13 research outputs found

    Terahertz imaging using quantum cascade lasers — a review of systems and applications

    Get PDF
    The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of THz radiation offering high power, high spectral purity and moderate tunability. As such, these sources are particularly suited to the application of THz frequency imaging across a range of disciplines, and have motivated significant research interest in this area over the past decade. In this paper we review the technological approaches to THz QCL-based imaging and the key advancements within this field. We discuss in detail a number of imaging approaches targeted to application areas including: multiple-frequency transmission and diffuse reflection imaging for the spectral mapping of targets; as well as coherent approaches based on the self-mixing phenomenon in THz QCLs for long-range imaging, three-dimensional imaging, materials analysis, and high-resolution inverse synthetic aperture radar imaging

    Metamaterial based CMOS terahertz focal plane array

    Get PDF
    The distinctive properties of terahertz radiation have driven an increase in interest to develop applications in the imaging field. The non-ionising radiation properties and transparency to common non-conductive materials have led research into developing a number of important applications including security screening, medical imaging, explosive detection and wireless communications. The proliferation of these applications into everyday life has been hindered by the lack of inexpensive, compact and room-temperature terahertz sources and detectors. These issues are addressed in this work by developing an innovative, uncooled, compact, scalable and low-cost terahertz detector able to target single frequency imaging applications such as stand-off imaging and non-invasive package inspection. The development of two types of metamaterial (MM) based terahertz focal plane arrays (FPAs) monolithically integrated in a standard complementary metal-oxide semiconductor (CMOS) technology are presented in this Thesis. The room temperature FPAs are composed of periodic cross-shaped resonant MM absorbers, microbolometer sensors in every pixel and front-end readout electronics fabricated in a 180 nm six metal layer CMOS process from Texas Instruments (TI). The MM absorbers are used due to the lack of natural selective absorbing materials of terahertz radiation. These subwavelength structures are made directly in the metallic and insulating layers available in the CMOS foundry process. When the MM structures are distributed in a periodic fashion, they behave as a frequency-selective material and are able to absorb at the required frequency. The electromagnetic (EM) properties are determined by the MM absorber geometry rather than their composition, thus being completely customisable for different frequencies. Single band and broadband absorbers were designed and implemented in the FPAs to absorb at 2.5 THz where a natural atmospheric transmission window is found, thus reducing the signal loss in the imaging system. The new approach of terahertz imaging presented in this Thesis is based in coupling a MM absorber with a suitable microbolometer sensor. The MM structure absorbs the terahertz wave while the microbolometer sensor detects the localised temperature change, depending on the magnitude of the radiation. Two widely used microbolometer sensors are investigated to compare the sensitivity of the detectors. The two materials are Vanadium Oxide (VOx) and p-n silicon diodes both of which are widely used in infrared (IR) imaging systems. The VOx microbolometers are patterned above the MM absorber and the p-n diode microbolometers are already present in the CMOS process. The design and fabrication of four prototypes of FPAs with VOx microbolometers demonstrate the scalability properties to create high resolution arrays. The first prototype consists of a 5 x 5 array with a pixel size of 30 μm x 30 μm. An 8 x 8 array, a 64 x 64 array with serial readout and a 64 x 64 array with parallel readout are also presented. Additionally, a 64 x 64 array with parallel output readout electronics with p-n diode microbolometers was fabricated. The design, simulation, characterisation and fabrication of single circuit blocks and a complete 64 x 64 readout integrated circuit is thoroughly discussed in this Thesis. The absorption characteristics of the MMs absorbers, single VOx and p-n diode pixels, 5 x 5 VOx FPA and a 64 x 64 array for both microbolometer types demonstrate the concept of CMOS integration of a monolithic MM based terahertz FPA. The imaging performance using both transmission and reflection mode is demonstrated by scanning a metallic object hidden in a manila envelope and using a single pixel of the array as a terahertz detector. This new approach to make a terahertz imager has the advantages of creating a high sensitivity room temperature technology that is capable of scaling and low-cost manufacture

