sensing is a most important requirement of a cognitive radio. However, due to the channel uncertainties, local observations are not reliable and collaboration among users is required. Selection of fusion rule at a common receiver has a direct impact on the overall spectrum sensing performance. In this paper, optimisation of collaborative spectrum sensing in terms of optimum decision fusion is studied for hard and soft decision combining. It is concluded that for optimum fusion, the fusion centre must incorporate signal-to-noise ratio values of cognitive users and the channel conditions. A genetic algorithm-based weighted optimisation strategy is presented for the case of soft decision combining. Numerical results show that the proposed optimised collaborative spectrum sensing schemes give better spectrum sensing performance

    Spatiotemporal Sparse Bayesian Learning with Applications to Compressed Sensing of Multichannel Physiological Signals

    Full text link
    Energy consumption is an important issue in continuous wireless telemonitoring of physiological signals. Compressed sensing (CS) is a promising framework to address it, due to its energy-efficient data compression procedure. However, most CS algorithms have difficulty in data recovery due to non-sparsity characteristic of many physiological signals. Block sparse Bayesian learning (BSBL) is an effective approach to recover such signals with satisfactory recovery quality. However, it is time-consuming in recovering multichannel signals, since its computational load almost linearly increases with the number of channels. This work proposes a spatiotemporal sparse Bayesian learning algorithm to recover multichannel signals simultaneously. It not only exploits temporal correlation within each channel signal, but also exploits inter-channel correlation among different channel signals. Furthermore, its computational load is not significantly affected by the number of channels. The proposed algorithm was applied to brain computer interface (BCI) and EEG-based driver's drowsiness estimation. Results showed that the algorithm had both better recovery performance and much higher speed than BSBL. Particularly, the proposed algorithm ensured that the BCI classification and the drowsiness estimation had little degradation even when data were compressed by 80%, making it very suitable for continuous wireless telemonitoring of multichannel signals.Comment: Codes are available at: https://sites.google.com/site/researchbyzhang/stsb

    LMPIT-inspired Tests for Detecting a Cyclostationary Signal in Noise with Spatio-Temporal Structure

    Get PDF
    In spectrum sensing for cognitive radio, the presence of a primary user can be detected by making use of the cyclostationarity property of digital communication signals. For the general scenario of a cyclostationary signal in temporally colored and spatially correlated noise, it has previously been shown that an asymptotic generalized likelihood ratio test (GLRT) and locally most powerful invariant test (LMPIT) exist. In this paper, we derive detectors for the presence of a cyclostationary signal in various scenarios with structured noise. In particular, we consider noise that is temporally white and/or spatially uncorrelated. Detectors that make use of this additional information about the noise process have enhanced performance. We have previously derived GLRTs for these specific scenarios; here, we examine the existence of LMPITs. We show that these exist only for detecting the presence of a cyclostationary signal in spatially uncorrelated noise. For white noise, an LMPIT does not exist. Instead, we propose tests that approximate the LMPIT, and they are shown to perform well in simulations. Finally, if the noise structure is not known in advance, we also present hypothesis tests using our framework

    SVM-Based Channel Estimation and Data Detection for One-Bit Massive MIMO systems

    Get PDF
    The use of low-resolution Analog-to-Digital Converters (ADCs) is a practical solution for reducing cost and power consumption for massive Multiple-Input-Multiple-Output (MIMO) systems. However, the severe nonlinearity of low-resolution ADCs causes significant distortions in the received signals and makes the channel estimation and data detection tasks much more challenging. In this paper, we show how Support Vector Machine (SVM), a well-known supervised-learning technique in machine learning, can be exploited to provide efficient and robust channel estimation and data detection in massive MIMO systems with one-bit ADCs. First, the problem of channel estimation for uncorrelated channels is formulated as a conventional SVM problem. The objective function of this SVM problem is then modified for estimating spatially correlated channels. Next, a two-stage detection algorithm is proposed where SVM is further exploited in the first stage. The performance of the proposed data detection method is very close to that of Maximum-Likelihood (ML) data detection when the channel is perfectly known. We also propose an SVM-based joint Channel Estimation and Data Detection (CE-DD) method, which makes use of both the to-be-decoded data vectors and the pilot data vectors to improve the estimation and detection performance. Finally, an extension of the proposed methods to OFDM systems with frequency-selective fading channels is presented. Simulation results show that the proposed methods are efficient and robust, and also outperform existing ones

