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Abstract

The cloud computing paradigm introduces an efficient utilisation of huge com-

puting resources by multiple users with minimal expense and deployment effort

compared to traditional computing facilities. Although cloud computing has in-

credible benefits, some governments and enterprises remain hesitant to transfer

their computing technology to the cloud as a consequence of the associated se-

curity challenges. Security is, therefore, a significant factor in cloud computing

adoption. Cloud services consist of three layers: Software as a Service (SaaS), Plat-

form as a Service (PaaS), and Infrastructure as a Service (IaaS). Cloud computing

services are accessed through network connections and utilised by multi-users who

can share the resources through virtualisation technology. Accordingly, an efficient

access control system is crucial to prevent unauthorised access.

This thesis mainly investigates the IaaS security enhancement from an access

control point of view. IaaS requires an access control model that can cope with

its dynamic and scalable features. Attribute-based Access Control (ABAC) is

identified as the most appropriate model that can support IaaS features. How-

ever, ABAC does encounter challenges regarding its conceptual characteristics and

formal specifications.

Thus, a novel intelligent attribute-based access control model known as ABACsh

is proposed in this thesis for IaaS cloud. ABACsh is an enhanced attribute-based

access control that supports a context-aware mechanism and the Separation of

Duty (SoD) security principle. The intelligent framework for ABACsh is presented

based on a knowledge agent, as logic is used to infer an access decision. Hence,

there is a requirement to formulate a suitable logic that is able to specify, verify

and reason ABAC models. A formal logic known as Access Control Logic-Deontic

Logic (ACL-DL) is further proposed in this thesis. ACL-DL involves a formal lan-

guage definition and a Kripke-structure model definition. ACL-DL logic is used to

formally specify ABACsh properties and to logically reason about ABACsh access

requests.

To present the feasibility of the proposed access control model in an IaaS

platform, a demonstration of ABACsh prototype is studied in an open-source

IaaS-platform known as OpenStack; proposing an enforcement framework that

is designed based on agent architecture. Furthermore, an extended Policy De-

cision Point (PDP) is implemented based on a logical inference algorithm known

as forward chaining.

Formal verification proves that the ACL-DL satisfaction problem is PSPACE

solvable, and its model-checking problem is PTIME solvable. Evaluation of the

logic complexity profile illustrates that ACL-DL logic is computationally determ-
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inable, in contrast with classical logic categories. Evaluation of the ABACsh com-

putation complexity and access control quality metrics reveals superior results in

comparison with two existing ABAC models. The experimental results in an Open-

Stack testbed deployment demonstrate the feasibility of the ABACsh approach and

promise an enhanced and secure access control model for IaaS cloud.

Keywords
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Chapter 1

Introduction

1.1 Context Background

The cloud computing paradigm is constructed based on several technologies such

as virtualisation, Service-Oriented Architecture (SOA), autonomic computing, and

grid computing [41]. Cloud computing involves three main services: Software as a

Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS).

The focus of this research is to enhance an access control model to cope with the

IaaS environment without redesigning or modifying IaaS technology structures.

Virtualisation technology is one of the main building blocks in deploying IaaS.

Hence, the hypervisor affects the efficiency of the access control system. The hy-

pervisor introduces a security threat to the virtual machine (VM) access control

because of the single point of access. A trusted VM within an untrusted hyper-

visor has a higher risk than an untrusted VM within a trusted hypervisor [119].

For example, based on empirical experiments on a live virtual machine migration

process (LVMM) [158], it has been recommended to review the existing access

control system to avoid unauthorised access during LVMM process. The LVMM

process is considered as one of the critical processes in IaaS beside the virtual

machine provisioning process [41]. Moreover, access-control security tools in IaaS

such as firewalls and security groups cannot support context-aware mechanisms

or dynamic access control [8]. The optimisation between the information flow

security and IaaS flexibility is getting high consideration as sensitive information

maybe leaked to unauthorized entities[227, 203]. Therefore, a well-designed access

control system in IaaS is vital.

Security aspects are essential in motivating customers to adopt cloud com-

puting services. For instance, an IDS survey illustrates that 75% of customers

consider satisfaction with the degree of security and privacy as the main motiv-

ations to adopt cloud computing services [121]. In particular, the access control

1



CHAPTER 1. INTRODUCTION 2

aspect is a critical security issue in the IaaS cloud [9, 197]. In contrast to the

traditional computing environment, the IaaS cloud has specific characteristics of

elasticity, multitenancy, configurability, and dynamicity. Thus, conventional ac-

cess control models face flexibility challenges and fine-grained limitations when it

comes to their implementation and deployment in IaaS [9].

Because IaaS is a multi-tenant environment it is required to handle a variety

of user access requirements, accordingly the IaaS access-control system needs to

be a context-aware to support fine-grained policy [191]. The traditional access

control models such as Discretionary Access Control (DAC) and Mandatory Access

Control (MAC) lack scalability and adaptability to dynamic changes. Even though

most cloud access control systems such as Amazon, Racspace, Dimansion Data and

Verizon use Role-Based Access Control (RBAC) [100], RBAC cannot cope with

a dynamic environment because it supports coarse-grained access which creates a

restricted access control policy. Also, RBAC access policy rules must be predefined

before the access-control process begins.

There is a trend to move from RBAC to Attribute-Based Access Control

(ABAC), as the latter is more flexible, supports context-awareness, supports fine-

grained policies, and also supports a dynamic computing environment. It is pre-

dicted that by 2020, 70% of enterprises will deploy ABAC [70] since there is

an interest among industries and governments to deploy access control based on

ABAC [99]. Further, ABAC is dynamic and requires less human administration

interaction than traditional access control models, because its authorisation pro-

cess can be computed at the time of the request, where permission is not required

to be pre-assigned to users [108]. The findings and analysis of this research match

the recommendations of several researchers to use ABAC over RBAC in a cloud

computing environment such as in [37, 44, 242].

Figure 1.1 illustrates the scope of this research. The investigation of IaaS

security challenges detailed in Sections 2.2 to 2.4 identify a research gap in the area

of access control systems. The problem statement will be elaborated in Section

1.2. Four domains of computer science form the basis of this thesis contribution, as

will be explained in Section 1.4. These domains are: IaaS cloud, Access Control,

Formal Logic, and Artificial Intelligence. Furthermore, Figure 1.1 illustrates the

research flow between the four domains.

1.2 Problem Statement

This thesis researches two problems, as illustrated in the tree diagram in Figure

1.2. The first problem is related to fulfilling IaaS access control requirements.

Three requirements have been identified. The first requirement is to implement a
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Figure 1.1: Overall thesis research components

context-aware mechanism that supports a fine-grained access feature. The second

requirement is to emphasise access-control security principles. With an access

control system in cloud computing, the principles of least privilege and separation

of duty(SoD) are critical [47, 119, 193]. This research focuses on deploying SoD.

The third requirement is to meet the dynamic characteristics of IaaS because it is

a changeable environment where users join and leave frequently. Furthermore, the

virtual machine configurations change based on the customer’s specifications. To

the best of our knowledge, these three requirements: context-aware mechanism,

SoD security principle, and support of dynamic characters are not addressed in the

prior literature on IaaS access control models as will be demonstrated in Chapter

3. ABAC is considered as the most appropriate access control model for IaaS

as illustrated in Section 2.5. This thesis works towards solving ABAC challenges

discussed in Section 2.6

The second problem discussed in this thesis is related to developing an access

control logic that is capable of specifying, verifying and reasoning ABAC mod-

els. To the best of available knowledge, a formal logic for ABAC models is not

addressed in the prior literature. The required logic should be decidable for it

to be implemented in a computing system. The access control logic challenge is

two-fold: firstly, it is necessary to find a suitable formal logic category for access

control security representations; secondly, a suitable formal language (also called

computational language) that can formally interpret ABAC model properties is

required. Based on the literature, the modal logic has been found to be the most

appropriate formal logic that can present access control models as justified in Sec-

tion 2.7. Regarding the ABAC, to date, no formal language has been defined.
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Figure 1.2: Problem Definition of this research

Liner-time Temporal Logic (LTL) and Computation Tree Logic(CTL) are used

for model checking. However, LTL formulas are evaluated on paths while CTL

formulas are evaluated on states [102]. In order to evaluate attribute based access

control system we need to consider states and paths as will be demonstrated in

Chapter 5

1.3 Aim and Objectives

Given the challenges that have been identified concerning the access control model

in IaaS cloud, this thesis aims to enhance IaaS cloud security by proposing an

intelligent attribute based access control model. This goal will be satisfied by

completion of the followed objectives:

Obj.1 To identify The IaaS access control model requirements, and explore the lim-

itations of traditional access control enforcement techniques in IaaS clouds.

Obj.2 To investigate how access control models need to change to meet IaaS access

control requirements, and identify the access control model best suited to

IaaS characteristics.

Obj.3 To propose an access control model enhancement that meets IaaS require-

ments.

Obj.4 To introduce a formal logic that is able to specify, verify and reason about

the proposed access control model
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Obj.5 To design an intelligent framework for the proposed access control model

that supports the dynamic and scalable features of IaaS.

Obj.6 To implement and test a prototype of the proposed access control model in

OpenStack IaaS cloud testbed.

An extensive literature review has been carried out towards fulfilling Obj.1

and Obj.2. As a result, the problem statement in Section 1.2 has been identified.

Objectives Obj.3, Obj.4, Obj.5 and Obj.6 are four steps to achieving the main aim

of this thesis. The original contributions of this thesis are explained in Section

1.4.

1.4 Original Contributions

Figure 1.3 summarises the contributions of this thesis and the motivation for cover-

ing the four computer science fields: IaaS Cloud Security, Access Control, Formal

Logic, and Artificial Intelligence. The big picture concerns the enhancement of

IaaS security by improving the access control model via the employment of artifi-

cial intelligence agent-architecture and modal logic formalisation.

Figure 1.3: Thesis Contributions

The thesis contributions are as follows:

� IaaS Cloud Security
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– Propose an enhanced attribute based access control model for IaaS

(ABACsh) that supports context-awareness mechanisms and the SoD

principle.

– Propose an enforcement architecture design for ABACsh based on Open-

Stack components.

– Demonstrate ABACsh implementation in OpenStack. Based on access

control QoS metrics, the performance evaluation of ABACsh PDP is meas-

ured by calculating the time taken to reach an access decision.

� Access Control

– Conduct an extensive study to determine the proper access control

model for IaaS.

– Define the concept behind the context-aware mechanism and the SoD

security principle in an ABACsh model.

– Perform a comparativeanalysis of ABACsh with ABAC α and HGABAC

that involves ABACsh computational complexity and QoS (Quality of

Service) metric evaluations.

� Formal Logic

– Introduce Access Control Logic-Deontic Logic (ACL-DL) as a modal

logic that is capable of specifying, verifying and reasoning ABAC mod-

els.

– ACL-DL combines Access Control Logic (ACL) modality says with

Deontic Logic (DL) modality obligation .

– Define a formal language and a Kripke-structure model for ACL-DL

logic

– Formally specify ABACsh via ACL-DL logic.

– Logically reason ABACsh access decisions via ACL-DL logic

� Artificial Intelligence

– Propose an Intelligent framework for implementing ABACsh based on

knowledge-agents o

– The inference engine is based on a forward chaining algorithm.
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1.5 Thesis Structure

The thesis is organised into eight chapters. Chapter 2 introduces the literat-

ure review, which identifies a need to enhance the access control system in IaaS.

The chapter also includes a literature review of concepts used to solve the iden-

tified problem. Chapter 3 presents the enhanced Attribute-Based Access Con-

trol (ABACsh) and its computational complexity and quality metrics evaluation.

