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The main challenge for a cognitive radio is to detect the existence of primary users reliably in order to minimise the interference
to licensed communications. Hence, spectrum sensing is a most important requirement of a cognitive radio. However, due to the
channel uncertainties, local observations are not reliable and collaboration among users is required. Selection of fusion rule at a
common receiver has a direct impact on the overall spectrum sensing performance. In this paper, optimisation of collaborative
spectrum sensing in terms of optimum decision fusion is studied for hard and soft decision combining. It is concluded that for
optimum fusion, the fusion centre must incorporate signal-to-noise ratio values of cognitive users and the channel conditions.
A genetic algorithm-based weighted optimisation strategy is presented for the case of soft decision combining. Numerical results
show that the proposed optimised collaborative spectrum sensing schemes give better spectrum sensing performance.

1. Introduction

As numbers of wireless devices, innovative services, and
number of mobile users continue to grow, more and more
spectrum resources will be needed to guarantee desired
Quality of Service. Mobile users want high-quality calls,
streaming videos, and high-speed downloads, placing more
and more stress on the limited radio spectrum available to
the network operators. The radio spectrum spans around
300 billion frequencies; however, only a tiny fraction of
frequencies can be used for commercial or personal radio
communications; fundamental physical limits apply [1].
In the current spectrum regulatory framework, most fre-
quency bands are exclusively allocated to the privileged
users, often called Primary User (PU), which have all
the rights to use the allocated bands. This approach
protects PU’s from any intersystem interference, but on
the other hand, it yields highly inefficient use of the
spectrum.

Measurements conducted by the Office of Communica-
tions (Ofcom) in UK and the Spectrum Policy Task Force
(SPTF) in USA indicate that many chunks of the licensed
spectrum are not used or only partially used, for significant

periods of time [2, 3]. Spectrum occupancy measurements
undertaken by Ofcom in Central London, at Heathrow
airport and in some rural areas of the country, clearly show
that there are significant portions of the radio spectrum
which are not fully utilised in various geographical areas
of the United Kingdom [4]. Similarly, in New York city
maximum spectrum occupancy is reported as only 13.1%
and downtown of Washington D.C. indicated spectrum
occupancy of less than 35% of the radio spectrum below
3 GHz [5]. These studies clearly suggest that currently
spectrum scarcity is mainly due to the inefficient use of
spectrum rather than the physical shortage of spectrum.
Particularly in UK, Olympic Games 2012 put extra pressure
on Ofcom to plan the efficient use of radio spectrum to
satisfy over 10 million spectators, around 15,000 participants
and about 20, 000 media personnel in the UK who will
beam live pictures and commentary all around the world.
Moreover, emerging as well as some existing operators are
faced with the difficult task to gain access to the radio
spectrum to operate their services [6]. In addition, access
to a block of spectrum is very expensive as seen when the
five operators were licensed for the 3rd generation mobile
systems in the UK at a cost of around £22.5 billion [7]. More
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recently (early 2009), the FCC spectrum auction in USA
raised a record $19.9 billion dollars [8].

Cognitive Radio (CR) is widely regarded as the tech-
nology which will increase spectrum utilisation significantly
in the next generation wireless communication systems by
implementing opportunistic spectrum sharing. Spectrum
sensing is one of the most critical functionalities in a
cognitive radio network; it allows the unauthorised users,
called Secondary Users (SUs), to detect unused portions of
the spectrum called “spectrum holes” and opportunistically
utilise these spectrum holes without causing harmful inter-
ference to the PU. The main goal of spectrum sensing is to
obtain awareness about the spectrum usage and the existence
of the PU in a certain geographical area at a particular period
of time. In order to evaluate the performance of spectrum
sensing, two metrics are of great interest: probability of
detection and the probability of false alarm. Probability of
detection, Pd, determines the level of interference-protection
provided to the PU while probability of false alarm, P f ,
indicates percentage of spectrum holes falsely declared as
occupied [9]. In the context of opportunistic spectrum
access, Pd must be higher than some predefined threshold
while P f should be lower than some desired criteria or as
minimum as possible.

To enhance the performance of spectrum sensing, many
techniques are available in the literature, and a brief survey
has been recently published in [10]. In practice, CRs usually
have no or limited knowledge about the primary signals;
hence the optimal spectrum sensing technique is energy
detection [11]. An energy detection approach for spectrum
sensing at an individual CR has been assumed in this
paper because of its simplicity, ease of implementation, and
low computational complexity [9]. Moreover, the aim of
this paper is to characterise gains achieved by collabora-
tion of users without going into the details of complex
local spectrum sensing schemes. The more sophisticated
techniques like match filter detection or cyclostationary
feature detection can be used for signal classification if
more a priori knowledge about the structure of the primary
signal is available [10]. However, performance of the energy
detector is susceptible to noise power uncertainty [12].
Nevertheless, it has been shown that Collaborative Spectrum
Sensing (CSS) is capable of delivering the desired detection
performance under noise uncertainty for a large number of
users [9]. However, energy detectors do not work efficiently
for detecting spread spectrum signals [10]; spread spectrum
signals are out of the scope of this paper.

1.1. Prior Work. The spectrum scarcity and spectrum under-
utilisation problem has stimulated a number of exciting
activities in the technical, economic, and regulatory domains
in searching for better spectrum management policies and
techniques, for example, FCC opened up some analogue TV
bands for unlicensed access [13]. However, spectrum sharing
with PU must be done in a controlled way so that the PU
operation in the particular frequency band is not disturbed.
Furthermore, the IEEE standard 802.22 for unlicensed access
to the TV bands is in its final stages of development

[14]. Recently, Ofcom released Digital Dividend Review
Statement (DDRS) which shows a radical shift in spectrum
sharing policy in the UK and Ofcom is proposing to “allow
license exempt use of interleaved spectrum for cognitive
devices” [15]. Also, the European Commission (EU) paid
much attention on dynamic spectrum management and
the CR theme, and sponsored many FP5, FP6, and FP7
projects such as DRIVE [16], OverDRIVE [17], WINNER
[18], E2R I/II [19], ORACLE [20], E3 [21], and “Radio
Access and Spectrum” (RAS) cluster [22] tackling this issue.
Similarly, several other projects outside Europe including the
Defense Advanced Research Project Agency (DARPA)’s Next
Generation program [23] and National Science Foundation
program “NeTS-ProWiN” [24] show a significant momen-
tum to shift spectrum access policy.

