63 research outputs found

    Multiple-input multiple-output symbol rate signal digital predistorter for non-linear multi-carrier satellite channels

    Get PDF
    Abstract: A digital predistortion (DPD) scheme is presented for non-linear distortion mitigation in multi-carrier satellite communication channels. The proposed DPD has a multiple-input multiple-output architecture similar to data DPD schemes. However, it enhances the mitigation performance of data DPDs using a multi-rate processing algorithm to achieve spectrum broadening of non-linear operators. Compared to single carrier (single-input single-output) signal (waveform) DPD schemes, the proposed DPD has lower digital processing rate reducing the required hardware cost of the predistorter. The proposed DPD outperforms, in total degradation, both data and signal DPD schemes. Further, it performs closest to a channel bound described by an ideally mitigated channel with limited maximum output power

    Linearization of RF Power Amplifiers Using Adaptive Kalman Filtering Algorithm

    No full text
    International audienceIn this paper, a new linearization algorithm of Power Amplifier, based on Kalman filtering theory is proposed for obtaining fast convergence of the adaptive digital predistortion. The proposed method uses the real-time digital processing of baseband signals to compensate the nonlinearities and memory effects in radio-frequency Power Amplifier. To reduce the complexity of computing in classical Kalman Filtering, a sliding time-window has been inserted which combines off-line measurement and on-line parameter estimation with high sampling time to track the changes in the PA characteristics. We evaluated the performance of the proposed linearization scheme through simulation and experiments. Using digital signal processing, experimental results with commercial power amplifier are presented for multicarrier signals to demonstrate the effectiveness of this new approach

    A General Approach to Fully Linearize the Power Amplifiers in mMIMO with Less Complexity

    Full text link
    A radio frequency (RF) power amplifier (PA) plays an important role to amplify the message signal at higher power to transmit it to a distant receiver. Due to a typical nonlinear behavior of the PA at high power transmission, a digital predistortion (DPD), exploiting the preinversion of the nonlinearity, is used to linearize the PA. However, in a massive MIMO (mMIMO) transmitter, a single DPD is not sufficient to fully linearize the hundreds of PAs. Further, for the full linearization, assigning a separate DPD to each PA is complex and not economical. In this work, we address these challenges via the proposed low-complexity DPD (LC-DPD) scheme. Initially, we describe the fully-featured DPD (FF-DPD) scheme to linearize the multiple PAs and examine its complexity. Thereafter, using it, we derive the LC-DPD scheme that can adaptively linearize the PAs as per the requirement. The coefficients in the two schemes are learned using the algorithms that adopt indirect learning architecture based recursive prediction error method (ILA-RPEM) due to its adaptive and free from matrix inversion operations. Furthermore, for the LC-DPD structure, we have proposed three algorithms based on correlation of its common coefficients with the distinct coefficients. Lastly, the performance of the algorithms are quantified using the obtained numerical results

    Highly efficient RF power amplifier for wireless LAN applications

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Multicarrier communication systems with low sensibility to nonlinear amplification