Chapter 4 explains the proposed logic that combines the Access Control Logic

(ACL) with Deontic Logic (DL). The ACL-DL logic is used to specify, verify and

reason about ABACsh, as illustrated in Chapter 5. A proposed intelligent frame-

work for ABACsh is demonstrated in Chapter 6. A prototype of this framework

is implemented and tested on an IaaS platform called OpenStack, as explained in

Chapter 7. Chapter 8 concludes this thesis and suggests future improvements and

enhancements.



Chapter 2

Literature Review

2.1 Introduction

This chapter investigates and analyses the motivation for this research based on

the literature review. It consists of eight sections. As a reference to Figure 1.1 from

the introduction, Sections 2.2 to 2.4 explore IaaS security challenges associated

with unauthorised access. Section 2.5 studies access control models which leads to

a conclusion to build the proposed access control model enhancement based on an

ABAC model. ABAC is explored in Section 2.6. The lack of a formal logic that is

able to specify, verify and reason about ABAC models leads to Section 2.7, which

researches the access control logics. Finally, there is a need to design a dynamic

access control which leads to investigating the AI field to propose a framework

that is dynamic and scalable. AI in IaaS security is discussed in Section 2.8.

2.2 Security Challenges of IaaS

The characteristics of Infrastructure as a Service (IaaS) encouraged ICT customers

to adopt it as the next generation model for outsourcing IT infrastructure [238].

IaaS is capable of controlling and managing the virtualised environment repres-

ented in a virtual machine life circle by providing the virtual machine (VM) with

the requested resources, such as storage, network and processing power [65].

IaaS features offer business advantages, such as rapid elasticity and fast re-

source pooling, since IaaS deploys virtualisation technology which supports several

innovations, such as multi-core chips and live migrations [41]. A key component in

building a virtualisation environment is to operate it via the hypervisor, although

the hypervisor on its own cannot build IaaS. Therefore, a cloud-stack is required

to build IaaS, such as OpenStack, CloudStack and OpenNebula. According to the

current industry, OpenStack is likely to become a dominant cloud-stack [100].

8
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On the other hand, the flexibility characteristics of IaaS introduce several se-

curity challenges linked to access control implementation.The elasticity feature of

IaaS allows the cloud user (customer) to scale up and scale down to meet their

project requirements. This leads to a rapid change in the infrastructure configura-

tions. However, elasticity introduces security challenges in respect to providing an

administrative separation between the customer virtual environments. There is

a need for a security mechanism that enforces a proper configuration and change

management, as well as a fine-grained and predefined access control mechanism

[170].

The multitenant nature of IaaS which facilitates the ideal usage of infrastruc-

ture by sharing resources between multiple users faces some security challenges as

well [100]. Therefore, it is more likely that there is a need for a new type of ac-

cess control policy between tenants in intra-cloud communication [173]. A tenant

can be an enterprise in the context of a public cloud or a department within an

enterprise in the context of a private cloud [26].

The flexibility feature of IaaS enables the user to configure their own virtual

machines and computing infrastructure [237]. Hence, it is prone to misconfigura-

tion that can lead to a security violation [27]. Therefore, there is a need to monitor

cloud behaviour to figure out unexpected errors. For example, in April 2011 an

infrastructure outage caused Amazon’s Compute Cloud EC2 to be unavailable for

its customers [63]. Therefore, there is a need to monitor IaaS behaviour. In the

literature, an approach constructed on role-based access control has been proposed

[177].

The dynamicity of IaaS facilitates virtual machine (VM) mobility among phys-

ical machines for different aspects, such as server consolidation, load balancing,

data recovery and green computing is achieved through a technique called live

virtual machine migration (LVMM). LVMM allows the movement of virtual ma-

chines between the physical machines during run time with a minimum downtime

[67]. Although live migration supports IaaS dynamicity, it introduces some se-

curity threats. The protocol used for live migration moves the virtual machine

state in plain text, which allows hackers to snoop it through the network links.

Even encryption is not able to secure it, as illustrated experimentally in [158].

Therefore, there is a need for re-thinking the existing access control and isolation

mechanism.

Moreover, the dynamicity feature of IaaS affects firewall functionality since the

VM gets a dynamic IP address through a DHCP server that assigns a lease time

for the client IP address. The virtual machine must renew its IP address when

the lease time expires. Upon renewing its IP address, it may or may not receive

the same IP address that it received previously [128]. A source IP address and
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Figure 2.1: Recommended mitigation for some of IaaS security challenges

a destination IP address are basic information to generate a firewall rule. The

firewall rules remain constant unless there is an explicit need to change the policy,

as a result the firewall cannot adapt to real-time threats [210]. Any system that

uses predetermined and fixed IPs might impose some limitation on the dynamism

and the scalability of IaaS [215].

A firewall is a critical network access control mechanism, therefore it will be

discussed in more detail in Section 2.4. The above IaaS security challenges ana-

lysis shows that there are several security vulnerabilities occurring as a side effect

of the substantial IaaS characteristics. Figure 2.1 reveals that a proper design

and implementation of access control is a critical element that can contribute to

mitigating the majority of the security IaaS challenges.

2.3 Example of a Security Breach in IaaS

During LVMM Process

The IaaS layer consists of several components, such as virtualization, networking,

storage and processing. Virtualisation is one of the key components; furthermore,

the main core services in IaaS are Virtual Machine (VM) provisioning and VM mi-

gration [41]. Security of the live virtual machine migration (LVMM) is considered
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Figure 2.2: LVMM Process Steps [204]

one of the major challenges in IaaS and a critical research topic [13, 41, 148, 222].

There is a default LVMM algorithm in most popular hypervisors, such as Xen,

VMWare and KVM [141]. A typical LVMM mechanism consists of four main

stages, as shown in Figure 2.2 , which start with several iterations that aim to

transfer VM memory pages from the source physical machine to the destination,

where a new location for VM has been selected.

The ideal migration process is to copy the complete state of the VM, including

memory, disk and network connection [141]. From a networking point of view,

there are two categories of LVMM: moving VMs belonging to the same sub-network

and moving VMs between different sub-networks. The latter requires a change

of IP address and introduces another challenge that limits migration in cloud

computing [208].

LVMM has been penetrated via man-in-the-middle attacks, as well as suc-

cessfully attacked by through flag migration [158, 218, 66]. LVMM introduces

important security issues because it includes VM state transfer through commu-

nication links, which can be attacked by ARP spoofing, DNS spoofing and route

Hijacking [172].

Live Virtual Machine Migration (LVMM) security vulnerabilities are related to

the security exposures in virtualisation technology [13, 91, 172, 190, 223, 235, 241].

The following illustrates LVMM vulnerabilities, which have been categorised into

three sources of threat, as follows:

� The first vulnerability is through the network link, as live migration involves

a lot of network state transfer. Encryption techniques can be involved in

mitigating this risk, but there should be a careful consideration of down-

time since LVMM runs in real time. IPsec has been used in some security

approaches to mitigate live migration threats, although it introduces a com-

putational delay [201, 194]. Moreover, encryption is not able completely to

mitigate this security hole [158].

� The second vulnerability is through the host (physical machine), where it

can be attacked or it can host an untrustworthy VM. As a consequence,

the migrated VM security can be compromised since it will be in a shared

environment with malicious components. Attacks can also be initiated in
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migrated VMs through the hypervisor if its corresponding host has been

successfully compromised.

� The third vulnerability is based on security configuration consistency and

efficiency. This is as a result of the different natures of physical appliances

and virtual appliances, such as a firewall. This vulnerability occurs due to

various factors, such as firewall placement and the policy configurations [228].

Moreover, elasticity introduces security flaws caused by misconfiguration

after a migration is triggered [105]. Network state consistency can also be

affected after migration where some network packets might be lost during

LVMM downtime [130].

To sum up, LVMM main security issues arise as a consequence of an environ-

ment shared between different customers (cloud users), which is a multi-tenancy

feature of IaaS, as well as dynamicity and elasticity features which raise the need

to update access control policies as the virtual machine changes its location. We

can conclude that LVMM security is a critical issue in IaaS and it faces serious

security challenges that need to be addressed and considered as an open research

topic.

There is a trend to secure LVMM through vTPM [58]. Nevertheless, TPM-

based measurements are ineffective for detecting a malicious cloud service provider

as well as having limitations in verifying the hypervisor integrity in public clouds

via remote attestation [33]. To secure LVMM, there is a need to design an access

control policy that allows the administrator to manage migration privileges. The

existing access control model in IaaS should be upgraded to cope with the emerging

security challenges [158]. Similarly, existing firewall approaches should be modified

to meet IaaS characteristics.

2.4 IaaS Firewall System

IaaS dynamicity and rapid infrastructure changes, due to adding and removing

virtual machines and virtual machine migration, introduce a challenge to the fire-

wall as there is a need to update firewall entries frequently. This leads to increasing

maintenance overheads as firewall policies need to be updated in such large scale

environment [173]. If the firewall is not well constructed, managed and updated,

the IaaS will be at risk, resulting in facilitating for hackers the access to the cloud

interface on behalf of legitimate users [33, 60].
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2.4.1 Security Group Approach

A firewall system is a critical network access control enforcement mechanism in

most computing environments. A cloud service provider (CSP) provides firewall

functionality in the form of a security group. For example, Amazon, Windows

Azure and OpenStack implement the concept of the security group to provide a

firewalling service to their customers.

In general, security groups are set to deny everything by default and individual

services must be enabled by the client. The security group allows customers to

restrict traffic to and from their VMs. All VMs which belong to the same security

group will have the same firewall policy [100]. This makes a cloud firewall service

relatively user-friendly, but it lacks many of the features commonly found on

local firewall products [54]. The security groups alone are insufficient to prevent

attackers from communicating with the external network [126].

There are two methods of setting up firewall policy through security group:

either to create an entry for each VM in the security group or to group VMs in

one entry based on their IP prefix. The first method faces scalability limitations

in IaaS, while the second method complicates VM address management [173].

Therefore, cloud can bring some potential security threats to the organisation by

not having an organisation specific firewall [132].

2.4.2 IaaS Firewall Security Threats and Limitations

As IaaS provides several features that introduce flexibility into the cloud infra-

structure, it initiates complexity in firewall configuration and installation. Due to

the large scale of IaaS infrastructure, a simple policy can lead to a large number

of fine-grained rules [147].

The effectiveness of firewall security depends on its policies. However, firewall

policies are often error prone due to the complex nature of firewall configura-

tions as well as the lack of systematic analysis mechanisms and tools [95]. In

a distributed environment, detecting anomalies in firewalls has become a com-

plex task [79]. According to an empirical study of middle-box failures over two

years in a service provider network, it was found that firewalls crash more than

other security systems, such as IPDS and VPN, and that 33% of firewall failures

are due to misconfiguration, faulty failovers and software version mismatch [175].

Therefore, the firewall policy management area is an evolving research field, as

policy correctness and consistency among firewall systems is an essential element

for enhancing firewall security [64, 184]. To get a cloud firewall policy configura-

tion pattern, intensive experiments are needed to make security policy complete

[124].Therefore, several researchers are concerned with improving firewall policy
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Figure 2.3: IaaS firewall limitations

strategy; for example, the Tree-Rule firewall, which uses the NF-IP-FORWARD

algorithm to improve the performance of firewalls in cloud policy configurations

[92].