The cognition capability of a CR can make opportunistic
spectrum access possible which can be implemented either
by knowledge management mechanisms or by spectrum
sensing functionality. A mobile network operator, for exam-
ple, can equip the terminals with management mechanisms
to select the most appropriate radio access technology of
its heterogenous infrastructure [25, 26]. Concentrating on
spectrum sensing, observations of a single CR are not
always trustworthy because a CR may have good line of
sight with the primary receiver but may not be able to
see the primary transmitter due to shadowing or fading,
known as “hidden node” problem. Collaboration has been
proposed as a solution to the problems that arise due to
such uncertainties in the channel. It has been shown many
times in the literature that spectrum sensing performance
can be greatly improved by CSS when a number of SUs share
their sensing information; fusion of this information leads
to a final decision about the existence of the PU. For an
overview of recent advances in CSS, the reader can refer to
[9, 27–32]. Existence of a large number of cognitive users
creating multiple CRN’s is highly probable in the future
communication systems. However, the CSS mechanisms
generate a large amount of traffic overhead since each SU
needs to transmit its own decision; therefore collaboration
of users needs to be refined and optimised [9].

Various techniques for the optimisation of CSS in terms
of fusion rule [29], number of users [33], and thresholds
[34] have been proposed. It has been argued in the literature
that fusion schemes strongly impact on the spectrum sensing
performance including probabilities of detection and false
alarm [29]. In CSS, a CR can transmit either its local obser-
vations (soft decision) or a 1-bit decision (hard decision) to
a common receiver, often called fusion centre. When hard
decisions are combined at the fusion centre, the K-out-
of-N fusion rule is normally used [33]. In the literature,
there are some studies on the optimisation of the K-out-
of-N rule to minimise total decision error probability [29]
and to maximise the SUs throughput [35]; however, those
algorithms were designed for a specific scenario of TV bands
sharing in an AWGN channel. A fusion rule based on selected
information for spectrum sensing is considered in [36], in
which only users that have sufficient information send their
1-bit decision to the fusion centre and the fusion centre
employs best fusion rule based on the received information.
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A new fusion rule including “No decision” information from
the cooperative nodes was proposed in [28].

The optimum fusion rule for combining soft decisions
is Chair-Varshney rule which is based on log-likelihood
ratio test [37]. Various other techniques for combining soft
decisions are presented in [38]. However, most of the prior
research work focuses on the case when SUs are far away
from the primary transmitter and hence the same path
loss or Signal-to-Noise Ratio (SNR) was assumed for all
collaborating SUs [9, 29, 33]. The effects of different SNRs
on detection performance are studied under AWGN channel
conditions in [39]. Moreover, previous research highlighted
CSS techniques which combine data from the CR nodes with
equal weights and with perfect reporting channels [9, 40, 41],
which is clearly not the case in realistic scenarios and might
lead to misleading interpretation of results. The reporting
channel for an ith user is defined as the channel between
ith user and the fusion centre. Performance of CSS with
noisy reporting channels was considered for the case of hard
decision fusion in [31].

Collaborative spectrum sensing schemes with weighted
user contributions have been recently proposed in [42, 43].
In [42] average signal power at an SU was exploited to assign
weights to different collaborating cognitive nodes. In [43] a
linear optimal strategy for CSS was presented and optimal
weights for each SU in an AWGN channel were derived
analytically. However, the shortcomings of existing literature
in weighted CSS are in the fact that perfect reporting
channels have been assumed instead of more realistic fading
channels.

1.2. Major Contributions. In this paper, the optimisation
of CSS is documented and optimum decision fusion is
evaluated for hard and soft decision fusion at the fusion
centre. Main contributions of this paper are summarised as
follows.

(i) Hard decision fusion is attractive because of lower
communication overhead over the reporting chan-
nels. In this paper, the problem of hard deci-
sion fusion at the fusion centre is addressed and
answers this simple question: for optimal fusion
does the fusion centre only need 1-bit decision?
Different scenarios are considered with users close
to the primary transmitter have the different SNR
values. It is concluded that in order to achieve
optimum spectrum sensing performance, the fusion
centre must have SNR information for each CR
and channel conditions along with their 1-bit
decisions.

(ii) Maximum diversity in CSS is achieved when all
collaborating users experience identical and inde-
pendent fading or shadowing effects, which is not
possible in reality if users are too close to each other.
Multipath fading can be assumed to be independent
from one user to another but shadowing is normally
correlated over large distances. Thus, secondary
users in close vicinity of each other make similar
measurements and this limits the collaboration gains.

In this paper, correlated log-normal shadowing is
considered among collaborative users and it is shown
that correlated shadowing has direct impact on the
optimal fusion rule at the fusion centre.

(iii) Genetic Algorithm- (GA-) based weighted collabo-
rative spectrum sensing strategy is proposed in this
paper to combat the effects of channel and enhance
spectrum sensing performance. The proposed opti-
mum spectrum sensing framework is based on a
model that is realistic and also takes into account
both channels, that is, channel between PU and
SUs as well as the reporting channels. It is shown
in this paper that imperfect reporting channel and
different SU SNR values have direct impact on the
performance of CSS. Secondary users transmit their
soft decisions to the fusion centre and a global
decision is made at the fusion centre which is based
on a weighted combination of the local test statistics
from individual SUs. The weight of each SU is
indicative of its contribution to the final decision
making. For example, if an SU has a high SNR
signal and also has a good reporting channel (higher
reporting channel gain), then it is assigned a larger
contributing weight. The optimum CSS problem is
formulated as a nonlinear optimisation problem in
this paper. For a given probability of false alarm and
channel conditions, optimal weights are chosen in
such a way that it maximises global probability of
detection at the fusion centre. With a realistic fading
channel it is hard to derive an analytical expression
for the optimum weights and hence a GA-based
solution is proposed.

1.3. Organisation of the Paper. The remainder of this paper is
organised as follows. In Section 2 the system model is briefly
introduced and the use cases are defined. Section 3 discusses
local spectrum sensing under channel fading conditions and
its limitations. Section 4 briefly explains CSS and decision
fusion techniques for both HDC and SDC, considered in this
paper. Section 5 proposes a framework for optimisation of
fusion rules for HDC. In order to achieve optimum spectrum
sensing performance, GA is used to calculate the weights
for each collaborative user in Section 6. Finally Section 7
concludes the paper.

2. System Model for Cognitive Radio Network

Consider a cognitive radio network, with M cognitive users
(indexed by i ∈ {1, 2, . . . ,M}), and a fusion centre to sense
a portion of the spectrum of bandwidth “W” in order to
detect the existence of the PU, as shown in Figure 1. Assume
that each CR is equipped with an energy detector and is
able to perform local spectrum sensing independently. Each
CR makes its own observation based on the received signal,
that is, noise only or signal plus noise. Hence, the spectrum
sensing problem can be considered as a binary hypothesis
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testing problem with two possible hypothesis H0 and H1

defined as [38]

xi(t) =

⎧⎨
⎩
ni(t), H0,

his(t) + ni(t), H1,
(1)

where s(t) is the PU signal and is assumed to be an identical
and independent random process (i.i.d.) with zero mean and
variance σ2

s . For the ith SU, the receiver noise is modelled as
ni(t) which is also assumed to be an i.i.d. random process
with zero mean and variance σ2

n and hi is the complex gain
of the channel between the PU and the ith SU. Further, it is
assumed that s(t) and ni(t) are independent of each other.
The power transmitted by the PU is received at the SU and
the ratio of received power to the power of noise at the SU is
defined as the SNR at the SU energy detector. The received
SNR at the ith SU can be more precisely defined as

γi �
E
[
|hi|2

]
σ2
s

σ2
n

. (2)

System model and use cases for considered scenarios are
shown in Figure 1. Two use cases are assumed in this paper.
Use Case 1 refers to the case when PU transmitter is far away
from the CRN and hence same SNR can be assumed for all
SUs. In use Case 2, the PU is not far away from the M SUs
and each user has a different value of SNR depending on its
distance from the PU and its channel conditions.

