66,941 research outputs found

    Spectral Thompson Sampling

    Get PDF
    International audienceThompson Sampling (TS) has surged a lot of interest due to its good empirical performance, in particular in the computational advertising. Though successful, the tools for its performance analysis appeared only recently. In this paper, we describe and analyze SpectralTS algorithm for a bandit problem, where the payoffs of the choices are smooth given an underlying graph. In this setting, each choice is a node of a graph and the expected payoffs of the neighboring nodes are assumed to be similar. Although the setting has application both in recommender systems and advertising, the traditional algorithms would scale poorly with the number of choices. For that purpose we consider an effective dimension d, which is small in real-world graphs. We deliver the analysis showing that the regret of SpectralTS scales as d\sqrt(T \ln N) with high probability, where T is the time horizon and N is the number of choices. Since a d\sqrt(T \ln N) regret is comparable to the known results, SpectralTS offers a computationally more efficient alternative. We also show that our algorithm is competitive on both synthetic and real-world data

    A new approach to multi-frequency synthesis in radio interferometry

    Full text link
    We present a new approach to multi-frequency synthesis in radio astronomy. Using Bayesian inference techniques, the new technique estimates the sky brightness and the spectral index simultaneously. In principle, the bandwidth of a wide-band observation can be fully exploited for sensitivity and resolution, currently only limited by higher order effects like spectral curvature. Employing this new approach, we further present a multi-frequency extension to the imaging algorithm RESOLVE. In simulations, this new algorithm outperforms current multi-frequency imaging techniques like MS-MF-CLEAN.Comment: 13 pages, 5 fugures, submitted to Astronomy and Astrophysic

    Near-ideal spontaneous photon sources in silicon quantum photonics

    Get PDF
    While integrated photonics is a robust platform for quantum information processing, architectures for photonic quantum computing place stringent demands on high quality information carriers. Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, and that are suitable for mass-manufacture, have been elusive. Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements. Our photon sources are fabricated in silicon using mature processes, and exploit a novel dual-mode pump-delayed excitation scheme to engineer the emission of spectrally pure photon pairs through intermodal spontaneous four-wave mixing in low-loss spiralled multi-mode waveguides. We simultaneously measure a spectral purity of 0.9904±0.00060.9904 \pm 0.0006, a mutual indistinguishably of 0.987±0.0020.987 \pm 0.002, and >90%>90\% intrinsic heralding efficiency. We measure on-chip quantum interference with a visibility of 0.96±0.020.96 \pm 0.02 between heralded photons from different sources. These results represent a decisive step for scaling quantum information processing in integrated photonics

    Circular polarization measurement in millimeter-wavelength spectral-line VLBI observations

    Full text link
    This paper considers the problem of accurate measurement of circular polarization in imaging spectral-line VLBI observations in the lambda=7 mm and lambda=3 mm wavelength bands. This capability is especially valuable for the full observational study of compact, polarized SiO maser components in the near-circumstellar environment of late-type, evolved stars. Circular VLBI polarimetry provides important constraints on SiO maser astrophysics, including the theory of polarized maser emission transport, and on the strength and distribution of the stellar magnetic field and its dynamical role in this critical circumstellar region. We perform an analysis here of the data model containing the instrumental factors that limit the accuracy of circular polarization measurements in such observations, and present a corresponding data reduction algorithm for their correction. The algorithm is an enhancement of existing spectral line VLBI polarimetry methods using autocorrelation data for calibration, but with innovations in bandpass determination, autocorrelation polarization self-calibration, and general optimizations for the case of low SNR, as applicable at these wavelengths. We present an example data reduction at λ=7\lambda=7 mm and derive an estimate of the predicted accuracy of the method of m_c < 0.5% or better at lambda=7 mm and m_c < 0.5-1% or better at lambda=3 mm. Both the strengths and weaknesses of the proposed algorithm are discussed, along with suggestions for future work.Comment: 23 pages, 13 figure

    An exceptionally bright flare from SGR1806-20 and the origins of short-duration gamma-ray bursts

    Full text link
    Soft-gamma-ray repeaters (SGRs) are galactic X-ray stars that emit numerous short-duration (about 0.1 s) bursts of hard X-rays during sporadic active periods. They are thought to be magnetars: strongly magnetized neutron stars with emissions powered by the dissipation of magnetic energy. Here we report the detection of a long (380 s) giant flare from SGR 1806-20, which was much more luminous than any previous transient event observed in our Galaxy. (In the first 0.2 s, the flare released as much energy as the Sun radiates in a quarter of a million years.) Its power can be explained by a catastrophic instability involving global crust failure and magnetic reconnection on a magnetar, with possible large-scale untwisting of magnetic field lines outside the star. From a great distance this event would appear to be a short-duration, hard-spectrum cosmic gamma-ray burst. At least a significant fraction of the mysterious short-duration gamma-ray bursts therefore may come from extragalactic magnetars.Comment: 21 pages, 5 figures. Published in Natur
    corecore