Another problem with firewalls in cloud computing is their placement; too few

firewalls can cause a large number of communication flows. The placement of

firewalls in cloud computing is critical in maximising the security benefits they

offer. Traditional firewall placement is not sufficient in cloud computing, as it

will introduce traffic overhead to the network switches and hypervisors [147].A

major network security risk in cloud computing is due to the limits of traditional

firewall connections [71]. Traditional firewall settings are not sufficient for op-

timal fine-grained decisions and application-level as they are not able to deal with

dynamically opened server ports for encrypted connections [226].

Several researchers consider firewalls and VLAN to be less effective in the cloud

environment, due to several challenges such as time consuming in configuration

and management, limitation of the geographic zones, limitation to the number

of users and static nature [130, 155, 173, 215].The firewalls can be breached in

cloud environments by a mechanism using UDP coordinating with TCP [133].

An analytical experiment shows that there is a time interval where LVMM is not

under firewall protection. A firewall cannot differentiate normal traffic from attack

traffic if it accesses the network through port 80 [146]. Moreover, 42% of firewall

failures are due to DDoS attack at the network layer [175]. Traditional packet-

level firewall mechanisms are not suitable for cloud platforms in cases of complex

attacks [232].

The limitations of firewall configuration in cloud computing according to this

investigation are summarised in Figure 2.3. We can notice that traditional access

control enforcement mechanisms are not sufficient in cloud computing. Therefore,
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there is a need to redesign a firewall system that suits IaaS characteristics.

2.4.3 Firewall Approaches in IaaS

Cloud users, such as companies and governments, might not rely on cloud-based

firewalling approaches as these approaches still experience severe performance and

reliability issues [87].Ensuring network security in the current complex infrastruc-

ture which involves different vendors and cloud service providers (CSP) turns out

to be difficult and time-consuming. Each CSP has their own API to manage the

security mechanisms, such as traditional firewalls, virtual firewalls and security

tools. Therefore, what looks like a simple application change may require tens or

even hundreds of configurations [90].

As shown by Table 2.1 , IaaS firewall approaches from the literature agree that

the traditional firewall needs to be improved or replaced in order to cope with

the IaaS environment. A trend of deploying virtual firewall is illustrated in most

of the approaches. Firewall virtualisation allows dynamic deployment, so it suits

IaaS characteristics and it can effectively improve firewall configuration [87, 224].

Most of the academic research assumes that the insiders in cloud service pro-

viders are not trusted [100, 132, 210]. To improve the trust in the cloud environ-

ment, a bridge virtual firewall can be designed and installed on the virtual machine

in IaaS so that the cloud user can have full control on their firewall [132]. A bridge

firewall improves the performance, but it limits the security of the live migration as

this type of firewall cannot manage different types of policies. Moreover, massive

attacks may compromise a virtual firewall if they originate from outside the virtual

domain [87].The virtual firewall side effect can be mitigated if a proper firewall is

designed among virtual machines and suitable firewall policies are defined [124].

Table 2.1 indicates the two approaches discussed regarding firewall systems

administration in IaaS, which are centralised and distributed. The centralised

approach was found to be less prone to misconfiguration failure as it monitored

continually [175]. On the other hand, it has several drawbacks: it may lead the

centralised controller to reach a bottleneck, it attracts more DDoS attacks and

can introduce a single point of failure [173]. The centralised firewall set-up is

argued to be unfeasible in the cloud due to performance and cost issues [129]. The

distributed approach is used by many enterprises on the network edge [147]. To

handle dynamic policy update in IaaS, a distributed firewall needs a complicated

revocation and re-propagation mechanism [96].
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Table 2.1: Firewall approaches in dynamic network
Ref Main Problem Proposed Solution Admin

Type
[173] Conventional network

access contorl: firewall
and VLAN face several
limitation in IaaS

Take the policy enforce-
ment point out from the
network and place it into
the hypervisor

Centralised

[96] Network states and
traffic are frequently
changed

Firewall Framework to
cope up with SDN en-
virnomnt

Centralised

[147] fine-grained rules are
needed by CSP to get
better control over
individual network flows

For better scalability
and performance, place
the access control policy
on both hypervisor and
switch

Centralised

[87] Cloud firewalling suffers
from performance and re-
liability issues

Propose a framework
consisting of phyical
firewall and virtual
firewall

Centralised

[232] Packet level firewall
mechanisism can not
handle a complex attack
on the cloud

Cloud firewall framework
involves event level de-
tection chain with dy-
namic resource allocation

Not men-
tioned

[210] Network topology is not
well defined, insiders are
not trusted. Policies
in Conventional firewalls
are static and can not ad-
apt to real-time threats

Propose a distributed
firewall with a distrib-
uted active response by
moving policy enforce-
ment point from network
firewall to end host

Distributed

[132] CSP is not fully trusted Propose a firewall system
monitored by the cloud
customers

Distributed
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2.5 Access Control Model

Authentication, access control, and audit together provide the foundation for in-

formation and system security. Consequently, access control is applied after au-

thentication has been established [189]. In cloud computing, the authentication

technique is fulfilled through identity management that supports access control

based on user attributes [212]. Vaquero studied several virtualised (multitenant)

datacentres and concluded that most reported systems employed access control

techniques to secure their environment [215].

As has been discussed in IaaS security challenges in Section 2.2, it was found

that an appropriate access control mechanism is needed to mitigate most of the

explored threats. Unfortunately, the classical access control models such as man-

datory, discretionary and role-based are not suitable for IaaS due to its character-

istics [19, 110, 145]. Several attributes should be taken into consideration to set

up proper access control for the cloud environment [103, 137, 173]. These are:

� The method of access to the cloud and cloud architecture. The users in

the cloud are identified by their attributes or their characteristics, not by

fixed IP address. Therefore, a dynamic access control is needed to achieve

cross-domain authentication. The cloud access control should be network

independence.

� The multi-tenancy feature in IaaS requires flexibility in seating access policy

as different users are sharing the same infrastructure, although they are most

probably not from the same organisation or country.

2.5.1 Background and Challenges

As a general principle, an access-control model aims to protect objects from un-

authorised subjects based on a specific access control policy. Authorisation means

that an authenticated subject is allowed to perform an operation on an object.

Each access-control policy has a model that it follows. Each access-control model

consists of a well-defined framework and a set of boundaries that describes the

relations used to combine the objects, the subjects, the operations and access

rules in order to generate an access-control decision. There are four main access

control models: Discretionary Access Control (DAC), Mandatory Access Control

(MAC), Role-Based Access Control (RBAC), and Attribute-Based Access Control

(ABAC). Several research scholars have described these access control model's

properties and their limitations [10, 20, 94, 109, 113, 125, 137, 138, 189, 233, 236].

Access-control models can be categorised based on the main entity that is in-

volved in the creation of the access policy rules. For example, the entities can
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be the subject or the object. Identity-Based Access Control (IBAC) categories,

such as DAC and RBAC, face scalability challenges in a large system since they

are based on the subject identity. Moreover, they are cumbersome and lack the

ability to adopt dynamic policy changes. DAC has two main limitations: the first

limitation relates to delegation issues since its read access is granted transitively.

The second limitation is due to its access structure concept being dependant on

subject identification. Therefore, it allows the program to inherit the identity of

the invoking user, which is considered a security vulnerability. RBAC has been

standardised and used widely in most economical computing systems [76]. Its role

is considered as a link between users and permissions in order to permit or deny

access [47]. RBAC faces several limitations, such as role expansion in dynamic

systems. It is static as its access rules must be pre-defined before the system

is running [59, 94]. Lattice-based access control categories, such as Mandatory

Access Control (MAC), are centralised models where the security administrator

assigns fixed security labels to objects. MAC faces similar scalability challenges

to RBAC and DAC. The last access-control model category is based on system

attributes such as Attribute-based Access Control (ABAC). It controls access by

evaluating rules against the attributes of several elements, including the entities

(subject and object), the operations, and the environment. It is the most suit-

able candidate for the IaaS access control model because ABAC is scalable and

supports a dynamic environment.

The challenges facing the design and implementation of the access-control sys-

tem are as follows [21, 89, 94]:

� It is a complex system that is divided into three layers: policy, model, and

mechanism. The interaction and the relation between these is sophisticated

� Translating the business policy to the access control rule set is a complex

process. It requires an expressive tool such as formal logic that is able to

specify the policy statements into rules that can be computed by machines

� There is no perfect access-control model that will fit all types of comput-

ing systems. Each access control model involves a trade-off and limitations.

Therefore, the selection of the proper model is based on the system require-

ments and the business functions

� The access control state is safe if no permission can be taken by an unau-

thorised principal. The safety computation has been proven to encounter

an undecidable problem in traditional access control models such as access

matrix.
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Figure 2.4: Access Control building blocks as explained by [97]

Figure 2.5: Access Control building blocks as explained by [187]

In order to facilitate the process of designing and implementing the access con-

trol system, it has been divided into three layers: policy, model, and mechanism.

The definitions of these three building blocks are explained below [10, 21, 94, 98,

104, 186, 187].

Access Control Policy.To distinguish the access-control policy from other

usages of the term 'policy', it is defined as a specification of the system behaviour

[16]. This will produce a set of Allow/Deny rules that reflect the business owner's

objectives and security policies.

Access Control Model. This is an intermediate layer between the higher

level, which is the policy, and the lower level, which is the mechanism. In some

cases, the policy is implemented directly into the mechanism without formally
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defining the access-control model if the policy is application-specific and imple-

mented by a particular vendor. However, in cases where the access-control policy

spans multiple computing platforms or consists of several security factors, there is

a necessity to formally define an access-control model. Mainly, the model specifies

how the policy can be implemented and enforced via the access-control mechanism.

Access Control Mechanism. This involves functions that implement the

control obligated by the access-control policy stated in the model. It can be

written in the form of pseudocode which can be implemented in a hardware layer

or a software layer by using a programming language.

Figure 2.4 illustrates the access control building blocks by [97]. The policy re-

flects the protection concepts where the model can formally be specified. However,

Figure 2.5 bring the term policy model which can be formally specified by [187].

In [206], Tang used the term Policy to refer to his proposed ABAC enhancement

for multi-tenant IaaS where the term Enforcement model was used to refer to his

proposed framework. It was found that the term 'access-control policy'is used

interchangeably with the term 'access-control model'. However, it is common to

refer to RBAC, ABAC, DAC and MAC as access control models instead of access

control policies as Figure 2.6 shows results from Google scholar.

Figure 2.6: Google Scholar Results for the keywords Model vs. Policy for Access
Control Types

It can be concluded that the term 'policy'is used to describe the architecture

that is followed to create access rules, where the term 'model'refers to the formal

specifications that are used to express the access control system properties. The

access-control models: MAC, DAC, RBAC and ABAC are occasionally referred

to as policies since they indicate how the access rules are created. MAC rules are

based on object-labelling. DAC rules are based on subject-identity. RBAC rules

are based on subject-roles. ABAC rules are based on attributes. This research
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will refer to them as 'access control models'to avoid ambiguity, and will use the

term 'policy'when discussing authorisation rules.

2.5.2 Access Control Models Approaches in IaaS

Several access control models are proposed in the literature which address various

access control problems in IaaS. Table 2.2 summarises IaaS cloud access-control

models which have been published recently. The most common limitation found

among them is the performance overhead, which leads to an increase in computa-

tional cost that affects QoS (Quality of Service). The access control policies and

models presented by Nguyen and Tang [152, 206] use RBAC and ABAC as a basis

for their proposed models. Their architectures are implemented via XACML and

provide a proof of concept via OpenStack.