3. Local Spectrum Sensing

The performance of a given spectrum sensing scheme is
fundamentally limited by the radio propagation channel.
Typically, the effects of a radio channel can be divided
into three main parts: path loss, small-scale fading, and
large-scale fading (shadowing) [44]. Path loss effects are
incorporated in the received SNR at a cognitive radio
terminal. Small-scale fading causes rapid, random variations
in the signal strength at the CR receiver and is modelled by
Rayleigh fading in this paper. Shadowing is the slow variation
of received signal power as the cognitive radio moves in
and out of the shadow of large structures like mountains,
buildings, and so forth. Shadowing is often modelled as a log-
normal distributed random process that varies around a local
mean given by the path loss and with the standard deviation
σdB which depends on the environment [45].

3.1. AWGN Channel. In energy detection-based spectrum
sensing, the received radio frequency energy in the consid-
ered channel or frequency band W is measured over a time
interval T to determine whether the PU signal s(t) is present.
Assume that the time bandwidth product is always an integer
and is denoted by N = TW . Test statistic ui calculated by an
ith user is given as

ui =
N∑

k=1

∣∣∣∣xi
(
k

W

)∣∣∣∣
2

. (3)

ui is compared with a predefined threshold λi to get the local
decision:

H1

ui � λi.

H0

(4)

The binary decision is given by Di; Di = 1 when ui > λi
and 0 otherwise. ui is the sum of squares of N Gaussian
random variables and it is well known that the sum of squares
of Gaussian variables follows a chi-square distribution [46].
Thus ui follows a central chi-square distribution with 2N
degrees of freedom under hypothesis H0 and a noncentral
chi-square distribution with 2N degrees of freedom and
non-centrality parameter of 2Nγi under hypothesis H1.
Therefore, the probability density function (pdf) of random
variable Ui under the two hypotheses can be written as

fUi(u)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uN−1e−u/2

2NΓ(N)
, H0,

1

2

(
u

2Nγi

)(N−1)/2

e−(u+2Nγi)/2IN−1

(√
2Nuγi

)
, H1,

(5)

where Γ(·) is the gamma function and IN−1(·) is the modified
Bessel function of the first kind. For an ith user probability of
false alarm, Pr(H1 |H0), and detection, Pr(H1 |H1) can be
derived from (5) and is given as

Pi
f = Pr{Ui > λi |H0} =

Γ(N , λi/2)

Γ(N)
, (6)

Pi
d = Pr{Ui > λi |H1} = QN

(√
2Nγi,

√
λi

)
, (7)

where Γ(a, x) is incomplete gamma function and QN (a, b) is
the generalised Marcum Q-function. Detailed derivations of
Pi
f and Pi

d are given in Appendices A and B.

For the purpose of simplifying (5) an approximate model
for energy detection-based spectrum sensing observations
can be built. It has been shown in [47] that the approximated
model converges faster and has lower approximation error
when N is asymptotically large. So when N tends towards
infinity (practically when N ≥ 10 [46]), the chi-square dis-
tribution defined in (5) converges to a normal distribution,
that is,

Ui ∼

⎧⎨
⎩

N
(
Nσ2

i , 2Nσ4
i

)
, H0,

N
((
N + γi

)
σ2
i , 2
(
N + 2γi

)
σ4
i

)
, H1.

(8)

Similarly, Pi
f and Pi

d defined in (6) and (7) can be approxi-

mated as

Pi
f = Q

(
λi − E[Ui |H0]√

Var[Ui |H0]

)
= Q

(
λi −Nσ2

i√
2Nσ2

i

)
,
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Figure 1: Use cases considered in paper.

Pi
d = Q

(
λi − E[Ui |H0]√

Var[Ui |H0]

)
= Q

⎛
⎝λi −

(
N + γi

)
σ2
i√

2
(
N + 2γi

)
σ2
i

⎞
⎠, (9)

where E[·] and Var g[·] denote expectation and variance
operations, respectively.

3.2. Spectrum Sensing in Fading Channels. When the SU is in
a fading channel, the channel gain hi for an ith user is varying
due to the fading and Pi

d becomes conditional probability
dependent on instantaneous SNR γi. As expected, Pi

f is

independent of γi and remains static. Average probability of
detection can be obtained by averaging instantaneous Pi

d over
fading statistics, where the pdf of received SNR is fγ(x):

Pi
d,fading =

∫

γ
Pi
d(x) fγ(x)dx. (10)

When the channel is Rayleigh faded, then γi is exponentially
distributed with γi as its mean value. Similarly when channel
is shadow faded, then γi is log-normally distributed with
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mean γi and characterised by dB-spread of shadowing σdB

[38]. Hence,

fγi(x)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

x
exp

(
− x

γi

)
; Rayleigh Fading,

ξ

xσdB

√
(2π)

exp

(
−10 log10(x)−µxdB

2σ2
dB

)
; Shadow Fading,

(11)

where ξ = 10/ ln(10) and µxdB is the mean of xdB = 10 log(x).
The conversion from linear mean to the log mean (in dB) can
be derived as [45]

µxdB = 10 log10

(
γi
)
− σ2

dB

2ξ
. (12)

Substituting (7) and (11) in (10), for Rayleigh fading channel
average probability of detection for the ith user can be
calculated by [38]

Pi
d,rayl =

∫

γ

1

x
QN

(√
2Nx,

√
λi

)
exp

(
− x

γi

)
dx

= e−λi/2
N−2∑
n=0

1

n!

(
λi
2

)N
+

(
1 + γi
γi

)N−1

×
⎡
⎣e−λi/2(1+γi) − e−λi/2

N−2∑
n=0

1

n!

λiγi
2
(
1 + γi

)
⎤
⎦.

(13)

For shadow fading, close form solution of (10) is not known
and a numerical solution is required:

Pi
d,shadow =

∫

γ
QN

(√
2Nx,

√
λi

)
1

xσdB

√
2π

× exp

(
−10 log(x)− µxdB

2σ2
dB

)
dx

= 1

σdB

√
2π

x f∑
x=x0

QN

(√
2Nx,

√
λi

)

× exp

(
−10 log(x)− µxdB

2σ2
dB

)
∆x

x
,

(14)

where ∆x and x f are chosen as to minimise numerical
approximation error.

