
A Flexible Mandatory Access Control Policy
for XML Databases†

Hong Zhu
Huazhong University of Science and

Technology,
Wuhan, Hubei 430074, P.R.China

+86-27-87544400

zhuhong@public.wh.hb.cn

Renchao Jin*
Huazhong University of Science and

Technology,
Wuhan, Hubei 430074, P.R.China

+86-27-87792212

jrc@hust.edu.cn

Kevin Lü
Brunel University,

BBS, Room 76, Tin Building, Brunel
University, Uxbridge, UK UB8 3PH

+44-01895-265254

Kevin.Lu@Brunel.ac.uk

ABSTRACT
A flexible mandatory access control policy (MAC) for XML
databases is presented in this paper. The label type and label
access policy can be defined according to the requirements of
applications. In order to preserve the integrity of data in XML
databases, a constraint between a read access rule and a write
access rule in label access policy is introduced. Rules for label
assignment and propagation are proposed to alleviate the
workload of label assignment. Also, a solution for resolving
conflicts of label assignments is proposed. At last, operations for
implementation of the MAC policy in a XML database are
illustrated.

Categories and Subject Descriptors
H.2.0 [Database Management]:Security, integrity and protection

General Terms
Management, Security

Keywords
Database Security, XML database, Mandatory access control

1. INTRODUCTION
XML is widely used in a variety of applications, and has become
a standard for describing and exchanging data across the Internet.
As more and more XML documents are stored in XML databases,
the security of XML databases has become an important issue.
Access control is one of the methods used to guarantee the
security of XML databases. Access control models for XML
databases can be divided into two types: the discretionary access
control model (DAC) [2] and the mandatory access control model
(MAC) [4, 6]. In the DAC models, a subject can discretionarily

control privileges of other subjects accessing an object in a XML
database but attacks from a Trojan horse cannot be resisted
because of inherent flaws.

In the MAC model based on BLP [1], every object is assigned a
label which specifies the security privilege of the object, and
every user is assigned a label which specifies what objects he/she
can access. The label in [1] is a binary-tuple L=<l, c> consisting
of a classification l and a category c. L(s) and L(o) denote the
labels for a subject and an object respectively, and the label L(o) ≤
L(s) if and only if L(o).l ≤ L(s).l and L(o).c ⊆ L(s).c. We call L(o)
≤ L(s) as L(s) dominates L(o). In [3], when an object is accessed,
the label of the subject is compared with the label of the object by
the Simple security property and *-property. The MAC security
of a system based on the BLP model is sufficient, but the rule for
label comparing in BLP model is too rigorous for some cases. The
larger the set of category for an object is, the fewer the users that
can access it. In some applications [7, 8], the rule for label
comparing is not as rigorous as this. On the contrary, the
requirement is: the larger the set of category, the more users that
can access it. Moreover, in these applications the structure of the
label may be different from the structure of the label in the BLP
model. In order to meet the needs of these applications, [5, 7, 8]
have enhanced the flexibility of the MAC mechanism in relational
databases. The existing MAC models [4, 6] for XML databases
are all based on the BLP model. How to make the flexibility of
MAC available to XML databases has not been reported in the
literature. In order to enhance the security of XML databases for
all-purpose uses, XML databases should provide a flexible MAC.
This paper focuses on this problem.

The contributions of this paper are:

(1) A flexible MAC policy for XML databases is proposed. The
label structure and label access policy can be defined according to
the requirements of the applications.

(2) A constraint between the read access rules and write
access rules in label access policy has been introduced. The rules
for label assignment and propagation are addressed to alleviate
the workload of label assignments. The problem for conflicts of
label assignments has been solved.

The rest of this paper is organized as follows: Section 2 describes
the basic concepts. Section 3 describes the flexible MAC policy
for XML databases in detail. Section 4 summarizes the
conclusions. Because of the space limit, we do not illustrate our
implementation of the policy in a XML database.

†The work of this paper is supported by the National Hi-Tech Research
and Development Program (863) of China. Grant No. 2006AA01Z430.