Table 2.2: Recent proposed Access Control Models for IaaS

Ref. Access Control requirement Proposed solution Used tools

[152] expressive and fine-

grained access control

as prior models are

not suitable

PBAC (Provenance-

based Access Control)

a sub-set of ABAC

XACML and

OpenStack

[206] a fine-grained access

control model for

multi-tenant collabor-

ation

Multi-Tenant Role-

Based Access Control

(MT-RBAC)

XACML and

OpenStack

[1] support multi-tenant

hosting and hetero-

geneity of security

policies, rules and

domains

Access Control model

for Cloud Computing

(AC3)

theoretical

[14] manage access from

users or entity that be-

long to different au-

thorization domains

Capability-based Ac-

cess Control

theoretical

[122] flexible and fine-

grained access control

for VM-level

IaaS-oriented Hy-

brid Access Control

(iHAC)

iVIC as IaaS

continued on next page
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Ref. Access Control requirement Proposed solution Used tools

[123] a user-centric access

control for mobile

Cloud environments

Context-Aware

Attribute-Based

Techniques

XACML

[239] balance between in-

formation security

and resource sharing

hierarchical secure

information and re-

source sharing model

OpenStack

[27] virtual resources in

IaaS are configured

using software, and

hence prone to mis-

configurations

attribute-based con-

straints specification

and enforcement

OpenStack

[150] Multi-tenant ac-

cess control is not

supported

ABAC that support

multi-tenant access

OpenStack

[134] centralized access me-

diation and flexible

policy customization

least-invasive access

control framework

OpenStack

[22] The relation between

users and resources in

cloud computing is ad

hoc and dynamic

Extend RBAC with

trust relation

CloudSim in

Planet Lab

The proposed model by A. Younis et al and Anggorojati et al [1, 14] presents

a great work regarding security policy design based on attributes, but it does not

present a security model architecture. The proposed model and the enforcement

implementation presented by Li et al [122] is remarkable, as it does not consider IP

address as the main attribute in the access-control policy, instead it uses security

type.

However, their model does incur a performance overhead. A concentration

on multi-tenant access-control is investigated by Ngo et al [150] and an ABAC

model is proposed to cope with this feature. A cloud user-centric access control

model is proposed by Li [123] which targets customer privacy within mobile cloud

applications rather than IaaS cloud. Luo et al in [134] investigate the improvement

of access control models in an OpenStack IaaS cloud. RBAC is still used in most

cloud computing, Behera and Khilarin in [22] extend it with a trust-relation.
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Figure 2.7: Unified ABAC Model Structure [108]

2.6 Attribute-Based Access Control (ABAC)

The definition of Attribute-Based Access Control (ABAC) in this section is extra-

polated based on the knowledge obtained from various ABAC references such as

[52, 98, 221].

Attribute is the base element in calculating the access decision in ABAC models

as illistrated in Figure 2.7. UA is the user attributes, SA is the subject attrib-

utes and OA is the object attributes. Attribute is defined as a pair of (name:

value), where value can be a complex data structure. They can be associated

with different entities such as users, actions, subjects, objects, context and envir-

onment. Policy rules convert the combination of attributes into access rights in

real-time. Therefore, the permissions in ABAC are not listed beforehand. The use

of predefined attributes instead of predefined permissions in decision making adds

flexibility to the access-control system. For example, in RBAC, the permission

engineering process requires the grouping of permissions into roles; users are then

assigned to these roles. However, as the system scales up, these processes become

more complex and face a roles-explosions problem [98].

One of the critical differences between ABAC and previous access control mod-

els is that ABAC access decisions are not associated with user-identity, making

ABAC dynamic and able to cope with changes. Therefore, if the system ad-

ministrator intends to update access control policy, the only place which must be

changed is the policy-rules file. In contrast, it is difficult to determine which places

need to be updated in identity-bounded models such as ACL (Access Control List)

which is used with DAC and RBAC models.

This thesis defines ABAC as follows: ABAC generates its access control de-

cision based on a collection of attributes driven from the involved entities in the

access-request and the system environment. Attributes enable the ABAC model

to be fine-grained, flexible and able to express a complex Boolean rule-set. ABAC



CHAPTER 2. LITERATURE REVIEW 24

supports a real-time access-decisions and a dynamic access control system since it

is identity-free based.

2.6.1 Background and Challenges

ABACα is described in the literature as a foundation of the ABAC model's func-

tionality. Therefore, it is essential to identify ABACα limitations so as to be

able to propose enhancements to ABAC. The list of challenges is stated below

[108, 118, 192, 193]:

� ABACα focuses on the ABAC basic with minimal features. It does not take

into consideration the object and the subject hierarchies

� It does not involve environment and context attributes

� It does not formally express the fundamental access-control security prin-

ciples such as separation of duty (SoD)

� It does not take into consideration the delegation feature

� It is considered as one of the first contributions in formalising the ABAC

model, however, the policy language used is insufficient for real-world ap-

plications such as handling multiple policy compositions or policy conflict

� The authors in [195] present ABACα in OWL. Their investigation concludes

that ABACα does not cover static or dynamic separation of duty principles

nor does the subject involve an attribute that reflects its contextual inform-

ation

More precisely, the ABACα author recommendations are as follows:

� The proposed Common Policy Language (CPL) is not a complete language as

it does not specify the values of the symbols set and atomic variable. These

two values have a significant effect on each configuration point. Therefore;

there is a need to investigate a policy language that is able to detect mis-

configuration and can present compliance with privacy expectations

� Attribute engineering might add complexity to ABAC. In addition to the

difficulty in policy expression and comprehension due to the policy config-

uration point proliferation

It can be deduced that ABAC challenges are two-fold: The first is related to

its conceptual definition and the second is related to its formal definition. These
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two challenges are detected as well by [118, 188, 193]. The conceptual definition

includes the features supported by the ABAC model, such as the separation of

duty security principle and the context aware mechanism. The formal definition

includes a formal language that is able to formally specify ABAC model properties.

The use of formal logic in the design of ABAC policy rules is a convenient ap-

proach for two distinct reasons [30]. The first being that formal logic is straight-

forward since it does not have an up-front cost, unlike RBAC role engineering.

The second reason is that formal logic is flexible, since its attributes facilitate

the expression of complex policy rules.One of the earliest works related to the

logical based framework for ABAC was carried out by Wang et al [221], using the

constraint logic programming language. Bijon et al in [28] developed a declar-

ative language for Attribute Based Constraint specification (ABCL). Hence, the

declarative language is specific since it focuses on specified constraint values of the

attributes held by the ABAC model. However, ABCL did not specify the values

of the attribute related to authorisation policy rules.

There are several policy specification languages, including SecPAL, DYNPAL,

SMP, Binder, SPKI/SDSI, XACML and EPAL. However, they all focus on specify-

ing and evaluating authorisation policy, and none present comprehensive formal

models for ABAC. Jin in [108] defined a template called Common Policy Language

(CPL), although it is not a complete language as the symbol set and atom are left

unspecified. There is an open research in policy specification languages related to

misconfiguration detection and privacy compliance [108]. Most of the logic-based

formalisations presented for ABAC lack the ability to manage attributes and en-

gineer security policy rules [118]. Considerable attention is given to improving

the use of XACML as a policy language for ABAC because it is compatible with

many web applications. However, XACML does face limitations related to policy

semantics [195, 200]. An Interesting work was carried out by Crampton & Willi-

ams in [53] regarding the completeness of the ABAC model using XACML formal

logic, where they introduce the use of three-valued policy in XACML.

The techniques used for the ABAC policy specification are either formal logic or

enumeration. Examples of the first category are ABACα, HGABAC and XACML.

Examples of the second category are Policy Machine (PM) and 2-sorted-RBAC

[30]. This study selects the formal logic technique for ABAC specification since

it allows the research to verify and reason ABAC. The Section 2.7 justifies the

selection of formal logic approch.
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2.6.2 ABAC in IaaS Cloud

The ABAC model concept is context-aware in the sense that it can utilise the

attributes concept in its authorisation decision. However, ABACα [108] does not

indicate the context-aware feature. Instead, the author contains some concepts of

context in his ABACβ which is designed for the purpose of unifying RBAC exten-

ded models. Smari et al [198] extended ABACα with context, privacy, and trust

features where context is involved in access-control policy beside subject and ob-

ject. Thus far, there is no illustration regarding system complexity evaluation nor

policy language formalisation. Servos and Osborn [192] proposes HGABAC where

the ABAC model takes into consideration hierarchal features. Servos & Osborn

used some context-awareness by involving the network-connection and environ-

ment attributes. However, they did not consider the separation of duty concept

or delegation feature. Their policy language is also based on Kleene K3 logic.

The formal languages used in ABACα and HGABAC are a type of propositional

logic. Therefore, they face the satisfiability problem of NP-complete during policy

update or policy review. Even if a formal language based on first-order logic is

used to express the ABAC policy, it will face an undecidable computational prob-

lem [30].The focus of this research is to specify the context-aware mechanism and

separation of duty security principle in ABAC model.

2.7 Access Control Model Formal Specification,

Verification and Reasoning

2.7.1 Formal Logic in Access Control

Access control is an essential and widely used security mechanism. One of the

critical challenges in implementing access control is its policy specification and

management. There is a limitation in the available tools that allow administrators

to mitigate this challenge. Therefore, policy misconfiguration is the cause of a huge

number of security breaches cases [106].

Based on the literature, access control specification can follow a graph-based

approach or logic-based method. The graph-based approach is used to represent

access control models. However, the logic-based method is more convenient when

it comes to reasoning and computing [24]. Logic-based access control models are

suited to large dynamic systems as they are expressive and able to represent a

variety of authorisation policies [93]. Using formal logic for specifying, reason-

ing and verifying access control systems is an active research area. The logical

approach is more appropriate for this access control research scope than calculus-
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based approaches since it allows the detection of patterns of correct or incorrect

reasoning [16, 47].

In early 1973, the status of logic in computer science was not clear, and its

usefulness was not identified because of a lack of mechanical testing to validate

predicate logic. Furthermore, Boolean logic is intractable. Classical logic was

established to provide a formal language to describe how mathematics works us-

ing proven methods [45]. Classical logic (also known as sentential logic), such as

propositional logic and predicate logic (also known as First Order Logic or FOL),

formulas are either true or false in any model. Non-classical logic such as modal

logic (also known as symbolic logic) differ from classical logic as they replace the

concept of truth, which consists of two values: true or false, with the concept of

constructive provability. The constructive provability operations preserve justific-

ations with respect to evidence and provability rather than truth value.

In natural language, there are various truth modes such as it is believed to

be true (doxastic logic), it is always held (temporal logic), it is known to be

true (epistemic logic), and it ought to be the case that it is true (deontic logic)

[102]. Therefore, modal logic is more appropriate to reason in a dynamic situation

where a truth value varies over time. On the other hand, classical logic has

a static neuter [219]. First order logic might be more expressive then modal

logic, but in term of validities, modal logic is decidable where first order logic is

undecidable. Therefore, modal logic strikes a balance between expressive power

and computational complexity [214]. Table 2.3 compare modal logic with classical

logic. [214] Modal logics tend to be decidable ; and their validities can be described

in transparent variable-free notations. Understanding the trade-off between the

expressive power and axiomatizability is essential in formal logic reasoning.

Table 2.3: Comparing Modal Logic with Classical Logic
Classical Logic Modal Logic

Value nature Static Dynamic
Value Range Either False or True Concept of constructive

provability
Based on Fixed Truth value Truth value varies over

time
Expressiveness More Less
Computation complex-
ity

Less More
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2.7.2 Decontic Logic (DL)

Modal logic extends the classical logic operators with modal operators that al-

low the representation of possibility and necessity [68]. Deontic logic is a type of

modal logic that involves operators such as obligations, prohibitions and permis-

sions. It is used in normative systems such as computer security, legal systems

and electronic commerce [39]. Information Systems (IS) store real-world data.