3.3. Numerical Evidence. The performance of local spec-
trum sensing is evaluated using theoretical results as well
as Monte Carlo simulations by plotting complementary
Receiver Operating Characteristics (ROC) curves (plot of
Pm = 1 − Pd versus P f ). In Monte Carlo simulations,
probability of false alarm and miss detection is calculated by
comparing sensing observations with a predefined threshold,

and results are obtained by simulations over 1, 000, 000 noise
realisations. It is assumed that N is an integer value and set
to be 5.

Figure 2 shows the ROC curves for local spectrum
sensing in AWGN, Rayleigh fading, and Shadowing for
different values of σdB. Spectrum sensing results for AWGN
channel are provided for comparison and simulation results
are validated by comparing with analytical results. It is
clear from Figure 2 that both Rayleigh and shadow fading
degrades the performance of spectrum sensing. For example,
in Rayleigh fading channel, in order to achieve Pm < 10−1

where Pm = 1 − Pd, we need P f > 0.4 which results in poor
spectrum utilisation and vice versa. Similarly, it can be seen
from Figure 2 that local spectrum sensing is more difficult
in shadow fading and with increase in shadowing (or σdB)
detector performance further degrades.

Another important metric to characterise spectrum
sensing performance is the minimum detected SNR. This
metric is defined as the lowest SNR that a sensing algorithm
is able to detect with reliability of P f and Pd for a given
PU signal, propagation conditions and observation time.
Figure 3 plots the minimum detectable SNR by a CR under
different channel conditions for a targeted P f = 10−1.
It is clear from Figure 3 that shadowing affects detector
performance more than Rayleigh fading. In order to achieve
P f = 10−1 in given scenario, the required SNR is around
10 dB while for the lower values of γ this is not possible as
shown in Figure 3.

4. Collaborative Spectrum Sensing

Section 3 shows that local spectrum sensing has some
limitations and it is hard to detect signals of low SNR for
desired performance. Among many other challenges (e.g.,
see [48]) one of the most important challenges for the
implementation of CRN is the hidden node problem, when
a CR is shadowed or in a deep fade [41]. To address these
problems multiple CRs can collaborate with each other in
order to make a global decision about the existence of the
PU. It has been shown by previous research that CSS can
improve detection performance in the fading channels; for
example, see [9] and references therein. In CSS, every SU
performs its own spectrum sensing measurements and can
also make a local decision on whether the PU is present or
absent. All of the SUs forward their soft (local measurement)
or hard (1-bit) decision to a common receiver, often called
fusion centre or a band manager. Fusion centre may be
centralised or distributed; in centralised CSS all the SUs
send their decisions to the fusion centre, which may be an
Access Point (AP) in wireless LAN or a CR base station in
a cellular system, while, in distributed CSS, all the SUs may
behave as a fusion centre and receive sensing information
from the neighboring nodes. In both cases, fusion centre
fuse collected decisions and make a final decision to declare
the presence (or otherwise) of primary users in observed
frequency band. The results presented in [40, 49] show
that SDC outperforms HDC in terms of probability of
miss detection. While HDC outperforms SDC when the
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Figure 2: Receiver operating characteristics for local spectrum
sensing in Rayleigh and Shadow Fading channels with γ = 5 dB,
N = 5.

number of collaborative users is large [41] and further HDC
needs a low-bandwidth control channel. In CSS, sharing
information within CRN and combining result from various
measurements is a challenging task, which is the main scope
of this paper.

4.1. Hard Decision Combining. In HDC, fusion centre col-
lects binary decisions from the individual SUs, identifies the
available spectrum, and then broadcasts this information
to the other SUs. The optimal decision fusion is based on
Neyman-Pearson criterion by comparing Likelihood Ratio
with the threshold vector as

H1

f (D |H1)

f (D |H0)
� λ,

H0

(15)

where D = [D1,D2, . . . ,DM]T denotes binary decisions
from M SUs and Di ∈ {0, 1}, λ is the optimal threshold
vector and f (D | H0), and f (D | H1) represents the
probability density functions of D under hypothesis H0

and H1, respectively. Mathematical analysis using Neyman-
Pearson criterion is mathematically untractable especially if
the local measurements are correlated and hence sub optimal
solutions are always preferable [50].
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Figure 3: Probability of miss detection versus minimum detected
SNR in shadow fading for P f = 10−1, γdB = 5, N = 5.

There are many other ways to combine or fuse hard
decisions based on counting rules; most commonly used in
the literature are OR, AND and in general K-out-of-M fusion
rule [36, 42, 51]. In AND all CRs should declare H1 in order
to make a global decision that PU is present while in OR rule,
fusion centre declares H1 if any of the received decision is H1.
At the fusion centre, all Di’s are fused together according to
the following fusion rule [9]:

yc =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

M∑

i=1

Di ≥ K , H1,

M∑

i=1

Di ≤ K , H0.

(16)

It can be seen from (16) that the OR corresponds to the case
when K = 1 while for AND rule K =M.

It has been reported that for many cases of practical
interest, the OR fusion rule delivers better performance [9].
In order to demonstrate improvement in spectrum sensing
performance by collaboration of SUs OR fusion rule is used
at the fusion centre in this section. Figures 4 and 5 show
ROC curves for use Case 1 (as shown in Figure 1) with
different number of CRs under i.i.d. log-normal shadowing
with γ1 = γ2 = · · · = γi = 5 dB and N = 5. In these results,
AWGN curves for single users are shown for comparison. As
seen in Figures 4 and 5 CSS mitigates the effects of shadow
fading effectively. It can also be seen in Figure 4 that by
incorporating more and more users performance even better
than in the AWGN scenario can be achieved. This stems
from the fact that with more number of SUs there are more
chances that a single user has its instantaneous SNR above
average.

As stated in Section 3 another important parameter to
analyse performance of a detection algorithm is minimum
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Figure 4: Receiver operating characteristics for collaborative spec-
trum sensing under shadow fading, σdB = 6, N = 5.
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Figure 5: Receiver operating characteristics for collaborative spec-
trum sensing under shadowing, σdB = 10, N = 5.

detected SNR. A good detection scheme must be able to
detect signals of low SNR, and in Section 3 it has been shown
that shadowing affects detected SNR by a user. Figure 6 shows
that by incorporating a large number of users it is possible to
achieve the desired performance even at low SNR levels. By
comparing Figures 3 and 6 it can be seen that under shadow
fading (σdB = 6) and for desired performance, for example,
P f = 10−1 and Pd = 10−1 local sensing requires received
signal of at least 10 dB while collaboration of 20 users can
detect signal of SNR as low as −15 dB.
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Figure 6: Probability of miss detection versus minimum detected
SNR in shadow fading, P f = 10−1, σdB = 6, γ = 5 dB, N = 5.

4.2. Soft Decision Combining. In order to simplify the
analysis with fusion of soft decisions, it has been assumed
that the value of N is large. With this assumption the
summary statistics at local secondary nodes U (as defined in
(8)) can be considered, which is transmitted to the fusion
centre through the reporting channels. In this paper realistic
noisy reporting channels with variable channel gains are
considered. A system model is shown in Figure 13.