*To whom correspondence should be addressed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Infoscale 2007, June 6–8, 2007, Suzhou, China.
Copyright 2007 ACM 978-1-59593-757-5.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/336184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Basic Concepts
The structure of the label in our MAC policy is that: each label is
specified by a label type, and the label type specifies what
components the label type consists of. Every component in a label
is specified by a label component type. Normally, the structure of
the label is specified by the administrator; it can be the same or
not the same as the structure of the label in the BLP model.

Definition 1. Label component type. The label component type
LC is a set of elements

1 2{ , , , }mLC c c c= … , 1m ≥ and it also
specifies whether the set is ordered or unordered. If LC is an
ordered set, then c1 ≤ c2 ≤…≤ cm and we call it an ordered label
component type. Otherwise, we call it an unordered label
component type.

Definition 2. Label component. The label component lc is an
instance of a label component type. If LC is an ordered label
component type then lc∈LC, otherwise lc⊆ LC.

Example 1. We can define two label component types secret and
Dept. The secret=LC1={unclassified, secret, Top-secret} is an
ordered label component type with unclassified ≤ secret ≤ Top-
secret. Any element in LC1 is a label component as the
classification of the label in the BLP model.
Dept=LC2={Technique, HumanResource, Financial} is an
unordered label component type. It denotes the department names
of a company. Any subset of LC2 is a label component as the
category of the label in the BLP model. We can define label
component types in XML format files.

Definition 3. Label type. A label type is an n-tuple
LT=<LC1 , … , LCn>, which is composed of n label component
types. Here n≥1, LCi is a defined label component type. In order
to prevent semantic confusion of the labels for subjects and
objects, we specify that there is at most one ordered label
component in a label type. If a label type has an ordered label
component type, then we specify that LC1 must be the ordered
label component type.

Definition 4. Label. A label LA = <lc1 ,…, lcn> is an instance of
a label type

1 2, ,..., nLT LC LC LC=< > . Where
iLC (1 i n≤ ≤) is a

defined label component type, and lci is a label component of
iLC .

Definition 5. Label access rule. The label access rule is a four-
tuple LAS=(LA, LT, OP, type), where LA is a set of labels and LT
is label type of LA, type∈{r, w} which indicates the rule is a read
access rule(type=r) or a write access rule(type=w), and OP is n-
tuple OP=<op1, …, opn>. For any two labels l1, l2∈LA, each opi
indicates the operation between l1.ci and l2.ci(1≤i≤n). For an
ordered label component type in LT, the opi ∈{EQ, LE, GE, GT,
LT} which denotes operators in {=, <=, >=, >, <} respectively.
For an unordered label component type in LT, the opi ∈ {IN,
INTERSECTION, CONTAIN, EQUAL}.

Definition 6 label access policy The label access policy is a triple
LP=(S, O, LASS). Where S is a set of subjects and O is a set of
objects, and LASS is a set of label access rules. The LASS consists
of a read access rule and a write access rule.

LP indicates when a subject s∈ S reads an object o∈ O, the
labels for the subject and the object must conform to the read
access rule. The labels for the subject and the object are compared

according to the operations specified in LP.LASS.OP to determine
whether the subject can read the object or not. In the following
discussion, if a label L(s) and a label L(o) conform to a read
access rule in LP.LASS, it is denoted as L(s)ωr in LP.LASS L(o). If a
label L(s) and a label L(o) conform to a write access rule in
LP.LASS, it is denoted as L(s)ωw in LP.LASS L(o).

For a label access policy, we can define label access rules in
XML format. The format of a rule for specifying an operator
between two components in the labels of a subject and an object
in XML is:

Subject.component-name <operator> Object.component-name.

The MAC policy compares the labels of a subject and an object
according to the label access rules. Our policy supports the
INTERSECTION operator when we compare two labels; this is
different from the other models [4, 6] for XML databases.
However, when the operator INTERSECTION appears in the read
access rule, the domination relationship between two labels
cannot be well defined as that in BLP model. So we did not define
domination relationship between two labels in our policy.