The property that exists in this world that is known to be true is called an integ-

rity constraint. Different logics can be used for normal (hard) constraints. On the

other hand, the exceptional (soft) constraints which are the desirable properties

can be violated. Therefore, there is a demand for a logic that is able to cap-

ture soft constraints such as deontic logic, because deontic logic has an advantage

of reasoning between the ideal and the actual behaviour [49]. Furthermore, de-

ontic logic supports formal languages in avoiding the ambiguity of access control

policy specifications and is consistent because its soundness and completeness are

achieved through its axiomatic characteristics. As a consequence, it supports an

access control implementation level [144].

Deontic logic receives a large degree of attention in the field of computer science

[6, 181]. Chevy & Cuppens [49] presents one of the earliest logical reasoning

approaches to the properties of security policy in access control based on deontic

logic. Furthermore, Glasgow et al in [85] propose a formal framework for specifying

and reasoning about security policies called Security Logic (SL), where deontic

logic had been involved in the formal language used. However, SL did not involve

any access control logic operators. An application of deontic logic in Role-Based

Access Control (RBAC) is introduced by Koaczek [116]. Another work using

deontic logic in access control was presented by Abou El Kalam [5], where a

framework is proposed that can help the system administrator to automatically

derive the consequences of their policies.

2.7.3 Access Control Logic (ACL)

Several researchers contribute in defining and establishing Access Control Logic

(ACL). Chin and Older [47] use similar semantics to the logic of Abadi and his

colleagues, who have several contributions in this field such as [4, 2, 3, 120] and

their cooperation with Deepak [82, 81]. The ACL conducted by Abadi is con-

sidered as one of the foundations for ACL researchers. However, ACL has not

been used to formally define ABAC in the literature. Boella et al [34] proposes

a logical framework named Fibred Security Language (FSL). FSL aims to study

says operators. The FSL is based on a multi-modal logic methodology which uses

a fibring mechanism to combine logic based on the work of Gabbay [80].
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Several researchers have used intuitionistic logic to enhance ACL. Intuitionistic

logic is also known as constructive logic. Genovese et al [84] propose an ACL modal

(M-ACL) based on intuitionistic multimodal logic. M-ACL extends intuitionistic

propositional logic with says binary modality and speaks-for binary operator

between principles. Genovese et al prove the language soundness and completeness

using first order logic. Genovese et al in [83] present another modal called ACL+

for access control policy specification, reasoning, and enforcement to overcome

specific limitations of the basic ACL. These limitations are implicit permissions,

control or delegable permissions, and information flow versus acceptance. Massacci

[139] presents a logic for practical reasoning with RBAC based on Abadi ACL in

addition to a decision method based on analytic tableaux. Whereas Kosiyatrakul

[117] extends Abadi ACL, with four relations to reason about an RBAC policy

model.

2.8 Artificial Intelligence in IaaS Cloud

Security

To the best knowledge of the author, no prior work addresses the use of a knowledge-

agent in access control model implementation in IaaS. The knowledge-agent is a

type of logic-based agent; therefore, it suits systems where logic is used to infer a

decision. Thus, an attempt is made to involve this kind of agent in the current

research. There does exist, however, an inspiring work by Doelitzscher [62], who

proposes an auditing system for IaaS cloud using agent technology. There is a

research trend to employ computational intelligence in cloud computing [36] since

the cloud service provider can become a suitable candidate for offering security

intelligence [43]. Subsequently, in a frequently changing infrastructure, it will be

an advantage to deploy an agent-based mechanism [63]. A related work done by

[183] to address the use of Artificial Intelligence to mitigate the limitation of the

existing security mechanisms such as firewall in protecting cloud computing from

the dynamic nature of threats. The utilisation of artificial immune systems in

cloud security issues has been studied by [72]

2.9 Summary and Discussion

Infrastructure as a Service (IaaS) is an approach to infrastructure outsourcing.

Its flexible characteristics add great benefits in deploying and managing resources

from a business perspective. On the other hand, IaaS infrastructure brings with

it several security challenges as it changes frequently, is shared among different
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customers, enables virtual machine configuration and allows a virtual machine to

move easily. As an example, for IaaS operations, live virtual machine migration

(LVMM) can be attacked through the network link or through the physical host

or even as a result of inconsistent policy configurations.

To mitigate these security challenges, a proper access control model and an

enforcement mechanism are essential to enhance IaaS security. In this paper, the

firewall as an access control enforcement mechanism is explored and the access

control models for cloud computing are investigated. Through this investigation,

it has been observed that the firewall faces several limitations in the cloud en-

vironment and even the firewall service offered by commercial clouds in form of

security group has limited functionalities.

The finding illustrates that cloud firewall system should offer flexibility to the

customer in addition to an acceptable level of trust. The virtual firewall as well

adds an advantage to IaaS if it is designed and implemented accurately to be

aligned with IaaS characteristics. The cloud firewall should also be built on a

suitable access control policy to alleviate the security challenges faced by IaaS.

The centralised and the distributed administration approaches for a firewall

system offer some useful gains alongside their limitations. We can point out that

the distributed administration approach for firewall looks to be more effective

than the centralized one in the IaaS environment.

Researchers have proposed several approaches to putting forward a cloud fire-

wall system. However, academic researchers recommend to take access control out

of the network and place it in the hypervisor, basically into the host [173, 210, 240].

Moreover, the traditional access control models are not adequate for imple-

mentation in the cloud environment. Researchers have proposed several cloud

access controls, but still some commercial clouds deploy a classic role-based access

control model. Therefore, it is recommended to perform a thorough exploration

on the proposed access control to come up with an improved model that is suitable

for IaaS and can attract the commercial cloud to deploy it.

We recommend employing an intelligence security approach in implementing

and monitoring the access control in IaaS to respond to the challenges faced by

traditional firewalls and access control models. Intelligence security is a fertile

approach, as most of the existing security paradigms suffer from reactive and

fragmented approaches [115]. The cloud service provider may become a con-

venient candidate for offering security intelligence [43]. In a frequently changing

infrastructure, it will be an advantage to deploy an agent-based mechanism [63].
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The Enhanced Attribute-Based

Access Control ABACsh

3.1 Introduction

This chapter addresses the attribute-based access control enhancement in ABACsh,

with a focus on the context-aware mechanism (Section 3.2) and the SoD principle

(Section 3.3). This chapter concludes with a computational complexity and quality

metrics evaluation of ABACsh.

3.2 Context-Awareness Mechanism

3.2.1 Overview

The specifications of the context-aware system can be interpreted differently based

on the way researchers define a context within their study scope. In [112], context-

aware based access control allows dynamic grants for permissions to access objects

based on the current user context. The context of the subject and the object can

be extracted from the environment by using 5W1H (who, where, what, why, when

and how) [111]. In [108], context is considered as a finite set which reflects the

system-dependent attributes set by the administrator and differs from the subject

attributes and object attributes. However, other authors consider Attribute-Based

Access Control (ABAC) to support context-aware features as its access enforce-

ment is based on the attributes of the subject and the attributes of the objects

which reflect their context [44]. A context-aware investigation from the literature

is explored in the following section and analysed.

31
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3.2.2 Analytical Study of Context-Aware in ABAC

Kim's work [112] investigated context-aware access control of an ubiquitous applic-

ation with RBAC extension by involving a context-aware agent and state checking

matrix. The context-awareness is enforced via two cases. Firstly, the user privilege

should change based on the user context, such as location and time. Secondly, the

resource permissions changed based on the system information, such as network

bandwidth and memory usage. Kim proposed another work related to context-

aware access control [111] by presenting a new access control model called CIAAC

(Context Information-based Application Access Control), which was designed to

separate context awareness and access control policy from processing logic and

business, where context is defined as all the information surrounding an entity.

CIAAC allows flexible business application operation related to the changes in ac-

cess control policy to meet external security environment requirements. However,

its potential drawbacks have not yet been evaluated. Li proposed in his thesis

context-aware attribute-based techniques for data security and access control in

mobile cloud environment [123]. Context-aware terminology in his work involves

the surrounding context-information of a user as well as location and time. His

work is based on Attribute-Based Encryption (ABE) and presents new user-centric

access control technique tailored to mobile cloud environments.

The research in this thesis does not consider encryption techniques as ABE

faces several limitations. ABE lack an efficient mechanism to support a complete

set of comparison relations in policy specification, as authorisation can be com-

plex and attributes can be multi-dimensional [148]. ABE also introduce a heavy

computation overhead caused by bilinear pairing, and cannot achieve fine-grained

access control [229]. AL Kukhun [7] presents an adaptive situation and context-

aware access in pervasive systems. Her proposed model is based on RBAC and

makes use of XACML language. There are several attempts to extend RBAC to

adopt context-aware features, but these approaches do not take into consideration

usability, situation awareness, and improving access opportunities. AL Kukhun

discusses several context-aware definitions which can be summarised as a sub-set

of conceptual states or information that can be used to characterise the interest or

situation of a particular entity. It can be observed that location and time are used

as context-aware parameters in most related work on context-aware access con-

trol models. Lie and Wang [131] present the Fine-grained Context-aware Access

(FCAC) model for Health Care and Life Sciences (HCLS) using specific communic-

ation technology based on linked data. FCAC is based on two main components:

an ontology base, and access policy with XACML. The researchers defined context

attributes as environmental attributes such as network location and time which are
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not related to the subject-attributes or object-attributes. Venkatasubramanian et

al [217] distinguishes between context-aware based on the traditional authorisation

models and their proposed criticality-aware based authorisation model. Based on

their investigation, the traditional context-aware definition looks only at the sub-

ject contextual information, whereas their proposed criticality-based model takes

the contextual information about the components of the whole system, not just

the subject. The proposed Criticality Aware Access Control (CAAC) is based on

RBAC concepts. CAAC evaluates the system context attributes continuously to

determine if they have deviated from the norm, and the user privileges are up-

dated before they trigger an access-request. Choi [48] proposes an ontology-based

Access Control Model (onto-ACM) that takes context-awareness into considera-

tion. Compared to C-RBAC (Context-aware RBAC), onto-ACM can grant the

role inheritance by administrator and user, whereas C-RBAC grants the role by

administrator only. Onto-ACM aims to use access-aware technology within a cloud

computing environment.

3.2.3 Context-Aware Deployment in IaaS by ABACsh

From prior investigation into the context-aware definition of access control, it

can be concluded that the context attributes are those attributes which affect

the decision calculation and are not related to the object or subject attributes.

As ABAC is the basic conceptual policy selected for IaaS, the entities context is

inherited in the form of attributes. Therefore, there is a need to define context-

awareness within ABAC.

Context-awareness in our proposed ABACsh model is deployed in two phases.

The first phase defines the context-attribute set. Each context-attribute consists

of an attribute name and an attribute value. The context attributes-names set is

predefined by the system administrator based on system critical information and

characteristics. Context-attributes differ from the environment attributes in that

the latter values are predefined by the administrator, whereas context-attribute

values are updated based on the system states, where an embedded sensor captures

the context information. For example, for the context-aware attribute named

memory, its value will be updated based on the system memory measurements.

The context attribute can reflect CPU clock, desk space, network zone, or data

and time. In the second phase, context-awareness will be defined as one of the

configuration points in the proposed ABACsh system to enforce the use of context

in the access-control decision.
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3.3 Separation of Duty (SoD) Principle

3.3.1 Overview

In an environment that allows policy combination, a user is authorised to act in

more than one role or trigger more than one operation simultaneously. Policy com-

bination might lead to policy conflict, as some actions violate the overall policy if

they are committed at the same time. Therefore, constraints should be configured

to manage this possibility.