4.2.1. Equal Gain Combining. Statistics of local observations
for an ith SU after passing through the channel of gain gi and
noise ni ∼ N (0, δ2

i ) is

yi ∼

⎧⎪⎪⎨
⎪⎪⎩

N
(
Ngiσ

2
i , 2Ng2

i σ
4
i + δ2

i

)
, H0,

N

((
N + γi

)
giσ

2
i , 2
(
N + 2γi

)
g2
i σ

4
i + δ2

i

)
, H1,

(17)

where δ2
i is the noise variance of the ith reporting channel.

For the soft decision fusion scheme, fusion centre decides
between H0 and H1 by comparing sum of individual
observations yc with a global threshold λc:

H1

yc =
M∑

i=1

yi � λc.

H0

(18)

4.2.2. Weighted Combining. In weighted combining, global
test statistics is calculated at the fusion centre by assigning
weights wi to the received observation from an ith user yi by

yc =
M∑

i=1

wi · yi = wTy, (19)
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Figure 7: Receiver operating characteristics for 5 collaborating users in AWGN Channel in 3 cases: Case 1 (all users have similar SNR), Case
2 (half of the users have high SNR), and Case 3 (only one user has high SNR).

where w = [w1,w2, . . . ,wM]T ∈ R
M×1 and the received

decision vector at the fusion centre is defined as y =
[y1, y2, . . . , yM]T ∈ R

M×1. Weight vector w at the fusion

centre satisfies
∑M

i=1 wi = 1. From (17) and (19) the
distribution of yc is given as

yc

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

N

⎛
⎝

M∑

i=1

Ngiσ
2
i wi,

M∑

i=1

(
2Ng2

i σ
4
i w

2
i + δ2

i w
2
i

)
⎞
⎠; H0

N

⎛
⎝

M∑

i=1

((
N+γi

)
giσ

2
i wi

)
,

M∑

i=1

(
2
(
N+2γi

)
g2
i σ

4
i w

2
i +δ2

i w
2
i

)⎞⎠; H1.

(20)

Assume h = [h1,h2, . . . ,hM]T ∈ R
M×1, g = [g1, g2, . . . ,

gM]T ∈ R
M×1, γ = [γ1, γ2, . . . , γM]T ∈ R

M×1, σ =

[σ2
1 , σ2

2 , . . . , σ2
M]T ∈ R

M×1, and δ = [δ2
1 , δ2

2 , . . . , δ2
M]T ∈

R
M×1. Furthermore, defined matrices Σ, ∆, Γ, and G that all

belong to RM×M represent the diagonal matrices formed by
placing the vectors σ , δ, γ, and g on the diagonal, respectively.
The statistics of yc under H0 and H1 can be written as

E
[
yc |H0

]
= NgT

Σw,

Var
[
yc |H0

]
= wT

[
2NG2

Σ
2 + ∆

]
w,

E
[
yc |H1

]
= gT((NI + Γ)⊙ σ)w,

Var
[
yc |H1

]
= wT

[
2(NI + 2Γ)G2

Σ
2 + ∆

]
w.

(21)

To make a decision on the presence of a primary
transmitter, the global decision statistic yc as defined in (21)
is compared with a threshold λc. Global probability of false
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Figure 8: Receiver operating characteristics for 5 collaborating users in Rayleigh fading Channel in 3 cases: Case 1 (all users have similar
SNR), Case 2 (half of the users have high SNR), and Case 3 (only one user has high SNR).

alarm and detection at the fusion centre, as denoted by Q f

and Qd, are given as

Q f = Q

⎛
⎜⎜⎝

λc −NgTΣw√
wT
[

2NG2Σ
2 + ∆

]
w

⎞
⎟⎟⎠,

Qd = Q

⎛
⎜⎜⎝

λc − gT((NI + Γ)⊙ σ)w√
wT
[

2(NI + 2Γ)G2Σ
2 + ∆

]
w

⎞
⎟⎟⎠,

(22)

where Q(·) is the tail probability of the normalised Gaussian
distribution.

5. Optimised User Collaboration
Scheme for HDC

Section 4.1 shows that collaboration of SUs improves spec-
trum sensing performance by utilising space diversity of
users. In this section, the problem of hard decision fusion
at the fusion centre is considered in the presence of i.i.d.
and spatially correlated shadowing. In the past, emphasis
was given to collaborative spectrum sensing when all users

have same received SNR; however, in this section, a scenario
where users have different γi with AWGN and log-normal
shadowing is considered. Three different cases in use Case 2
are considered here which represents three different scenarios
depending on the location of PU and SUs. Case 1 refers to a
scenario in which all the SUs are relatively close to each other
and hence having similar values of SNR. Case 2 depicts the
situation when half of the collaborating users have high SNR
values while in Case 3 only one use has a high SNR value as
compared to other collaborating SUs.

Different decision fusion schemes at the fusion centre
including OR, AND, Voting, and 1-user cases are considered.
In Voting-based decision fusion scheme all SUs vote and
fusion centre declare an opportunity if the majority of the
collaborative SUs declare an opportunity. In 1-user case
although fusion centre receives information from all users,
it uses only one user information in order to make a global
decision.

5.1. Independent and Identically Distributed Shadowing

5.1.1. Mathematical Formulation. The global probability of
detection Qd and probability of false alarm Q f at the fusion
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Figure 9: Receiver operating characteristics for 5 collaborating users in shadow fading (σdB = 6) in 3 cases: Case 1 (all users have similar
SNR), Case 2 (half of the users have high SNR), and Case 3 (only one user has high SNR).

centre can be expressed as a function of the probability of
detection (or false alarm) of each SU, obtaining the joint
probability of M independent events as

Qd = R(D)
∏

S0

(
1− Pi

d

)∏

S1

Pi
d,

Q f = R(D)
∏

S0

(
1− Pi

f

)∏

S1

Pi
f .

(23)

S represents the set of all secondary users with S = S0 ∪ S1

where S0 is the group of SUs that has decided that PU signal
is absent while S1 is the group of SUs that has decided that
PU signal is absent and R(D) is the decision fusion rule at the
fusion centre. Value of R(D) depends on what type of fusion
rule is used at the fusion centre. So for the given formulation,
K-out-of-M rule can be formulated as

R(D) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
(
PU present

)
if

M∑

i=1

Di ≥ K ,

0 (PU absent) if
M∑

i=1

Di < K.