3. Flexible Mandatory Access Control Policy
When a subject tries to access an object, the read access rule is
applied to evaluate whether the labels of a subject and an object
are matched. If they are matched, the user can read the object.
When a subject tries to insert an object into a XML document, or
tries to update or delete an object from a XML document, the read
access rule must be evaluated first to locate the object to be
inserted or updated or deleted. In our flexible MAC policy any
user can read what he/she wrote. Otherwise, the integrity of data
is not maintained. We have the following constraint.

Rule 1. The constraint of label access policy. For a label access
policy LP=(S, O, LASS), the write access rule contains the read
access rule. Namely, for any subject s∈S, and any object o∈O,
the privilege of L(s) ωw in LP.LASS L(o) is higher than L(s) ωr in

LP.LASS L(o).

3.1 The labeled subjects and XML documents
The subjects of our MAC policy are the users who access the
XML databases or application programs or agents on behalf of
users. The administrator creates label types and labels, and
assigns them to users. Every user except the administrator has a
unique label.

The objects are elements/attributes in XML documents and
schemas. We denote the objects in XML documents with
XPath[3]. As the labeled schema and its XML documents have
the same notations, we formally define the labeled XML
document in definition 7. The same principle can be applied for
formally defining XML schema.

Definition 7 Labeled XML document. The XML document
XDoc with labels is an eleven-tuple XDoc=(Ve, vr, Va, Ns, Ls, LT,
LP, elemR, attrR, nameR, labelR). We have:

(1) Ve is the set of all elements in the document;

(2) vr is the root of the document, vr is also an element of in the
document, vr∈Ve;

(3) Va is the set of all attributes in the document;

(4) Ns is the set of name, including the name of elements and
attributes;

(5) elemR is a binary-tuple, elemR⊆ Ve×Ve. If e1∈Ve, e2∈Ve,
then (e1, e2) ∈elemR denotes e2 is a sub-element of e1 or there
exists a link in e1 associated with e2;

(6) attrR is a binary-tuple, attrR⊆ Ve×Va. If e∈Ve, a∈Va then
(e, a) ∈ attrR denotes a is an attribute of e;

(7) nameR is a binary-tuple, nameR⊆ Ns× (VaU Ve). If n∈Ns,

v∈VaU ∈Ve, then (v, n)∈nameR denotes that n is the name of
v. As different elements or attributes in the same document may
have the same names, one member of Ns may be mapped into a
different member of VaU Ve;

(8) Ls is the set of all labels with a label type LT;

(9) LT is the label type which specifies the structure of the labels
in the document;

(10) LP is the label access policy, and LP determines the set of
label access rules including a read access rule and a write access
rule;

(11) labelR is a binary-tuple, labelR ⊆ (VaU Ve)×Ls. If L∈Ls,

v∈ VaU Ve, then (v, L) ∈ labelR denotes L is the label of v, or
L=L(v). Different elements or attributes may have the same label,
and every element or attribute has only one label.

For the document not being labeled, it is a seven-tuple Doc= (Ve,
vr, Va, Ns, elemR, attrR, nameR). The meanings of these symbols
are the same as those in the XDoc. In the following discussion, we
use XDoc and XSch to denote a labeled XML document and
schema respectively. And from the definition of XDoc, we have:
for any label access rule las∈XDoc.LP.LASS, XDoc.LT=las.LT.

3.2 Label assignment rules for XML objects
Multiple label access policies can be defined for different security
requirements but every document can only be assigned one label
access policy. After a XML document or schema is loaded, we
should first assign label access policy for them. Then, labels for
elements or attributes in XML documents and schema are
assigned.

3.2.1 The constraint of label access policy between
XML schema and documents
A XML schema defines a set of XML documents with the same
structure and similar content. The label access policy should be
the same for the schema and its documents.

Rule 2. The constraint of label access policy between XML
schema and document. If the labeled XML schema and its
document are XSch and XDoc respectively, then
XSch.LP=XDoc.LP.