    Energy-aware Sparse Sensing of Spatial-temporally Correlated Random Fields

    Get PDF
    This dissertation focuses on the development of theories and practices of energy aware sparse sensing schemes of random fields that are correlated in the space and/or time domains. The objective of sparse sensing is to reduce the number of sensing samples in the space and/or time domains, thus reduce the energy consumption and complexity of the sensing system. Both centralized and decentralized sensing schemes are considered in this dissertation. Firstly we study the problem of energy efficient Level set estimation (LSE) of random fields correlated in time and/or space under a total power constraint. We consider uniform sampling schemes of a sensing system with a single sensor and a linear sensor network with sensors distributed uniformly on a line where sensors employ a fixed sampling rate to minimize the LSE error probability in the long term. The exact analytical cost functions and their respective upper bounds of these sampling schemes are developed by using an optimum thresholding-based LSE algorithm. The design parameters of these sampling schemes are optimized by minimizing their respective cost functions. With the analytical results, we can identify the optimum sampling period and/or node distance that can minimize the LSE error probability. Secondly we propose active sparse sensing schemes with LSE of a spatial-temporally correlated random field by using a limited number of spatially distributed sensors. In these schemes a central controller is designed to dynamically select a limited number of sensing locations according to the information revealed from past measurements,and the objective is to minimize the expected level set estimation error.The expected estimation error probability is explicitly expressed as a function of the selected sensing locations, and the results are used to formulate the optimal sensing location selection problem as a combinatorial problem. Two low complexity greedy algorithms are developed by using analytical upper bounds of the expected estimation error probability. Lastly we study the distributed estimations of a spatially correlated random field with decentralized wireless sensor networks (WSNs). We propose a distributed iterative estimation algorithm that defines the procedures for both information propagation and local estimation in each iteration. The key parameters of the algorithm, including an edge weight matrix and a sample weight matrix, are designed by following the asymptotically optimum criteria. It is shown that the asymptotically optimum performance can be achieved by distributively projecting the measurement samples into a subspace related to the covariance matrices of data and noise samples

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Massive MIMO for Internet of Things (IoT) Connectivity

    Full text link
    Massive MIMO is considered to be one of the key technologies in the emerging 5G systems, but also a concept applicable to other wireless systems. Exploiting the large number of degrees of freedom (DoFs) of massive MIMO essential for achieving high spectral efficiency, high data rates and extreme spatial multiplexing of densely distributed users. On the one hand, the benefits of applying massive MIMO for broadband communication are well known and there has been a large body of research on designing communication schemes to support high rates. On the other hand, using massive MIMO for Internet-of-Things (IoT) is still a developing topic, as IoT connectivity has requirements and constraints that are significantly different from the broadband connections. In this paper we investigate the applicability of massive MIMO to IoT connectivity. Specifically, we treat the two generic types of IoT connections envisioned in 5G: massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC). This paper fills this important gap by identifying the opportunities and challenges in exploiting massive MIMO for IoT connectivity. We provide insights into the trade-offs that emerge when massive MIMO is applied to mMTC or URLLC and present a number of suitable communication schemes. The discussion continues to the questions of network slicing of the wireless resources and the use of massive MIMO to simultaneously support IoT connections with very heterogeneous requirements. The main conclusion is that massive MIMO can bring benefits to the scenarios with IoT connectivity, but it requires tight integration of the physical-layer techniques with the protocol design.Comment: Submitted for publicatio
    corecore