23,085 research outputs found

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    Context-aware adaptation in DySCAS

    Get PDF
    DySCAS is a dynamically self-configuring middleware for automotive control systems. The addition of autonomic, context-aware dynamic configuration to automotive control systems brings a potential for a wide range of benefits in terms of robustness, flexibility, upgrading etc. However, the automotive systems represent a particularly challenging domain for the deployment of autonomics concepts, having a combination of real-time performance constraints, severe resource limitations, safety-critical aspects and cost pressures. For these reasons current systems are statically configured. This paper describes the dynamic run-time configuration aspects of DySCAS and focuses on the extent to which context-aware adaptation has been achieved in DySCAS, and the ways in which the various design and implementation challenges are met

    Logic Programming Applications: What Are the Abstractions and Implementations?

    Full text link
    This article presents an overview of applications of logic programming, classifying them based on the abstractions and implementations of logic languages that support the applications. The three key abstractions are join, recursion, and constraint. Their essential implementations are for-loops, fixed points, and backtracking, respectively. The corresponding kinds of applications are database queries, inductive analysis, and combinatorial search, respectively. We also discuss language extensions and programming paradigms, summarize example application problems by application areas, and touch on example systems that support variants of the abstractions with different implementations

    IaaS-cloud security enhancement: an intelligent attribute-based access control model and implementation

    Get PDF
    The cloud computing paradigm introduces an efficient utilisation of huge computing resources by multiple users with minimal expense and deployment effort compared to traditional computing facilities. Although cloud computing has incredible benefits, some governments and enterprises remain hesitant to transfer their computing technology to the cloud as a consequence of the associated security challenges. Security is, therefore, a significant factor in cloud computing adoption. Cloud services consist of three layers: Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). Cloud computing services are accessed through network connections and utilised by multi-users who can share the resources through virtualisation technology. Accordingly, an efficient access control system is crucial to prevent unauthorised access. This thesis mainly investigates the IaaS security enhancement from an access control point of view. [Continues.

    Link Before You Share: Managing Privacy Policies through Blockchain

    Full text link
    With the advent of numerous online content providers, utilities and applications, each with their own specific version of privacy policies and its associated overhead, it is becoming increasingly difficult for concerned users to manage and track the confidential information that they share with the providers. Users consent to providers to gather and share their Personally Identifiable Information (PII). We have developed a novel framework to automatically track details about how a users' PII data is stored, used and shared by the provider. We have integrated our Data Privacy ontology with the properties of blockchain, to develop an automated access control and audit mechanism that enforces users' data privacy policies when sharing their data across third parties. We have also validated this framework by implementing a working system LinkShare. In this paper, we describe our framework on detail along with the LinkShare system. Our approach can be adopted by Big Data users to automatically apply their privacy policy on data operations and track the flow of that data across various stakeholders.Comment: 10 pages, 6 figures, Published in: 4th International Workshop on Privacy and Security of Big Data (PSBD 2017) in conjunction with 2017 IEEE International Conference on Big Data (IEEE BigData 2017) December 14, 2017, Boston, MA, US

    A Privacy-Aware Access Control Model for Distributed Network Monitoring

    No full text
    International audienceIn this paper, we introduce a new access control model that aims at addressing the privacy implications surrounding network monitoring. In fact, despite its importance, network monitoring is natively leakage-prone and, moreover, this is exacerbated due to the complexity of the highly dynamic monitoring procedures and infrastructures, that may include multiple traffic observation points, distributed mitigation mechanisms and even inter-operator cooperation. Conceived on the basis of data protection legislation, the proposed approach is grounded on a rich in expressiveness information model, that captures all the underlying monitoring concepts along with their associations. The model enables the specification of contextual authorisation policies and expressive separation and binding of duty constraints. Finally, two key innovations of our work consist in the ability to define access control rules at any level of abstraction and in enabling a verification procedure, which results in inherently privacy-aware workflows, thus fostering the realisation of the Privacy by Design vision

    Performance modelling and the representation of large scale distributed system functions

    Get PDF
    This thesis presents a resource based approach to model generation for performance characterization and correctness checking of large scale telecommunications networks. A notion called the timed automaton is proposed and then developed to encapsulate behaviours of networking equipment, system control policies and non-deterministic user behaviours. The states of pooled network resources and the behaviours of resource consumers are represented as continually varying geometric patterns; these patterns form part of the data operated upon by the timed automata. Such a representation technique allows for great flexibility regarding the level of abstraction that can be chosen in the modelling of telecommunications systems. None the less, the notion of system functions is proposed to serve as a constraining framework for specifying bounded behaviours and features of telecommunications systems. Operational concepts are developed for the timed automata; these concepts are based on limit preserving relations. Relations over system states represent the evolution of system properties observable at various locations within the network under study. The declarative nature of such permutative state relations provides a direct framework for generating highly expressive models suitable for carrying out optimization experiments. The usefulness of the developed procedure is demonstrated by tackling a large scale case study, in particular the problem of congestion avoidance in networks; it is shown that there can be global coupling among local behaviours within a telecommunications network. The uncovering of such a phenomenon through a function oriented simulation is a contribution to the area of network modelling. The direct and faithful way of deriving performance metrics for loss in networks from resource utilization patterns is also a new contribution to the work area
    • …
    corecore