The Separation of Duty (SoD) principle is used in such scenarios to prevent

misuse of the system by limiting the user to the least privilege necessary to perform

their required tasks. The least privilege principle limits the access of the subject

during an operation on a specific task to be within the minimum resources, lowest

privileges, and specified period of time. Several security enhancements can be

gained from SoD, such as fraud prevention and error minimisation [35, 119, 220].

There are two main types of SoD: static, and dynamic. Static-SoD (SSoD)

will list the conflicting roles which cannot be executed by the same user at the

same time, whereas dynamic-SoD (DSoD) enforces the control at the time of

access-request. In an RBAC model, roles and role relations are defined in advance

during the policy engineering process. For SSoD in RBAC, SSoD relations place

constraints on the user-to-rule assignment function, where one user can be assigned

a specific set of roles and be excluded from another set of roles. Otherwise, two

or more users are required to be involved in accomplishing sensitive tasks, since it

is less likely that multiple parties will issue a fraud attack. In the DSoD relation,

the capabilities for one user are restricted to being activated during a specific user

session, i.e. the same user cannot perform two roles simultaneously [76, 153].

Although in RBAC, SSoD and DSoD relations offer some advancement in con-

trol over identity-based systems, security issues remain. The most accommodating

form of SoD is History based (HSoD). Although, enforcing it in a static based ac-

cess control management environment such as RBAC is difficult, if not impossible

[74, 196]. One role of a HSoD is that it prevents an object from being accessed by

the same subject a certain number of times [94]. Therefore, we assume that the

ABAC model concept has the characteristics of supporting certain types of SoD.

The following section will investigate efforts in the literature to involve the SoD

principle in ABAC.

3.3.2 Analytical Study of SoD in ABAC

A significant amount of research has been conducted regarding the principle of

Separation of Duty (SoD) in RBAC; however, SoD deployment in ABAC remains
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a problem [193]. One of the earliest related works in specifying constraints in

ABAC is illustrated through ABACα configuration-points [108]. Nevertheless,

their proposed constraint settings are event-specific during attribute assignment

and/or modification of the object and subject. This method is similar to the

RBAC constraints-setting concept, where the allowed roles are activated for a

specific user session after the roles are assigned to the users.

The author of ABCL proposed an event-independent constraint language based

on conflicting relations of attribute values such as mutual exclusion and precondi-

tion [29]. ABCL language specifies restrictions either on a single set of attribute

values or on a set of values of different attributes within the same entity. The

usefulness of ABCL language has been validated through case studies. However,

it lacks a framework or a formal model that illustrates its implementation.

Dynamic Separation of Duties (DSoD) is more appropriate to cloud computing,

and it also meets the dynamic nature of ABAC. Nguyen [152] has carried out in-

teresting research on DSoD and proposed DSoD deployment through Provenance-

based Access Control (PBAC). His work is basically proposing a means to capture

and utilise the information needed in the SoD enforcement, as previous work in

the area assumes that the information is ready without demonstrating how to

prepare it. Some of the previous work related to dynamic-based SoD is ObjDSoD,

which is based on the object, and where the enforcement is constructed on a set

consisting of conflicting-roles and a conflicting-action on these roles. Therefore,

the subject will not be allowed to perform an action on an object if that action is

in the set of action role conflict. Another approach is OpsDSoD based on opera-

tions. This is a task-aware that involves an action-role conflict set, thus it differs

from ObjDSoD by limiting the user to perform the needed actions for a particle

task even though they have more privileges. A third approach is HDSoD, which

combines ObjDSoD and OpsDSoD. Further, HDSoD is object-aware and a task-

aware. HDSoD is order-aware, where order-dependency conflict is triggered if the

order is essential for a sequence of sub-tasks. Nguyen in [152] extended HDSoD

by adding dependence-path-aware and past attribute-aware in their DSoD which

is used in Provenance-based Access Control (PBAC).

Event pattern and response relations called obligations are introduced by Fer-

raiolo, Atluri, and Gavrila in their policy machine research [74], which can enforce

some forms of HSoD in their access control framework. Obligations have a set of

conditions that are specified by the event pattern under which the state of the

policy is obligated to change; only if this set matches the surrounding context,

the operation on an object can be executed. There are two recognised standards

can be applied to the ABAC concept: Extensible Access Control Markup Lan-

guage (XACML), and Next Generation Access Control (NGAC) [75]. XACML
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does not show any support for DSoD constraint, while NGAC does show some

support to DSoD through a Prohibitions (Denies)-relation, which includes a set

of denying relations that specify privilege exceptions where a user that is allowed

to run capability (x) will be prohibited from running capability (y).

3.3.3 SoD Design and Deployment in Access Control

System

It is most likely that the formulation of SoD requirements are prepared by the

administrator based on the business rules. An example of such a rule is, person

may not approve his or her own purchase order [35]. SoD deployment can be

involved with different layers of an access control system. It can be designed

within administrative-level policies and procedures, or it can be used within logical

or technical mechanism access-control restriction points [119].

Based on recommendations regarding SoD implementation to traverse its lim-

itation in RBAC [196], several techniques have been explored, such as grouping

concept, membership control, activation control, history control, and labels. How-

ever, in ABAC, the grouping concept will not be appropriate as grouping restricts

an attributes flexible nature. Membership control cannot be adopted by ABAC

as it is not role-centric. Though, the activation control concept has been adop-

ted into SoD specifications in ABAC by Jin [108] and Bijon [29]. Ferraiolo et al

[74] describe a relation between entities that can be used in History based SoD

deployment. Whereas Biswas et al [30] point out that label concept can be used

to enforce SoD in their proposed label-based access control in an ABAC.

There are several obstacles in designing and implementing SoD, as it is an

application-oriented policy where the business rules indicate the critical tasks

which require SoD enforcement. Another challenge is that different applications

may require various types of SoD. Lastly, most SoD types are informally defined,

which creates ambiguity regarding the subjects or specifications [86].

3.3.4 SoD Deployment in IaaS by ABACsh

Based on the above investigation [29, 107, 152, 193], SoD can be defined as an

enforcement constraint configured to avoid conflict between policies. This conflict

can be due to multi-access requests from different subjects to the same resource

simultaneously, or the same subject requesting access to multiple resources at the

same time. From this definition, it can be observed that SoD may be viewed as

object-operation-oriented, which can be aligned with ABAC's relation between

object-attributes and operations. We can discern from the above that it is more
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appropriate to enhance SoD by implementing a form of HSoD which will be suit-

able to be enforced in a dynamic access control policy environment such as ABAC.

With RBAC, the centric entity involved in the SoD principle design is the role

set. In contrast, ABAC cannot consider a role in the form of an attribute as it can

lead to a chaos [52]. Therefore, the focus of this paper regarding formally defining

SoD within ABAC will be on attributes and attribute-relations, with no aim to

define an application-oriented SoD. Thus, we aim to identify a logical based design

for SoD within the ABAC policy model. The proposed work is based on formal

logic; exception cases are not encouraged in a formal logic as exceptions make

regulations non-monotonic and introduce conflict between proven conclusions [61].

Therefore, the proposed SoD is operation-object orientated that defines a rules-set

reflecting the forbidden operations on the set of objects under a specific situation

of a collection of entities attributes. Entities include the object, the subject, the

environment, and the system context. Moreover, formal logic facilitates SoD rule

creation, even by non-expert security administrators. Since the proposed system

is attribute-based, it is not necessary to update different locations if a new action-

restriction is added, deleted, or modified.

3.4 Evaluating ABACsh Computational

Complexity and Quality Metrics

3.4.1 Overview

Computational complexity theory studies the resources required to solve a given

computing problem. This study can look at the time or/and the space require-

ments in order to study the system behaviour. Computational complexity of an

algorithm can be measured by determining their computation duration and the

memory consumption. This task can be accomplished through two approaches.

The first is benchmarking which measures the duration in seconds and memory

in bytes for a particular system implementation and input. The second is a math-

ematical analysis of algorithms which use asymptotic analysis through O() nota-

tion. In contrast to benchmarking, it is independent of the system implementation

as different systems can be written in different programming languages, running

on different computer specifications, and using different compilers and data-set.

Therefore, benchmarking results is difficult to predicate how well the algorithm

performs in a different system. In this research, we use O() notation approach

because it balances between precision and ease of analysis. [182, 180]
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3.4.2 Evaluation Results

The performance of access control enforcement is crucial for a system that has

a large number of users, such as cloud computing. Computational complexity

calculations provide an insight to measure performance by including the number

of required operations in granting access decisions and safety checks. The existing

access control model based on RBAC introduce a high time complexity and colossal

space complexity process [211].

This section investigates the computational complexity of three ABAC mod-

els: the proposed ABACsh, the basic ABAC presented by ABACα [108], and the

hierarchical ABAC presented by HGABAC [192]. The two primary operations of

ABAC models are attribute assignment and policy creation. The safety check is

an add-on feature which enhances the access control system. Table 3.1 demon-

strates the complexity evaluation between these three ABAC models. Attributes

assignment in ABACsh is based on the attributes function Att(), which returns the

attributes of the required entity. Therefore, it can be represented as a constant

function in terms of O-notation, which is also applicable in ABACα. The constant

function in terms of O-notation written as O(1). On the other hand, HGABAC

has a group assignment in addition to the attributes assignment because it ad-

opted a hierarchical approach. However, it affects the performance based on the

cases implemented, as illustrated by the HGABAC authors in their case-based

evolution. In O-notation, HGABAC is represented as (O(N .M)) where N rep-

resents the attributes assignment and M the group assignment. The hierarchy

feature is known in RBAC as role-hierarchy which allow an inheritance relation

between roles. When a user is assigned to a role, s/he is indirectly associated with

the junior-role capabilities. On the other hand, rule hierarchies in ABAC are to

add attributes hierarchy to subject and object by adding two type of assignment

relations. Subject-attribute to subject-attribute assignment and object-attribute

to object-attribute assignment. The advantage of hierarchy is to add attributes

Inheritance benefits. That results to fewer rules and reduce relations of the ob-

ject to object-attribute and subject to subject-attribute [73]. Hierarchy Grouping

attribute-based access control (HGABAC) is proposed by [192] with an aim to be

able to express DAC, MAC and RBAC. The hierarchy is out of this research scope

at this point.

Regarding safety check, only ABACsh supports SoD. The complexity of this

operation is inO(n) in which SoD rules are consist of (n) forbidden rules. The time

for this operation will increase proportionally as there will be a loop of size (n).

Moreover, ABACα does not provide a logic for policy creation where HGABAC

employees truth table schema via K3 logic. As will be explored in Section 4.2,
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the most appropriate logic to express access control system is modal logic. Our

proposed ABACsh expresses policy creation via ACL-Dl which is a type of modal

logic as will be de discussed in detail in Chapter 4.

