765 research outputs found

    A General Approach for Securely Querying and Updating XML Data

    Get PDF
    Over the past years several works have proposed access control models for XML data where only read-access rights over non-recursive DTDs are considered. A few amount of works have studied the access rights for updates. In this paper, we present a general model for specifying access control on XML data in the presence of update operations of W3C XQuery Update Facility. Our approach for enforcing such updates specifications is based on the notion of query rewriting where each update operation defined over arbitrary DTD (recursive or not) is rewritten to a safe one in order to be evaluated only over XML data which can be updated by the user. We investigate in the second part of this report the secure of XML updating in the presence of read-access rights specified by a security views. For an XML document, a security view represents for each class of users all and only the parts of the document these users are able to see. We show that an update operation defined over a security view can cause disclosure of sensitive data hidden by this view if it is not thoroughly rewritten with respect to both read and update access rights. Finally, we propose a security view based approach for securely updating XML in order to preserve the confidentiality and integrity of XML data.Comment: No. RR-7870 (2012

    Secure Querying of Recursive XML Views: A Standard XPath-based Technique

    Get PDF
    Most state-of-the art approaches for securing XML documents allow users to access data only through authorized views defined by annotating an XML grammar (e.g. DTD) with a collection of XPath expressions. To prevent improper disclosure of confidential information, user queries posed on these views need to be rewritten into equivalent queries on the underlying documents. This rewriting enables us to avoid the overhead of view materialization and maintenance. A major concern here is that query rewriting for recursive XML views is still an open problem. To overcome this problem, some works have been proposed to translate XPath queries into non-standard ones, called Regular XPath queries. However, query rewriting under Regular XPath can be of exponential size as it relies on automaton model. Most importantly, Regular XPath remains a theoretical achievement. Indeed, it is not commonly used in practice as translation and evaluation tools are not available. In this paper, we show that query rewriting is always possible for recursive XML views using only the expressive power of the standard XPath. We investigate the extension of the downward class of XPath, composed only by child and descendant axes, with some axes and operators and we propose a general approach to rewrite queries under recursive XML views. Unlike Regular XPath-based works, we provide a rewriting algorithm which processes the query only over the annotated DTD grammar and which can run in linear time in the size of the query. An experimental evaluation demonstrates that our algorithm is efficient and scales well.Comment: (2011

    SMOQE: A System for Providing Secure Access to XML

    Get PDF
    XML views have been widely used to enforce access control, support data integration, and speed up query answering. In many applications, e.g., XML security enforcement, it is prohibitively expensive to materialize and maintain a large number of views. Therefore, views are necessarily virtual. An immediate question then is how to answer queries on XML virtual views. A common approach is to rewrite a query on the view to an equivalent one on the underlying document, and evaluate the rewritten query. This is the approach used in the Secure MOdular Query Engine (SMOQE). The demo presents SMOQE, the first system to provide efficient support for answering queries over virtual and possibly recursively defined XML views. We demonstrate a set of novel techniques for the specification of views, the rewriting, evaluation and optimization of XML queries. Moreover, we provide insights into the internals of the engine by a set of visual tools. 1

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    XML access control using static analysis

    Get PDF

    Delegatable access control for fine-grained XML

    Get PDF
    The access control mechanisms are critical to ensure security in XML (eXtensible Markup Language). Several such mechanisms have been used or proposed; however, the notion of delegation in XML has not been studied in the literature. In this paper, we propose an access control model encapsuling delegation authorization rules for XML documents that allow flexible data granularity and limited inference protection. Our access control policy specification is basically DTD-based. It can also be considered to be document-based

    A flexible mandatory access control policy for XML databases

    Get PDF
    A flexible mandatory access control policy (MAC) for XML databases is presented in this paper. The label type and label access policy can be defined according to the requirements of applications. In order to preserve the integrity of data in XML databases, a constraint between a read access rule and a write access rule in label access policy is introduced. Rules for label assignment and propagation are proposed to alleviate the workload of label assignment. Also, a solution for resolving conflicts of label assignments is proposed. At last, operations for implementation of the MAC policy in a XML database are illustrated

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    Formalisation and Implementation of the XACML Access Control Mechanism

    Get PDF
    We propose a formal account of XACML, an OASIS standard adhering to the Policy Based Access Control model for the specifica- tion and enforcement of access control policies. To clarify all ambiguous and intricate aspects of XACML, we provide it with a more manageable alternative syntax and with a solid semantic ground. This lays the basis for developing tools and methodologies which allow software engineers to easily and precisely regulate access to resources using policies. To demonstrate feasibility and effectiveness of our approach, we provide a software tool, supporting the specification and evaluation of policies and access requests, whose implementation fully relies on our formal development
    corecore