3,641 research outputs found

    Cortical spatio-temporal dimensionality reduction for visual grouping

    Full text link
    The visual systems of many mammals, including humans, is able to integrate the geometric information of visual stimuli and to perform cognitive tasks already at the first stages of the cortical processing. This is thought to be the result of a combination of mechanisms, which include feature extraction at single cell level and geometric processing by means of cells connectivity. We present a geometric model of such connectivities in the space of detected features associated to spatio-temporal visual stimuli, and show how they can be used to obtain low-level object segmentation. The main idea is that of defining a spectral clustering procedure with anisotropic affinities over datasets consisting of embeddings of the visual stimuli into higher dimensional spaces. Neural plausibility of the proposed arguments will be discussed

    Non-Parametric Probabilistic Image Segmentation

    Get PDF
    We propose a simple probabilistic generative model for image segmentation. Like other probabilistic algorithms (such as EM on a Mixture of Gaussians) the proposed model is principled, provides both hard and probabilistic cluster assignments, as well as the ability to naturally incorporate prior knowledge. While previous probabilistic approaches are restricted to parametric models of clusters (e.g., Gaussians) we eliminate this limitation. The suggested approach does not make heavy assumptions on the shape of the clusters and can thus handle complex structures. Our experiments show that the suggested approach outperforms previous work on a variety of image segmentation tasks

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Graph ambiguity

    Get PDF
    In this paper, we propose a rigorous way to define the concept of ambiguity in the domain of graphs. In past studies, the classical definition of ambiguity has been derived starting from fuzzy set and fuzzy information theories. Our aim is to show that also in the domain of the graphs it is possible to derive a formulation able to capture the same semantic and mathematical concept. To strengthen the theoretical results, we discuss the application of the graph ambiguity concept to the graph classification setting, conceiving a new kind of inexact graph matching procedure. The results prove that the graph ambiguity concept is a characterizing and discriminative property of graphs. (C) 2013 Elsevier B.V. All rights reserved

    Advances in Hyperspectral Image Classification: Earth monitoring with statistical learning methods

    Full text link
    Hyperspectral images show similar statistical properties to natural grayscale or color photographic images. However, the classification of hyperspectral images is more challenging because of the very high dimensionality of the pixels and the small number of labeled examples typically available for learning. These peculiarities lead to particular signal processing problems, mainly characterized by indetermination and complex manifolds. The framework of statistical learning has gained popularity in the last decade. New methods have been presented to account for the spatial homogeneity of images, to include user's interaction via active learning, to take advantage of the manifold structure with semisupervised learning, to extract and encode invariances, or to adapt classifiers and image representations to unseen yet similar scenes. This tutuorial reviews the main advances for hyperspectral remote sensing image classification through illustrative examples.Comment: IEEE Signal Processing Magazine, 201

    Robust Temporally Coherent Laplacian Protrusion Segmentation of 3D Articulated Bodies

    Get PDF
    In motion analysis and understanding it is important to be able to fit a suitable model or structure to the temporal series of observed data, in order to describe motion patterns in a compact way, and to discriminate between them. In an unsupervised context, i.e., no prior model of the moving object(s) is available, such a structure has to be learned from the data in a bottom-up fashion. In recent times, volumetric approaches in which the motion is captured from a number of cameras and a voxel-set representation of the body is built from the camera views, have gained ground due to attractive features such as inherent view-invariance and robustness to occlusions. Automatic, unsupervised segmentation of moving bodies along entire sequences, in a temporally-coherent and robust way, has the potential to provide a means of constructing a bottom-up model of the moving body, and track motion cues that may be later exploited for motion classification. Spectral methods such as locally linear embedding (LLE) can be useful in this context, as they preserve "protrusions", i.e., high-curvature regions of the 3D volume, of articulated shapes, while improving their separation in a lower dimensional space, making them in this way easier to cluster. In this paper we therefore propose a spectral approach to unsupervised and temporally-coherent body-protrusion segmentation along time sequences. Volumetric shapes are clustered in an embedding space, clusters are propagated in time to ensure coherence, and merged or split to accommodate changes in the body's topology. Experiments on both synthetic and real sequences of dense voxel-set data are shown. This supports the ability of the proposed method to cluster body-parts consistently over time in a totally unsupervised fashion, its robustness to sampling density and shape quality, and its potential for bottom-up model constructionComment: 31 pages, 26 figure
    • …
    corecore