3.2.2 The rules for label assignment and propagation
When a XML schema is created, the label for the root of the
schema should be assigned. For an ordinary user, when he/she
creates a XML schema, the label for the root of the schema is
equal to the label of the user. We have the following Rule 3.

Rule 3. The label for the root of XML schema. For an ordinary
subject s, if s creates a XML schema sch, then L(sch.vr)=L(s).

If the schema is created by the administrator, the label must be
assigned explicitly. There are a large number of elements and
attributes in a XML document. If each element or attribute is
assigned a label, the workload for management of these labels is
high. We can make use of the features of XML to alleviate the
administrator’s workload.

The administrator only needs to assign labels to XML schemas
and some elements in XML documents. Then, the labels are
propagated to the instances of the elements or attributes in XML
documents of the schema, or the labels are propagated to
descendent elements and attributes of the labeled elements
downward from root to leaves in XML documents.

Rule 4. The label propagation from XML schema to XML
documents. For labeled XDoc and XSch, an instance object
io ∈ XDoc.Va U XDoc.Ve, and a schema object

so∈XSch.VaU XSch.Ve, assume io is one of the instances of the
schema object so, then L(io)=L(so).

Rule 5. The label propagation from an element to its sub-
elements and attributes. Assume XDoc is a labeled XML
document, for any element e1, e2∈Ve (or attribute a1∈Va), if
(e1, e2)∈ elemR (or (e1, a1)∈ attrR), then L(e2)=L(e1)(or
L(a1)=L(e1).

3.2.3 The solution for conflictions of label
assignments
Rule 4 and Rule 5 enhance the flexibility of label assignment and
alleviate the workload of the administrator, but may cause
assignments of several different labels to one object. For example,
an element in a XML document may have three labels. One is
propagated from its ancestor, one is propagated from the schema,
and the last one is assigned directly by the administrator. In order
to guarantee that every object in a XML document has only one
label, we introduce a rule for solving label assignment conflicts.

Rule 6. The label calculation rule. Assume a read access rule
lasr=(L, LT, OP), L1 =<a1, a2, …, an>∈L and L2 =< b1, b2, …,
bn >∈L are two labels of label type LT, if L1 and L2 are two
labels assigned to the same object by direct assignment or by
propagation respectively, we can calculate a new label L3=<c1,
c2, …, cn> for the object, where each component of L3 is
calculated as follows:

(1) For the ordered label components type in the LT, if the
operator in the lasr.OP.opi is:

(i) GE or GT, then L3.c1=max(L1.a1, L2.b1);

(ii) LE or LT, then L3.c1=min(L1.a1, L2.b1);

(iii)EQ, then L3.c1=max(L1.a1, L2.b1);

Here the max(l1, l2) is a function to calculate the maximum of l1
and l2, min(l1, l2) is a function to calculate the minimum of l1 and
l2.

(2)In the following formulas, if there is an ordered label
component type in the label type then i≥2, otherwise i≥1. For the

unordered label components type in LT, if the operator
lasr.OP.opi is:

(i) IN, then L3.ci = L1.ci ∩ L2.ci;

(ii) CONTAIN, then L3.ci = L1.ci ∪ L2.ci;

(iii) INTERSECTION, then L3.ci = L1.ci ∩ L2.ci;

(iv) EQUAL, then L3.ci = L1.ci.

Rule 6 can be extended to calculate a unique label for an object
which is assigned three labels due to direct assignment or
propagation. Because the least upper bound does not exist for
INTERSECTION operator in the sense of the least upper bound
defined for CONTAIN operator in [4], a simple calculation rule
for INTERSECTION operator is used in Rule 6. Namely, when
INTERSECTION operator is specified for some component in a
label access policy, we specify that the component of the result
labels is the intersection of corresponding components of two
labels. The case may occur in which some object cannot be
accessed by any users except the administrator or the creator of
the XML document which the object belongs to. Although we
lose some availability, the secret is kept. We use a function
label_comput(L1, L2) to denote the result from Rule 6 where L1, L2
are two labels.