Table 3.1: Complexity evaluation between ABAC models
Model attributes as-

signment
policy creation safety

check
ABACsh O(1) Via kripke model using

ACL-DL logic
O(n)

ABACα O(1) Not included None
HGABAC (O(N .M)) Via truth table using Kleene

K3 logic
None

The quality investigation is based on selected attributes from access-control

evaluation quality-metrics suggested by NIST organisation [94, 97, 98]. Table 3.2

summarises the evaluation between ABACsh, ABACα and HGABAC. ABACsh is

context-aware and supports operation-object oriented Separation of Duty (SoD),

whereas ABACα and HGABAC do not. In general, attributes-engineering is not

explored by any of those ABAC models, but in terms of the attribute-object as-

signment, ABACsh creates a capability list using deontic operator obligatory per

object. ABACα uses two configuration points in assigning attributes to objects;

the first is an object attribute assignment constraint at object creation time, and

the second is an object attributes modification constraint. HGABAC has a total of

seven mapping functions: direct, consolidate, member, inherited, effective, name,

and parents. These mapping functions support hierarchical feature to ABAC,

yet it increases the complexity of the model by adding additional operations re-

lated to grouping. Therefore, HGABAC has the highest performance complexity

among these three ABAC models. ABACsh performance complexity is higher than

ABACα as it adds extra operations for SoD checks. Finally, ABAC sh is formally

described and verified via a complete formal policy language based on modal logic,

which is ACL-DL. ABACα is missing a complete formal policy language, whereas

HGABAC is based on propositional logic which is more complicated in terms of

computing than ABACsh

3.5 Summary and Discussion

This chapter introduces the characteristics that contribute to enhancing the ABAC

model.

From the prior investigation into the context-aware definition of access control,

it can be concluded that the context attributes are those attributes which affect
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Table 3.2: Quality metrics evaluation between some ABAC models
ABACα HGABAC ABACsh

Support for SoD - - X
Context-aware - - X
The steps required for assigning
attributes to object during ac-
cess control entries creation

Via two
configura-
tion points

Via map-
pings func-
tion total of
seven

Via capability
list

The number of relationship re-
quired to create an access control
policy

Not spe-
cified

Total of four
relations

Total of two

Performance complexity of ac-
cess control enforcement

Low High Moderate

Syntactic and semantic support
for specifying AC rules

Syntactic
only

Language
based on
proposi-
tional logic

Language based
on modal logic

the decision calculation and are not related to the object or subject attributes.

In ABACsh, the context-aware are not pre-defined values. Instead, context at-

tributes reflect the system state values during the access request process. This

consideration meets the IaaS scalability feature.

Furthermore, this chapter clarifies SoD principles and deployment methods.

The proposed SoD deployment for IaaS is a type of operation-object orientated.

This SoD defines a rules-set reflecting the forbidden operations on the set of objects

under a specific situation of a collection of entities attributes. Entities include the

object, the subject, the environment, and the system context. Since the proposed

system is attribute-based, it is not necessary to update different locations if a

new action-restriction is added, deleted, or modified. That support the dynamic

feature of IaaS.

Finally, a comparative study evaluation illustrates how ABACsh is distin-

guished from existing ABAC models. the Evaluation of the ABACsh computation

complexity and access control quality metrics reveals superior results in compar-

ison with two existing ABAC models.



Chapter 4

The Proposed ACL-DL Logic for

ABACsh

4.1 Introduction

The aim of this chapter is to present a formal logic that is able to specify ABACsh.

Being attributes centric is the main different between ABAC models and other

access control categories. The attributes of access-control entities are used to

make access decision; whereas other access control categories are using identities

values. The authentication mechanism is responsible about checking the users

identities, therefore the authorization mechanism through ABAC model focuses

on more fine grained access.

The formal logic approach is selected in this thesis because it supports ac-

cess control system specification, verification and reasoning as will be analysed

in Section 4.2. Access Control Logic (ACL) was investigated in the literature by

different scholars who contribute into clarifying its features as discussed in Section

2.7.3. However, ACL faces a problem of implicit permission because the access

permission is based on entailment through the binary modality says . The format

of says involve the use of subject identity. For example, A says φ interpreted

as a principal A support a formula φ to hold in the system. In another word,

whenever φ is true A says φ is true as well. Moreover, ACL support the primary

access control categories. For example, it needs to be extended with additional

relations to specify RBAC model characteristics. To the best knowledge of the

author, no prior work introduces ACL enhancement for ABAC.

Based on the presented literature, the proposed logic in this research will com-

bine Access Control Logic (ACL) modality says with a Deontic Logic (DL) mod-

ality obligation . ABAC is based on attributes rather than subject identity;

therefore, the problem of implicit permission is eliminated. Deontic Logic is se-

41
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lected in this research because of its capability to express access control rules as

discussed in Section 2.7.2. The contribution of this study in access control logic

research is illustrated in Section 4.3 .

In this research, the understanding of modal logic and background are based on

[47, 214, 84, 83, 31, 234, 101, 32, 174]. The production of the proposed logic Access

Control Logic-Deontic Logic (ACL-DL) is divided into two steps, as illustrated in

Figure 4.1. The first step involves an inductive definition of a formal language

to produce a well-formed formula in addition to logical-rules and axioms. The

second step is to define a model that is able to interpret the language sentences.

The model is based on a Kripke structure that allows the definition of the truth

notation in model-theory and to define the logical truth valuation within the scope

of ABAC properties.

Figure 4.1: ABAC formal Modelling steps

Formal languages in modal logic are defined by the induction approach that

starts from a specific observation to reach the hypotheses and/or theorems, con-

trary to the deductive approach. Induction is less restricted than deduction, even

though the former is considered logically stronger than the latter. Nevertheless,

in some cases, conclusions can be true in terms of format via deductive reasoning

while being false in terms of the content. Each research area selects the technique

that suits their used language and scenarios. This research uses reasoning within a

finite model, which is a closed world with internal relations. Therefore definitions,

proof, and reasoning by induction are suitable in this scenario where the modal

logic is considering the relational structure within the local scope. Modal formulas

are evaluated from inside the structure at a particular state.
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4.2 Analytical Study: Why Modal Logic is

Suitable to be Used in IaaS Access Control?

Formal logic language is one of the most important aspects of policy specification

[16]. From an administrative point of view, logical policy-based access control

models are significantly expressive. Therefore, they add flexibility and provide an

opportunity to present a variety of authorisation policies. For example, the U.S

military faces a problem with access control due to frequent large-scale changes to

its authorisation policy, thus, as pointed out by [93], a logical access control system

could solve this problem. IaaS cloud is dynamic, therefore there is a frequent

change in access control rules, so, logical access control is more appropriate, as

explained in Figure. 4.2.

Figure 4.2: Why Modal Logic is Used in IaaS Access Control

Access control policy has been investigated for more than forty years [55]. The

first logical specification for access control policies was based on first-order logic,

where permission is directly assigned to a subject, but then a role concept is sug-

gested, as in RBAC where permission is assigned to a role instead of a specific

subject. Consequently, the role concept has been modulated using predicate, but

there is a lack of formalisation, as RBAC does not have any formal semantics.

The lack of formal semantic leads to the consideration of the use of role context-

dependencies, such as location and temporal. Therefore, there is a research dir-

ection that takes into account the involvement of deontic logic and context-aware

concepts. Consequently, modal logic has been selected in this research to specify

an enhanced ABAC model.

Modal logic is a simple yet expressive language for talking about relational

structures. Modal language provides an internal, local perspective on the rela-

tional structure. This feature makes it unique among other forms of logic. Modal
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formulas are evaluated inside a structure at a particular state [31]. This character-

istic of modal logic, introduce an advantage in specifying ABAC that supports the

dynamic features as ABAC decision state is vary based on the provided attributes.

Abadi [2] points out that the core argument in considering the proper type of

formal logic to be used in an access control model is based on the ability of this

logic to write formulas that meet the model requirements. Therefore, this thesis

has found that modal logic is the most suitable logic that satisfies the ABAC model

requirements in IaaS cloud.Even though modal logic is effective in access control

systems, it was not used in practice to enforce authorisation policies even though

modal logic has proved to be used in theoretical access control, as elaborated

by Genovese [83]. Thus, this thesis aims to provide a practical framework for the

proposed ACL-DL based on AI architecture, as Modal Logic is a serious candidate

that supports the logical approach in artificial intelligence systems [102].

A modal logic approach based on deontics is more suitable for expressing ac-

cess control than classical logic. Based on the semantic, the core modalities of

modal logic are possibility and necessity. Deontic logic is the logic of obligation,

permission, and forbidden. It adds intentional connectors to the classical Boolean

connectors [116, 142, 202].

Moreover, dealing with conflicting rules is one of the major limitations of clas-

sical logic in policy specification of access control systems. In a classical logic

such as first-order logic, which is also called predicate logic [102], and its related

approaches, every conclusion can be drawn from a contradictory set of premises,

which leads to trivialisation. This effect is not acceptable for access control prac-

tical purposes [16]. The conflicting rules limitation adds another advantage of

replacing classical logic with deontic logic.

4.3 The Contribution of This Study to Access

Control Logic Research

Several studies on access-control logic have been proposed, mostly related to policy

representation, enforcement, and proof-theory. The literature contains limited

work that explores decidability, Kripke semantics, and the relation between the

logics as we agree with [82] observations. The proposed ACL-DL logic in this

chapter is able to represent policy rules. It has a defined Kripke semantic, in

addition to the relations between the logics.The says operator is combined with

deontic Logic operators (DL) to introduce a modal logic that is able to specify and

reason an ABAC system. DL facilitates security policy rule specification, where

says gives a logical relation among access control system entities.
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Three well-known policy-oriented logics are used in access control systems:

first-order logic, stratified logic, and DL [42, 57]. Based on this research, only DL

is a branch of the modal logic family. Thus, it has been involved in our proposed

access control language. In order for DL to be practical in computer science,

many researchers recommend incorporating it with other modal logic modalities

[38]. The proposed logic incorporates says modality with deontic modalities to

create a logic that is able to formally express attributes based access control.

In current access control logics, permission through entailment is defined where

binary modality says is used. Because the identity of the principal is not included

in this modality, a problem of implicit permission occurs [83]. In the proposed

ACL-DL language, by default, the principal identity is not included. Instead, a

set of attributes and a policy sentence are used to give access permission since

the proposed ABAC model is identity free. Therefore, this limitation is overcome

through the use of a says operator.

However, defining compelling semantics for says is an open problem in access

control logics [61]. This problem is beyond the current research dimension. De-

ontic Logic (DL) paradox research is also beyond the scope of this research. An

attempt is made by this research to partially solve the DL paradox by allowing

a relation between principals [45]. This relation is achieved through the variable

sharing principle. The basic idea is to have at least one shared propositional vari-

able in common between the premises and the conclusion during the reasoning

process. This variable sharing condition is met in the proposed ACL-DL, as the

access control request has a propositional variable that reflects the requested action

(operation on the object) where the conclusion reflects the access decision, which

indicates that this action is allowed or denied. The next section will demonstrate

a formal verification for the proposed ACL-DL logic.

4.4 The Formal Logic Language

Formal languages in modal logic are defined by induction where its start from

specific observation to reach the hypotheses and/or theorems, unlike deductive

definition. Induction is less restricted than deduction, even though the former

considered logically stronger than the latter. Nevertheless, in some cases, some

conclusions are true in term of format via deductive reasoning while it is false in

term of the content. Each research area selects the proper technique that meets

their used language and scenarios. In our research, we are reasoning within a finite

model which is a closed world and has internal relations. Therefore definitions,

proofs and reasoning by induction is suitable in this scenario where the modal

logic is considering the relational structure within the model locally scope. Modal
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formulas are evaluated from inside the structure at a particular state.

4.4.1 Syntax

The syntax of a formal language shows what the formula looks like. A formula is

constructed by connecting an atomic proposition using connectives. The atomic

proposition is a statement or assertion that must be true or false where connectives

are such ( AND = ∧, OR = ∨, not = ¬ ). The syntax of access-control logic

consists of formulas and principle. The formula represents a basic statement that

consists of an action on an object such as read file foo. The principle represents

entities that make the statement, such as people, machine, process, which is mainly

the subject part of the access-control system. The statements can be primitive

and consist of one formula, or can be compound, with more than one formula.

The principle can also be a simple or compound.