    Get PDF
    Actualment estem entrant a una nova era de la informació amb gran demanda de sistemes de comunicació sense fils. Nous serveis com dades i video requereixen transmissions fiables d'alta velocitat, fins i tot en escenaris d'alta mobilitat. A més a més, la dificultat d'assignar el limitat espectre radioelèctric juntament amb la necessitat d'incrementar el temps de vida de les bateries dels terminals mòbils, requereix el diseny de transceptors que usin la potència i l'ampla de banda disponibles de manera eficient. Les comunicacions multiportadora basades en OFDM són capaces de satisfer la majoria d'aquests requeriments. Però, entre altres reptes, reduir la sensibilitat a la amplificació no-lineal és un factor clau durant el diseny. En aquesta tesi doctoral s'analitza la sensibilitat dels sistemes multiportadora basats en OFDM a l'amplificació no-lineal i es consideren formes eficients per superar aquest problema. La tesi s'enfoca principalment al problema de reduir les fluctuacions de l'envolupant del senyal transmès. En aquest sentit es presenta també un estudi de les mètriques de l'envolupant del senyal, PAPR i CM. A més a més, basant-nos en l'anàlisis presentat es proposen noves tècniques per sistemes OFDM i MC-SS. Per MC-SS, també es tracta el diseny d'una tècnica de postprocessament en forma de detector multiusuari per canals no-lineals.Actualmente estamos entrando en una nueva era de la información donde se da una gran demanda de sistemas de comunicación inalámbricos. Nuevos servicios como datos y vídeo requieren transmisiones fiables de alta velocidad, incluso en escenarios de alta movilidad. Además, la dificultad de asignar el limitado espectro radioeléctrico junto con la necesidad de incrementar el tiempo de vida de las baterías de los terminales móviles, requiere el diseño de transceptores que usen eficientemente la potencia y el ancho de banda disponibles. Las comunicaciones multiportadora basadas en OFDM son capaces de satisfacer la mayoría de dichos requerimientos. Sin embargo, entre otros retos, reducir su sensibilidad a la amplificación no-lineal es un factor clave durante el diseño. En esta tesis se analiza la sensibilidad de los sistemas multiportadora basados en OFDM a la amplificación no-lineal y se consideran formas eficientes para superar dicho problema. La tesis se enfoca principalmente al problema de reducir las fluctuaciones de la envolvente. En este sentido también se presenta un estudio de las métricas de la señal, PAPR y CM. Además, basándonos en el análisis presentado se proponen nuevas técnicas para OFDM y MC-SS. Para MC-SS, también se trata el diseño de un detector multiusuario para canales no-lineales.We are now facing a new information age with high demand of wireless communication systems. New services such as data and video require achieving reliable high-speed transmissions even in high mobility scenarios. Moreover, the difficulty to allocate so many wireless communication systems in the limited frequency band in addition to the demand for long battery life requires designing spectrum and power efficient transceivers. Multicarrier communications based on OFDM are known to fulfill most of the requirements of such systems. However, among other challenges, reducing the sensitivity to nonlinear amplification has become a design key. In this thesis the sensitivity of OFDM-based multicarrier systems to nonlinear amplification is analyzed and efficient ways to overcome this problem are considered. The focus is mainly on the problem of reducing the envelope fluctuations. Therefore, a study of the signal metrics, namely PAPR and CM, is also presented. From the presented analysis, several new techniques for OFDM and MC-SS are proposed. For MC-SS, the design of a post-processing technique in the form of a multiuser detector for nonlinearly distorted MC-SS symbols is also addressed

    mm-Wave Data Transmission and Measurement Techniques: A Holistic Approach

    Get PDF
    The ever-increasing demand on data services places unprecedented technical requirements on networks capacity. With wireless systems having significant roles in broadband delivery, innovative approaches to their development are imperative. By leveraging new spectral resources available at millimeter-wave (mm-wave) frequencies, future systems can utilize new signal structures and new system architectures in order to achieve long-term sustainable solutions.This thesis proposes the holistic development of efficient and cost-effective techniques and systems which make high-speed data transmission at mm-wave feasible. In this paradigm, system designs, signal processing, and measurement techniques work toward a single goal; to achieve satisfactory system level key performance indicators (KPIs). Two intimately-related objectives are simultaneously addressed: the realization of efficient mm-wave data transmission and the development of measurement techniques to enable and assist the design and evaluation of mm-wave circuits.The standard approach to increase spectral efficiency is to increase the modulation order at the cost of higher transmission power. To improve upon this, a signal structure called spectrally efficient frequency division multiplexing (SEFDM) is utilized. SEFDM adds an additional dimension of continuously tunable spectral efficiency enhancement. Two new variants of SEFDM are implemented and experimentally demonstrated, where both variants are shown to outperform standard signals.A low-cost low-complexity mm-wave transmitter architecture is proposed and experimentally demonstrated. A simple phase retarder predistorter and a frequency multiplier are utilized to successfully generate spectrally efficient mm-wave signals while simultaneously mitigating various issues found in conventional mm-wave systems.A measurement technique to characterize circuits and components under antenna array mutual coupling effects is proposed and demonstrated. With minimal setup requirement, the technique effectively and conveniently maps prescribed transmission scenarios to the measurement environment and offers evaluations of the components in terms of relevant KPIs in addition to conventional metrics.Finally, a technique to estimate transmission and reflection coefficients is proposed and demonstrated. In one variant, the technique enables the coefficients to be estimated using wideband modulated signals, suitable for implementation in measurements performed under real usage scenarios. In another variant, the technique enhances the precision of noisy S-parameter measurements, suitable for characterizations of wideband mm-wave components