(24)

For the fusion rules considered in this section, K is given as

K =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, OR,

M, AND,
⌈
M

2

⌉
, Voting,

(25)

where ⌈·⌉ is the ceil function.
For 1-user rule,

R(D) =

⎧⎨
⎩

1, if Di = 1,

0, otherwise,
(26)

where the ith user is chosen as

i = arg max
j

{
γ j
}
. (27)

5.1.2. Simulation Results. Figure 7 shows collaborative spec-
trum sensing performance when 5 SUs collaborate with
each other and make collaborative decision; analytical results
validating the simulation results are shown. When all users
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have similar γi (Case 1) in AWGN channel, then the optimal
decision fusion rule is Voting rule as evident from Figure 7.
When half of the users have high γi and half of the users have
low γi (Case 2), then the optimal decision rule is OR. Case 3
refers to the situation when only one user has higher γi than
others; in this case the collaborative spectrum sensing works
even worse than a single node. From these results it can be
concluded that it is not necessary that collaboration of users
always improves spectrum sensing performance and in order
to derive an optimum performance individual γi should be
considered. Without knowing γi the performance is always
suboptimal; so in the proposed scenario it is suggested that
users estimate local γi and send this information along with
their 1-bit decision. Local SNR can be estimated by using a
test statistics defined in (5) as

γ̂i =
1

Z

Z∑

i=1

ui − X , (28)

where γ̂ is estimated SNR, Z is the number of test statistics,
and X is E(ui |H0).

In Rayleigh fading and shadowing, collaborative spec-
trum sensing is an ideal solution because diversity gain
achieved by collaboration effectively cancels the deleterious
effects of fading. Figures 8 and 9 show detection performance
under Rayleigh fading and shadowing with the three cases
considered in this section. Value of dB-spread is assumed to
be 6 dB for the shadowing while other parameters remain the
same. As can be seen from these results, in all three cases
spectrum sensing performance is superior if OR fusion rule
is used at the fusion centre. So it can be concluded from
simulation results that under Rayleigh fading and shadowing
with i.i.d. measurements most optimal fusion rule is OR
rule and collaboration of users is required. Further, with
the increase of shadowing, sensing performance of two user
collaboration with highest γi is better than collaboration
of all users. It can be concluded that even in fading or
shadowing it is important for the fusion centre to know the
SNR values of the users to make a decision about which
fusion rule gives better performance.

5.2. Spatially Correlated Shadowing. Up to this point, it is
assumed that all collaborating cognitive users have identical
and independent shadowing. However, usually there is a
degree of spatial correlation associated with log-normal
shadowing [52] and assumption of identically and indepen-
dent (i.i.d.) shadowing is not always true. In this section, the
impact of spatially correlated shadowing on decision fusion
when users have different SNR is studied under different
channel conditions. It is concluded that correlation has a
direct impact on the optimum decision fusion rule at the
fusion centre.

It is logical to think that spatially correlated shadowing
would degrade the performance of CSS because such users
are likely to experience similar observations thereby counter-
ing collaborative gains. In this paper correlated shadowing is
modelled using the exponential correlation model [52]:

r(d) = e−ad, (29)

where r(d) is the correlation matrix, d is the distance between
two secondary users, and a is a constant depending on
the environment. Based on measurements reported in [52],
a ≈ 0.12/m for urban environment and a ≈ 0.002/m for
suburban environment.

5.2.1. Mathematical Formulation. Assume that γi is the
received SNR at the ith SU on a logarithmic scale. Hence
under shadow fading γi has a Gaussian distribution with
variance of σ2

dB and a mean value of µγ (in dB). The value of
µγ is determined by the distance dependent path loss. Under
two hypotheses H0 and H1 the distribution of γi for M SUs
under spatially correlated shadowing can be expressed as

γdB ∼

⎧⎪⎨
⎪⎩

N
(
0× uM , σ2

dBΞ
)
, H0,

N

(
µγ, σ2

dBΞ

)
, H1,

(30)

where γdB = [γ1, γ2, . . . , γM]T , uM is an M × 1 vector of
all ones, and Ξ is the normalised covariance matrix of γdB.
Using the exponential correlation model defined in (29), the
covariance matrix Ξ is an M × M matrix. Assuming that
all SUs are uniformly distributed in a 1-dimensional plane
within a total distance of κ, the elements of covariance matrix
are given as

Ξi, j = e(−aκ/(M−1))|i− j|. (31)

Hence, the covariance matrix Ξ can be expressed as

Ξ =

⎡
⎢⎢⎢⎢⎣

1 A B · · · e−aκ

A 1 A · · · e−aκ|M−2|/(M−1)

...
...

... · · ·
...

e−aκ B e−3aκ/(M−1) · · · 1

⎤
⎥⎥⎥⎥⎦

, (32)

where A denotes e−aκ/(M−1) and B denotes e−2aκ/(M−1).
The probability density function of γi can be expressed

for the M collaborative SUs having correlated shadow fading
as

f
(
γdB

)
= 1√

2πσ2
dB

Ξ
−1 exp

⎧⎪⎨
⎪⎩−

(
γdB − µγ

)2

2σ2
dB

Ξ
−1

⎫⎪⎬
⎪⎭. (33)

From (32) it is clear that Ξ is a diagonal constant matrix or
Toeplitz matrix, and its inverse may be expressed as [53]

Ξ
−1 = 1

1− e2aκ/(M−1)

⎡
⎢⎢⎢⎢⎣

1 −A 0 · · · 0
−A 1 + e−2aκ/(M−1) −A · · · 0

...
...

... · · ·
...

0 0 · · · −A 1

⎤
⎥⎥⎥⎥⎦

,

(34)

where A denotes e−aκ/(M−1).

5.2.2. Simulation Results. It is shown in this section that
spatial correlation among users directly impacts the decision
fusion at the fusion centre. Figures 10, 11, and 12 show ROC
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Figure 10: Receiver operating characteristics for 5 collaborating users in spatially correlated shadowing fading (Case 1: all users have similar
SNR).
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Figure 11: Receiver operating characteristics for 5 collaborating users in spatially correlated shadowing fading (Case 2: half of the users have
high SNR).

curves of 5 collaborating users under spatially correlated
shadowing with dB-spread of 4 dB and 12 dB for the three
cases defined in Section 5.1. In case of correlated shadowing
with lower values of σdB, the Voting fusion rule outperforms
OR fusion rule and performance of AND fusion rule is better

than OR. This is due to the fact that all secondary users
are close to each other and have similar values of γi; hence
user observations are similar to each other. However, sensing
performance in heavily shadowed environment (e.g., when
σdB = 12) for all fusion schemes is almost similar in all
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Figure 12: Receiver operating characteristics for 5 collaborating users in spatially correlated shadowing fading (Case 3: only one user has
high SNR).
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Figure 13: Schematic diagram of weighted collaboration at fusion centre for soft decision combining with imperfect reporting channels.

three cases. Hence, it can be seen from Figures 10, 11, and
12 that for optimal decision fusion at the fusion centre, it is
important to consider the effects and degree of correlation
among users.

6. Optimised User Collaboration
Scheme for SDC

In this section, goal is to optimise CSS when collaborating
SUs send their soft decisions to the fusion centre by max-
imising the global probability of detection (or alternatively
minimising global probability of miss detection) for a given
value of probability of false alarm and channel conditions.