    Study and development of Terahertz coherent imaging techniques

    Full text link

    The 2023 terahertz science and technology roadmap

    Get PDF
    Terahertz (THz) radiation encompasses a wide spectral range within the electromagnetic spectrum that extends from microwaves to the far infrared (100 GHz–∼30 THz). Within its frequency boundaries exist a broad variety of scientific disciplines that have presented, and continue to present, technical challenges to researchers. During the past 50 years, for instance, the demands of the scientific community have substantially evolved and with a need for advanced instrumentation to support radio astronomy, Earth observation, weather forecasting, security imaging, telecommunications, non-destructive device testing and much more. Furthermore, applications have required an emergence of technology from the laboratory environment to production-scale supply and in-the-field deployments ranging from harsh ground-based locations to deep space. In addressing these requirements, the research and development community has advanced related technology and bridged the transition between electronics and photonics that high frequency operation demands. The multidisciplinary nature of THz work was our stimulus for creating the 2017 THz Science and Technology Roadmap (Dhillon et al 2017 J. Phys. D: Appl. Phys. 50 043001). As one might envisage, though, there remains much to explore both scientifically and technically and the field has continued to develop and expand rapidly. It is timely, therefore, to revise our previous roadmap and in this 2023 version we both provide an update on key developments in established technical areas that have important scientific and public benefit, and highlight new and emerging areas that show particular promise. The developments that we describe thus span from fundamental scientific research, such as THz astronomy and the emergent area of THz quantum optics, to highly applied and commercially and societally impactful subjects that include 6G THz communications, medical imaging, and climate monitoring and prediction. Our Roadmap vision draws upon the expertise and perspective of multiple international specialists that together provide an overview of past developments and the likely challenges facing the field of THz science and technology in future decades. The document is written in a form that is accessible to policy makers who wish to gain an overview of the current state of the THz art, and for the non-specialist and curious who wish to understand available technology and challenges. A such, our experts deliver a 'snapshot' introduction to the current status of the field and provide suggestions for exciting future technical development directions. Ultimately, we intend the Roadmap to portray the advantages and benefits of the THz domain and to stimulate further exploration of the field in support of scientific research and commercial realisation

    THz: Research Frontiers for New Sources, Imaging and Other Advanced Technologies

    Get PDF
    The THz region of the electromagnetic spectrum is a frontier research area involving application of many disciplines, from outdoor to indoor communications, security, drug detection, biometrics, food quality control, agriculture, medicine, semiconductors, and air pollution. THz research is highly demanding in term of sources with high power and time resolution, detectors, and new spectrometer systems. Many open questions still exist regarding working at THz frequencies; many materials exhibit unusual or exotic properties in the THz domain, and researchers need new methodologies to exploit these opportunities. This book contains original papers dealing with emerging applications, new devices, sources and detectors, and materials with advanced properties for applications in biomedicine, cultural heritage, technology, and space

    Terahertz (THz) biophotonics technology : instrumentation, techniques, and biomedical applications

    Get PDF
    Terahertz (THz) technology has experienced rapid development in the past two decades. Growing numbers of interdisciplinary applications are emerging, including material science, physics, communications, security, as well as biomedicine. THz biophotonics involves studies applying THz photonic technology in biomedicine, which has attracted attention due to the unique features of THz waves, such as the high sensitivity to water, resonance with biomolecules, favourable spatial resolution, capacity to probe the water-biomolecule interactions and non-ionizing photon energy. Despite the great potential, THz biophotonics is still at an early stage of development. There is a lack of standards for instrumentation, measurement protocols, and data analysis which makes it difficult to make comparisons among all the work published. In this article we give a comprehensive review of the key findings which have underpinned research into biomedical applications of THz technology. In particular, we will focus on the advances made in general THz instrumentation and specific THz-based instruments for biomedical applications. We will also discuss the theories describing the interaction between THz light and biomedical samples. We aim to provide an overview of both, basic biomedical research, as well as pre-clinical and clinical applications under investigation. The paper aims to provide a clear picture of the achievements, challenges and future perspectives of THz biophotonics