    Low-Complexity Sub-band Digital Predistortion for Spurious Emission Suppression in Noncontiguous Spectrum Access

    Full text link
    Noncontiguous transmission schemes combined with high power-efficiency requirements pose big challenges for radio transmitter and power amplifier (PA) design and implementation. Due to the nonlinear nature of the PA, severe unwanted emissions can occur, which can potentially interfere with neighboring channel signals or even desensitize the own receiver in frequency division duplexing (FDD) transceivers. In this article, to suppress such unwanted emissions, a low-complexity sub-band DPD solution, specifically tailored for spectrally noncontiguous transmission schemes in low-cost devices, is proposed. The proposed technique aims at mitigating only the selected spurious intermodulation distortion components at the PA output, hence allowing for substantially reduced processing complexity compared to classical linearization solutions. Furthermore, novel decorrelation based parameter learning solutions are also proposed and formulated, which offer reduced computing complexity in parameter estimation as well as the ability to track time-varying features adaptively. Comprehensive simulation and RF measurement results are provided, using a commercial LTE-Advanced mobile PA, to evaluate and validate the effectiveness of the proposed solution in real world scenarios. The obtained results demonstrate that highly efficient spurious component suppression can be obtained using the proposed solutions

    The digital predistorter goes multi-dimensional: DPD for concurrent multi-band envelope tracking and outphasing power amplifiers

    Get PDF
    Over at least the last two decades, digital predistortion (DPD) has become the most common and widespread solution to cope with the power amplifier's (PA's) inherent linearity-versus-efficiency tradeoff. When compared with other linearization techniques, such as Cartesian feedback or feedforward, DPD has proven able to adapt to the always-growing demands of technology: wider bandwidths, stringent spectrum masks, and reconfigurability. The principles of predistortion linearization (in its analog or digital forms) are straightforward, and the linearization subsystem precedes the PA (a nonlinear function in a digital signal processor in the case of DPD or nonlinear device in the case of analog predistortion and counteracts the nonlinear characteristic of the PA. Some excellent overviews on DPD can be found in [1]-[4]. Let us now look at the challenges that DPD linearization has faced and will continue to face in the near future with 5G new radio (5G-NR).This work has been supported in part by the Spanish Government and FEDER under MICINN projects TEC2017-83343-C4-1-R and TEC2017-83343-C4-2-R and by the Generalitat de Catalunya under Grant 2017 SGR 813

    Digital predistortion of RF amplifiers using baseband injection for mobile broadband communications

    Get PDF
    Radio frequency (RF) power amplifiers (PAs) represent the most challenging design parts of wireless transmitters. In order to be more energy efficient, PAs should operate in nonlinear region where they produce distortion that significantly degrades the quality of signal at transmitter’s output. With the aim of reducing this distortion and improve signal quality, digital predistortion (DPD) techniques are widely used. This work focuses on improving the performances of DPDs in modern, next-generation wireless transmitters. A new adaptive DPD based on an iterative injection approach is developed and experimentally verified using a 4G signal. The signal performances at transmitter output are notably improved, while the proposed DPD does not require large digital signal processing memory resources and computational complexity. Moreover, the injection-based DPD theory is extended to be applicable in concurrent dual-band wireless transmitters. A cross-modulation problem specific to concurrent dual-band transmitters is investigated in detail and novel DPD based on simultaneous injection of intermodulation and cross-modulation distortion products is proposed. In order to mitigate distortion compensation limit phenomena and memory effects in highly nonlinear RF PAs, this DPD is further extended and complete generalised DPD system for concurrent dual-band transmitters is developed. It is clearly proved in experiments that the proposed predistorter remarkably improves the in-band and out-of-band performances of both signals. Furthermore, it does not depend on frequency separation between frequency bands and has significantly lower complexity in comparison with previously reported concurrent dual-band DPDs
    corecore