Referring to Section 4.2 for the framework of soft decision
combing at the fusion centre, global probability of detection
can be written in terms of global probability of false alarm
(using (22)):

Qd = Q

⎛
⎜⎜⎝

√
wT
[

2NG2Σ
2 + ∆

]
wQ−1

(
Q f

)

√
wT
[

2(NI + 2Γ)G2Σ
2 + ∆

]
w

+
NgTΣw − gT((NI + Γ)⊙ σ)w√

wT
[

2(NI + 2Γ)G2Σ
2 + ∆

]
w

⎞
⎟⎟⎠.

(35)
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After crossover

w11 w21 w31 w41 w51 Users

Before mutation

w41 w21 w31 w11 w51 Users

Before mutation

After mutation

Figure 14: Crossover and mutation operations in genetic algorithm.

Maximising Qd, as defined in (35), is equivalent to minimise
ϕ(w) as Q(x) is a decreasing function of x, where ϕ(w) is
given by

ϕ(w) =

√
wT
[

2NG2Σ
2 + ∆

]
wQ−1

(
Q f

)

√
wT
[

2(NI + 2Γ)G2Σ
2 + ∆

]
w

+
NgTΣw − gT((NI + Γ)⊙ σ)w√

wT
[

2(NI + 2Γ)G2Σ
2 + ∆

]
w

=

√
wT
[

2NG2Σ
2 + ∆

]
wQ−1

(
Q f

)
− ΓgTΣw

√
wT
[

2(NI + 2Γ)G2Σ
2 + ∆

]
w

.

(36)

Similarly for fading channels, the average probability of
detection can be obtained by averaging Qd over fading
statistics as described in Section 3.2. Now the optimisation
problem can be formulated as

minimise ϕ(w)

s.t.
M∑

i=1

wi = 1, wi ≥ 0, ∀i ∈ {1, 2, 3, . . . ,M}.

(37)

6.1. GA-Based Weighted Collaborative Spectrum Sensing. This
section describes the design of a GA-based weighted CSS
framework for the case of SDC at the fusion centre. In this
work, GA is used as a solution approach to minimise ϕ(w)
as defined in (36) for a given value of Q f . The GA has been

proposed as a computational analogy of adaptive systems by
Holland [54]. They are modelled based on the principles
of natural evolution and selection and is briefly described
in this section. An initial population is first generated and
then the fitness of each chromosome in the initial population
is evaluated using a predefined fitness function. A loop is
initiated to simulate the generations and in each generation,
chromosomes are selected probabilistically according to their
fitness. The genes of the selected individuals will mutate and
crossover to produce offsprings to maintain the population
size. The GA continues to iterate until the convergence
is achieved or until it exceeds the maximum number of
generations.

6.1.1. Seeding. The algorithm starts by randomly generating
an initial population of possible solutions. Here, the initial
population is the randomly generated values of weights
satisfying the constraints as described in (37). Seeding is
a process of setting the initial population to some initial
configuration. If the initial population is seeded properly,
the performance of GA can be greatly enhanced. Since
GA works by probabilistically mutating and combining, the
convergence of algorithm can be achieved quickly if the
population is initially preset to a good solution.

6.1.2. Fitness Function. A fitness function plays a central role
in GA. It evaluates fitness of each chromosome and forces
the algorithm to search for optimal solutions and is the only
link between actual problem and the GA. A fitness function
ranks chromosomes in a given population; so individuals
having better fitness values have higher chances of survival
and reproduction in the next generation. In this paper,
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Figure 15: Receiver operating characteristics for collaborative
spectrum sensing with perfect reporting channel, N = 10.
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Figure 16: Receiver operating characteristics for collaborative
spectrum sensing for 6 users in AWGN channel with im-perfect
reporting channels, N = 10.

ϕ(w) is used as a fitness function to evaluate the fitness of
individuals. After calculating the fitness of each individual,
all fitness values are scaled in a range that is suitable for the
selection algorithm. The selection algorithm uses these scaled
fitness values to choose the parents of the next generation.
The range of scaled values affects the performance of GA, and
in this paper the scaling method described by Goldberg [55]
is used.
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Figure 17: Receiver operating characteristics for collaborative
spectrum sensing for 6 users in Rayleigh fading channel with im-
perfect reporting channels, N = 10 (Case 1: All users have good
reporting channel, Case 2: All users have bad reporting channel, and
Case 3: Two of the users have good reporting channel).

6.1.3. Selection. Once the chromosomes in a given popula-
tion have been evaluated according to their fitness values, the
one with the better fitness will be selected, and the others will
be eliminated. There are many different strategies available
in the literature to implement selection algorithm [56]. The
simplest and the most widely used selection scheme, the
roulette wheel selection, is used in simulations [55].

6.1.4. Elitism. The number of chromosomes in a population
with the best-scaled fitness value guaranteed to survive in
the next generation and represented by Elitism is called Elite
children. Proper value of Elite children is important in the
fast convergence of GA.

6.1.5. Crossover and Mutation. Crossover process in GA
combines two individuals (parents) and produces entirely
new chromosomes (children). The main idea behind
crossover operation is that the children may be better than
both of the parents if they take the best attributes from each
parent. Generally, crossover occurs during evolution accord-
ing to a specified probability and is typically in the range of
80% to 90%. Although a number of crossover techniques are
available in the literature, the simplest crossover technique,
called single-point crossover [56], is used in this study.

Mutation is another genetic operation which alters one
or more genes in a chromosome from its original state. This
introduces new genetic material in the population. With the
new gene, GA may be able to arrive at a better solution
than previously possible. Mutation also occurs during the
evolution process by some prespecified probability and
this value is normally small as compared to the crossover
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Table 1: GA parameter configuration.

Parameter Value

Population Size 100

Number of Generations 40

Elitism 2%

Mutation Probability 2%

Crossover Probability 80%

Initialisation Method Random

Crossover operation Single point

Selection Method Roulette wheel

probability. In the classical mutation process, one or more
pairs of genes are selected randomly and swapped to produce
new offsprings. Figure 14 illustrates the process of crossover
and mutation for the case of 5 collaborating users.

6.1.6. Termination. Termination is the criteria by which GA
decides whether to continue or stop searching for better
solutions. There are many possibilities to terminate GA
including generation number, evolution time, and popula-
tion convergence, and so forth and in this work generation
number criterion is used for terminating the GA. Based on
a number of test experiments, the best suited GA parameter
configuration was set up for the optimisation problem and
parameters are listed in Table 1.

6.2. Numerical Result and Discussions. In this section, pro-
posed GA-based weighted CSS scheme for SDC is simulated
and compared with existing weighting schemes proposed in
[42], that is, Equal Gain Combining (EGC) and Proportional
Combining (PC). EGC is the weighting scheme in which
all the collaborating SUs have equal weights and in PC the
fusion centre assigns proportional weight to SUs according
to their SNR values. Numerical results are obtained from
simulations for use Case 2 over 1, 000, 000 noise realisations
for the given set of noise variances. Noise variance of all
collaborating users for the primary channel (i.e., chan-
nel between primary transmitter and secondary users) is
assumed to be σ2 = 1 and noise variance of the reporting
channels is assumed to be δ2 = 1 dB. Value of N is assumed
to be 10 in all simulations.