3.2.4 Operations for implementation of the MAC
policy in a XML database
We implemented our flexible MAC access control policy in a
XML database management system. As for the space limit, we do
not illustrate the architecture of the system and experiments for
performance comparison. We only discuss the operations for
implementation of the MAC policy.

The query operations deal with read-only operations. When a user
submits a query request, the system parses the query request and
searches the label access rules. Then, the query is rewritten
according to the label of the user and label access rules, and then
the rewritten query is executed. By this way, we can prevent users
from inference inferring unauthorized data.

The update operations may impact on the labels or structure of
XML documents. When a subject loads a XML document, the
label of the subject is compared with the label of the root of the
schema corresponding to the XML document. If they conform to
the write access rule in the label access policy, the XML
document is loaded and the label of the root is calculated from the
label of the subject and the label of the root of the schema of the
loaded XML documents by Rule 6.

When a subject modifies the objects or deletes some objects in a
XML document, the label of subject may not be equal to the label
of the objects. If the update operation would change some other
user's access privileges covertly, this would cause security
problems such as covert information transmission. We permit the
updating operation success only when the label of subject and the
label of the objects conform to the write access rule in the label
access policy.

For insertion operation, we should first find the object o1 which is
the parent of the object o2 to be inserted. According to Rule 4 and
Rule 5, the inserted object o2 may have two labels propagated
from its ancestor and schema respectively. We should calculate
L(o2) from Rule 6 and then compare the label of user with L(o2). If
the label of user and L(o2) satisfy the write access rule in the label
access policy, the insert operation is permitted.

4. Conclusion
Providing a flexible mandatory access control policy for XML
databases is important for many applications. We have proposed
an approach which can provide MAC policies for different
purposes with different requirements, including multilevel secure
XML database systems. In our MAC policy, label access policies
can be defined according to the requirements of various
applications, which can enhance the flexibility of MAC policy in
general. A constraint between the access control rules for a read
access rule and a write access rule is proposed to maintain the
integrity of data. Rules for label assignment and propagation are
proposed to alleviate the workload of label assignments, and a
rule for solving label assignment conflicts is also proposed.
Moreover, operations for implementation of the MAC policy in
the XML database are discussed. The MAC policy in this paper
can be regarded as a generalization of the BLP model.

REFERENCES
[1] D.E. Bell and L.J. LaPadula, “Secure Computer Systems:

Unified Exposition and Multics Interpretation,” Technical
Report MTR-2997, The Mitre Corp., Bedford, Mass., 1976.

[2] E. Damiani, Vimercati SDC, Paraboschi S, Samarati P . A
fine-grained access control system for XML documents.
ACM Transactions on Information and System Security,
2002 , 5(2):169 ~ 202.

[3] J. Clark and S. DeRose. XML Path Language (XPath). W3C
Working Draft, Nov. 1999.

[4] Lan Li, Xinghao Jiang, and Jianhua Li, Enforce Mandatory
Access Control Policy on XML Documents, in Proceedings
in 7th International Conference of Information and
Communications Security:, ICICS 2005, Beijing, China,
December 10-13, 2005.

[5] Primary Author: Jeffrey E. Levinger. Oracle® Label Security
Administrator’s Guide10g Release 1 (10.1) Part No. B10774-
01, December 2003.

[6] SungRan Cho, Sihem Amer-Yahia, Laks VS Lakshmanan,
and Divesh Srivastava, Optimizing the Secure Evaluation Of
Twig Queries. Int. Conference On VLDB, 2002.

[7] Walid Rjaibi, Paul Bird. A Multi-Purpose Implementation of
Mandatory Access Control in Relational Database
Management Systems. Proceedings of the 30th VLDB
Conference, Toronto, Canada, 2004.

[8] Xiaodong Yuan, Ying Feng, The Model of Mandatory Access
Control with Extended Security Label, Chinese Journal of
Computers, October 2000: 1096~1100.