    The 2023 terahertz science and technology roadmap

    Get PDF
    Terahertz (THz) radiation encompasses a wide spectral range within the electromagnetic spectrum that extends from microwaves to the far infrared (100 GHz–∼30 THz). Within its frequency boundaries exist a broad variety of scientific disciplines that have presented, and continue to present, technical challenges to researchers. During the past 50 years, for instance, the demands of the scientific community have substantially evolved and with a need for advanced instrumentation to support radio astronomy, Earth observation, weather forecasting, security imaging, telecommunications, non-destructive device testing and much more. Furthermore, applications have required an emergence of technology from the laboratory environment to production-scale supply and in-the-field deployments ranging from harsh ground-based locations to deep space. In addressing these requirements, the research and development community has advanced related technology and bridged the transition between electronics and photonics that high frequency operation demands. The multidisciplinary nature of THz work was our stimulus for creating the 2017 THz Science and Technology Roadmap (Dhillon et al 2017 J. Phys. D: Appl. Phys. 50 043001). As one might envisage, though, there remains much to explore both scientifically and technically and the field has continued to develop and expand rapidly. It is timely, therefore, to revise our previous roadmap and in this 2023 version we both provide an update on key developments in established technical areas that have important scientific and public benefit, and highlight new and emerging areas that show particular promise. The developments that we describe thus span from fundamental scientific research, such as THz astronomy and the emergent area of THz quantum optics, to highly applied and commercially and societally impactful subjects that include 6G THz communications, medical imaging, and climate monitoring and prediction. Our Roadmap vision draws upon the expertise and perspective of multiple international specialists that together provide an overview of past developments and the likely challenges facing the field of THz science and technology in future decades. The document is written in a form that is accessible to policy makers who wish to gain an overview of the current state of the THz art, and for the non-specialist and curious who wish to understand available technology and challenges. A such, our experts deliver a 'snapshot' introduction to the current status of the field and provide suggestions for exciting future technical development directions. Ultimately, we intend the Roadmap to portray the advantages and benefits of the THz domain and to stimulate further exploration of the field in support of scientific research and commercial realisation

    Self-Mixing in Terahertz Quantum Cascade Lasers

    Get PDF
    Terahertz (THz) quantum cascade lasers (QCL) have stimulated significant interest in THz laser imaging systems due to their compact size, broad spectral coverage (~1.2-5.2 THz) and high output power (>1 W). Due to their continuous wave (CW) narrowband emission and quantum noise limited linewidths, THz QCLs are particularly suited to coherent detection, but the majority of previously reported imaging systems have employed incoherent detection. Furthermore THz detectors typically fall into one of two categories (thermal or electrical), both of which have downsides (slow response rate or limited frequency range respectively). Self-mixing (SM) can be seen as a solution to these problems while also gaining the advantages of a reduced experimental set-up and cost, and increased sensitivity. SM occurs when radiation emitted from a laser is re-injected into the laser cavity by reflection from a remote target. The re-injected field interferes with the intracavity field, resulting in perturbations to both the measured output power and laser terminal voltage that depend on both the amplitude and phase of the reflected field. In this work, new SM imaging and modulation techniques were developed for both two- (2D) and three-dimensional (3D) imaging systems, including improvements leading to improved acquisition speed and depth resolution. Other techniques were developed to identify parameters of the QCL spectral emission and tunability, and SM was also exploited for extraction of optical parameters of explosive materials; a precursor to identification of such materials, something that is very important to national security and public safety. Further work was also developed in the areas of phase-nulling for the purpose of vibromacy measurements and extraction of laser parameters, and near-field (NF) spectroscopy, which has led to a massively improved lateral imaging resolution (~1 um)

    Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues

    Full text link
    A terahertz (THz) imaging system based on narrow band microbolometer sensors (NBMS) and a novel diffractive lens was developed for spectroscopic microscopy applications. The frequency response characteristics of the THz antenna-coupled NBMS were determined employing Fourier transform spectroscopy. The NBMS was found to be a very sensitive frequency selective sensor which was used to develop a compact all-electronic system for multispectral THz measurements. This system was successfully applied for principal components analysis of optically opaque packed samples. A thin diffractive lens with a numerical aperture of 0.62 was proposed for the reduction of system dimensions. The THz imaging system enhanced with novel optics was used to image for the first time non-neoplastic and neoplastic human colon tissues with close to wavelength-limited spatial resolution at 584 GHz frequency. The results demonstrated the new potential of compact RT THz imaging systems in the fields of spectroscopic analysis of materials and medical diagnostics
    corecore