Figure 15 shows the probability of miss detection Qm

against probability of false alarm Q f with different number
of collaborating users and their corresponding SNR values.
A perfect reporting channel is assumed here and the channel
between SUs and PU is considered to be AWGN channel.
Figure 15 shows clearly that with an increase in the number
of collaborating users sensing performance improves if all
SUs have same SNR. However, when the cognitive users have
different mean SNR values, then the sensing performance
degrades with equal gain combining. Proportional weights
assigned to different users according to their SNR values
improve sensing performance as compared to equal gain
combining approach. From the results it is concluded that

users SNRs have a direct impact on the spectrum sensing
performance.

Figure 16 plots the Qm versus Q f for the case when
cognitive users have different SNRs and the reporting
channel is not perfect; that is, practical AWGN channels exist
between SUs and the fusion centre with different channel
gains defined as g = [0.32, 0.2, 0.2, 0.1, 0.3, 0.15]T . The value
of channel gain is dependent on the location of the fusion
centre and the SU and is varying over time. It can be
seen from Figure 16 that reporting channel gains degrade
the performance of spectrum sensing. Without channel
gains, PC performs better than EGC, but, in the presence
of reporting channel, PC does not perform much better
than EGC. This is mainly because of the fact that in the
presence of imperfect reporting channel, optimum weights
of cognitive users are not only dependant on SNR values
but also depend on reporting channel conditions. Under
such conditions an analytical expression for the probability
of detection is derived and optimum weights are calculated
using GA. The result shows that the proposed GA-based
optimal weights, denoted as “OPT,” yield superior spectrum
sensing performance in both cases, that is, with and without
reporting channel gain.

In order to evaluate the performance of proposed
optimised collaborative spectrum sensing framework, per-
formance of GA-based optimisation algorithm is tested
in fading channel. Three different cases were considered:
Case 1 refers to the case in which all the SUs have good
reporting channel, Case 2 is the case in which all the
collaborating cognitive users have bad reporting channel,
while in Case 3 two of the collaborating users have strong
channel, while others have bad reporting channel. As seen
from Figure 17 spectrum sensing performance is the worst
for Case 1 and the best for Case 3; however, in all of the three
cases, the performance of the proposed optimised thresholds
outperforms the other solutions.

7. Conclusions

Spectrum is a scarce resource and it has been a major focus
of research over the last several decades. Cognitive radio
technology, which is a one of the promising approaches to
utilise radio spectrum efficiently, has become an attractive
option. Deployment of cognitive radio networks mainly
depends on the ability of cognitive devices to detect licensed
or primary users accurately and hence minimise interference
to the licensed users. Spectrum sensing has been identified
as a key functionality of a cognitive radio. However, as
observations of a single cognitive radio are not always
trustworthy, so collaboration of cognitive users is normally
required to improve licensed users detection performance.
In this paper, optimisation algorithms for both hard decision
and soft decision combining are presented for collaborative
spectrum sensing. It is well known that fusion strategy at the
fusion centre has direct impact on the overall performance
of collaborative spectrum sensing. We consider optimisation
of both hard and soft decision fusion and develop algorithms
to optimise spectrum sensing performance. It is concluded
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that in order to derive an optimum fusion rule, the fusion
centre must know the collaborating users estimated SNR
values, channel conditions, as well as their 1-bit decision
for the case of hard decision fusion. We also proposed a
genetic algorithm-based optimisation of weighted collabo-
rative spectrum sensing in which weights are assigned to
the information provided by the users to improve CSS in
terms of ROC. The optimum weight vector is obtained
by maximising the global probability of detection at the
fusion centre. Simulation results show that the proposed
strategies improve spectrum sensing performance in terms
of global probability of miss detection. However, proposed
schemes require knowledge about SNR of all users, channel
conditions, reporting channel gains, and so forth which need
larger bandwidths. Our future research will consider efficient
protocols and techniques to optimise bandwidth utilisation
for the cases presented in this paper.

Appendices

A. Derivation of Probability of False Alarm for
Energy Detector

The probability distribution function of a chi-square random
variable X with 2N degrees of freedom is given by

fX(x) = xN−1e−x/2

2NΓ(N)
, (A.1)

where Γ(·) is gamma function and is defined as

Γ(u) =
∫∞

0
au−1e−tdt. (A.2)

Now for a given threshold λ the probability of false alarm
under hypothesis H0 (as defined in (1)) can be computed as

P f = Prob{X > λ |H0}

=
∫∞
λ

fX(x)dx

=
∫∞
λ

xN−1e−x/2

2NΓ(N)
dx.

(A.3)

Let x = 2u; so,

P f =
1

2NΓ(N)

∫∞
λ/2

2N−1uN−1e−u2du

= 1

Γ(N)

∫∞
λ/2

uN−1e−udu.

(A.4)

From the definition of incomplete gamma function Γ(s, x) =∫∞
x ts−1e−tdt,

P f =
Γ(N , λ/2)

Γ(N)
. (A.5)

B. Derivation of Probability of Detection for
Energy Detector

Probability density function of noncentral chi-square ran-
dom variable x with 2N degrees of freedom and noncentral-
ity parameter of 2Nγ is given by

fX(x) = 1

2

(
x

2Nγ

)(N−1)/2

exp

(
−x + 2Nγ

2

)
IN−1

(√
2Nγx

)
.

(B.1)

So for the threshold λ, probability of detection, that is,
probability that X > λ under H1, is given as

Pd = Prob{X > λ |H1}

=
∫∞
λ

fX(x)dx

=
∫∞
λ

1

2

(
x

2Nγ

)(N−1)/2

exp

(
−x + 2Nγ

2

)
IN−1

(√
2Nγx

)
dx.

(B.2)

Assume x = z2; then,

Pd =
∫∞
√
λ

1

2

(
z2

2Nγ

)(N−1)/2

× exp

[
−z2 + 2Nγ

2

]
IN−1

(
z
√

2Nγ
)

2z dz

=
∫∞
√
λ

1(
2Nγ

)(N−1)/2 z · z
N−1

× exp

⎡
⎢⎣−

z2 +
(√

2Nγ
)2

2

⎤
⎥⎦IN−1

(
z
√

2Nγ
)
dz.

(B.3)

Using definition of generalised Marcum Q-function,

Qm
(
α,β

)
= 1

αm−1

∫ α

β
xm exp

[
−x2 + α2

2

]
Im−1

(√
αx
)
dx.

(B.4)

Pd can be expressed in terms of generalised Marcum Q-

function, with m = N , x = z, α =
√

2Nγ, and β =
√
λ,

as

Pd = QN

(√
2Nγ,

√
λ
)
. (B.5)
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