4.4.2 Language Operators

The proposed ACL-DL language will make use of the logical operators listed in

Table 4.1, which consist of a well-known access control operator says , and two

main deontic logic operators: obligatory OB, and permissible PE . Deontic operat-

ors reflect the juridical notation of an access control system, whereas says reflects

an access-request notation. OB and PE are unary modalities where says is a

binary modality. OB and PE are dual pairs, as there are many notations in nat-

ural languages where OB is aligned to necessity and PE is aligned to possibility.

Necessity and possibility are the modal-logic basic operators. The says operator

works similarly to how an epistemic-logic operator believes with limited binary

relation of type serial.The representation of a subject (S) requesting an operation

(read) on an object (file x) can be expressed formally in the form S says (read

file x). At this point, the subject triggers an access-request as they believe that

they can obtain access. This access-request is not granted unless there is a policy

rule indicating that the subject is capable of this action. Capability indicates the

access right and can be expressed formally in the form OB (S says (read file x)),

the access-request is then granted.

In the literature, there are other access-control logic operators such as controls,

specks-for, hands-over, and servers, which are not involved in this research. How-

ever, the combination of the deontic operator obligatory (OB) with the access

control operator says in ACL-DL logic is facilitating rule expression.

Deontic operators have a variety of presentations, such as permissible(PE ), ob-

ligatory(OB), optional(OP), impermissible(IM), and omissible(OM) [205, 84, 18].

These operators can be derived from OB , as illustrated in Table 4.2. Therefore,
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Table 4.1: AC-DRL operators with intended informal meaning
OB: obligatory to access
PE: Permissible to access
Says: a principle P make the statement Q, P make statements that they be-
lieve(conceive) to be true

deontic logic operators give the flexibility to accommodate different policy-rules

formations.

Table 4.2: Deontic operators derivation
OB(p)obligatory is a central term
IM(p) = OB( ¬ p), not allowed (impermissible or forbidden)
PE(p) = ¬ OB( ¬ p), allowed (permissible)
OM(p) = ¬ OB(p), you don not have to do it (omissible)
OP(p) = ¬ OB(p) & ¬ OB( ¬ p), you do not have to do it but you can do
it (optional)

4.4.3 Principals Expressions Definition

The set of principal expressions is ranged over P and Q and follow the syntax

in Table 4.3, which is expressed in BNF grammar format. BNF (Backus-Naur

Form) is a commonly-used type of context-free grammar employed in computer

science [180]. The symbol (&) represents a principle in conjunction with another

principle. A is a simple principal name which represents a subject that creates

an access-request, where P and Q represent sets of attributes that are associated

with one of four entities: subject-attributes Att(s), object-attributes Att(o),

environment-attributes Att(e), and context-attributes Att(c). The symbol (|)
means P is quoting Q, which will be useful when the set of attributes is quoting

the subject that makes the access-request.

Example. An example for simple principal A is the subject itself such as

a user of type student. An examples for set of attributes P are a collection of

four attributes sets: Att(s) such as the student is a PhD from computer science

department, Att(o) such as the Student wants to access a resources for computer

science students that are related to post-graduate courses, Att(e) such as this

operation is allowed for school of science and the student registration is valid,

Att(c) such as the time should be in the morning and at semester time.

Table 4.3: principle syntax expression
P ::= A|P&Q|P |Q
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4.4.4 Formulas Definition

Formula definition requires the definition of a class of general modal language that

is relativised to a set of atomic formulas. Let VAR be a non-empty finite set of

atomic formulas which known as well as primitive propositions. The members

of VAR set can be written as VAR=
{

p1,p2,,pn
}

and for simplicity, atomic

formulas are denoted p, q and r to range over VAR elements. The smallest set

of formulas is φ of the modal language L are defined in BNF format in Table 4.4.

Examples. A simple operation on an object such as restarting a virtual

machine is denoted as p, whereas p ∈ V AR. A combination of several atomic

formulas using boolean operators and the language operators discussed in Section

4.4.2 will lead to a combined formulas such as a set of attributes are required to

access an object S|(Att(s)&Att(o) &Att(e)&Att(c)) says (opr → obj).

Table 4.4: ACL formula syntax
All propositional formulas
p ∈ V AR where p is an atomic formula
V AR ⊆ φ
φ ::= V AR | ¬φ | φ

∧
ϕ | φ

∨
ϕ | φ→ ϕ | φ ≡ ϕ | Psaysφ | OB(φ)

Finite model in term of Sub-formulas Definition

Defining sub-formulas is useful as a modern finite version has been observed

to be the standard in the literature. Many proofs, such as proof of completeness,

can be formed in a finite universe of formulas. Therefore, the definition of a finite

model consists of formulas where the model size is a function of the number of

sub-formulas which can aid the decidable conclusions of modal logics. Therefore,

’ϕ sub-formula of φ is defined in 4.5.

Table 4.5: ACL Sub-formula syntax
ϕ is a subformula of itself and all the formulas used to build ϕ
if ψ → ¬ϕ, ϕ→ φ ,orOB(ϕ) then ϕ(φ) is a subformula of ψ
if ϕ is a subformula of φ,and φis a subformula of ψ ,then ϕ is a subformula of
ψ
T = ¬ ⊥
ϕ
∨
ψ = ¬(¬ϕ

∧
¬ψ)

ϕ→ ψ = ¬ϕ
∨
ψ

OB(ψ) = ¬PE(¬ψ)
Psaysψ = ψ
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4.5 The Formal Model Structure

4.5.1 Background

Relational structure is used to explicate the logical structure of modal systems.

It consists of a collection of relations on a defined set. The relational structure

can be observed in various domains. Mathematical structures can be expressed

as a form of relational structures. Moreover, diverse applications discern to be a

relational structure, such as the use of labelled transition systems to model pro-

gram execution in theoretical computer science, in addition to disciplines such as

knowledge representation, computational linguistics, formal semantics, economics,

philosophy, information security, artificial intelligence, and others.

In modal language, a relational structure is called a frame that is a pair

F = (W ,R),where W is a non-empty set and R is a binary relation on W . W
is called the universe (or domain) of F . The elements of W can hold different

names to reflect the modelled system, such as points, states, nodes, times, in-

stants, situations, and others. Binary relations can be serial, reflexive, transitive,

symmetric, convergent and more, depending on the axiom needed to represent the

system state relations. The model for basic language is a pair M = (F ,V)where

F is a frame and V is an assigning function, also known as a valuation function

that maps each proposition letter p in a logical formula φ in W to form a subset

V(p) of W . Formally V : φ → P(W) where P(W) denotes the power set of W .

Informally, V(p) is a set of points in the proposed model where p is true. Given

a modelM = (F ,V) denote thatM is based on the frame F and can be written

in the form (M,R,V(p),V(q), . . . ). Therefore, the model is a relational structure

consisting of a domain, a single binary relation, and the unary relations given to

use by V(p). Both frame and model are considered relational structures. The

frame level is used to make the fundamental assumptions mathematically precise,

and the model level is used to add additional descriptive content.

The possible world W can reflect a variety of system-state elements; it can

contain sentences and numbers, even a combination of elements. The critical

points in designing a model of possible worlds are to define a finite set of world

elements and to decide on the relationships between those elements. The Kripke

structure allows the modelling of logic with more than a single valuation. Its

valuation mechanisms can be divided into two streams: facts presentation, and

actual possibility presentation. The first valuation represents an actual truth

value of an atom through a distinguished state in a W set. This valuation is

accomplished through the labelling function V . The second valuation represents

an actual possibility through relation R that represents the relative possibility of
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the truth value [78].

4.5.2 Semantic Definition

If two logics are combined, such as L1 and L2, if L1 is stronger than L2 based

on the type of axioms applied, then the Kripke-structure model for such a lan-

guage combination should obey the restriction illustrated in Table 4.6 [101]. Con-

sequently, there is a necessity to define an accessibility relation for each operator.

The proposed ACL-DL is a multi-modal logic that combines a says access-control

operator with an obligatory deontic operator. Hence, the axiom followed by

ACL-DL operators are of type serial. Therefore, the two accessibility relations of

ACL-DL are of the same level of strength.

Table 4.6: Multimodal Kripke-structure restriction
V(Lnφ,w) = 1, if V(φ,w) = 1 for every w’ such that wRnw’, and 0 otherwise

A multi-modal system has complex modalities as they are obtained by com-

posing modal operators of different modal logic in order to capture several aspects

simultaneously. As a result, multi-modality allows different means of reasoning and

different means of interaction during the design of an agent situation [42]. There-

fore, multi-modal ACL-DL logic has two frames which can capture two system

states: access-request, and rule checking. Its two accessibility relations, R1,R2

follow a serial binary relation, as illustrated in Table 4.7.

Table 4.7: ACL-DL model relation properties
R is serial if for every x in W , there is some y in W , xRy

The ACL-DL first frame F1 = (W ,R1), W consists of the states related

to access-request preparations using a says operator. The second frame F2 =

(W ,R2), W consists of the conceivable states where ABAC rules are checked. R2

is the relation held between the two states w and w’ if all the rules which r estab-

lish in w are also followed in w’. The followed access control rules are denoted by

r. However, different states might have a different set of rules based on the system

requirements. As will be explained later in the ABACsh formal description, we

have two sets of rules: policy rules, and SoD rules.

Definition (Kripke Structure) A Kripke structure of a given a language

L with finite alphabet Σ is a finite structure M that is ordered quadruple inter-

operated in Table 4.8.

The meaning of accessibility relations in the proposed language is based on the

used modalities which are listed in Table 4.9. A specific reading OBφ in access
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Table 4.8: ACL-DL semantic
Model M = (W ,R1,R2,V) where p is an atomic proposition
M is a non-empty set of words or states
R1 is a binary relation which make the frame W ,R1 (W,R1) as an ordered
set, R1 ⊆ W ×W
R2 is a binary relation which reflect deontic property R2 ⊆ W ×W
V is unary relation which map W × VAR to assign true values and referred
to it as labelling function defined as V : VAR → 2w , so that V(p) is the set
of states where p is true

control rules(r) is defined, as in light of r, it must be that φ or in light of r, φ is

obligatory.

Examples. an example for W is a set of access control stages such as access-

request and access-decision. An example for R is an access rule to forbidden an

action such as an action of p = restart virtual machine which can be expressed

as FB(p). An example for evaluation function V is to set a true value for a specific

access-request such as it is permissible to restart a virtual machine PE(p).

Table 4.9: modality reading for defined relation in M
Psaysφ: principal P believes that φ, then vR1w: w should be the actual world
according to the P access-request at v
OBφ: It ought to be that φ, then vR2w: w is an acceptable state according
to the information at v
PEφ: It is permitted to be that φ, then R2: v state consider the information
given by w state in order to make a permission decision

4.5.3 Satisfaction Definition

Satisfaction Definition

A satisfaction relation denoted by (|=) defines when the formulas φ is satisfied

(or true) in the modelM = (W ,R1,R2,V) at state w, where p ∈ VAR, VAR ⊆
φ, v, w ∈ W . Table 4.10 illustrates satisfaction relation for our ACL-DL language,

satisfaction relation is also known as entailment relation. Model M is said to

be satisfied if formula is satisfied by all the model states (worlds). Thus, the

satisfaction definition can be written as M |= φ, if and only if for each w ∈ W ,

there is w |= φ.

4.5.4 Axiom

Axiomatisation is the process followed to identify an axiom. An axiom is also

known as a schema, while some researchers refer to them as classes. An axiom is a

set of sentences which have been proven true in all modal logics and have the same
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Table 4.10: Satisfaction Definition
1.M, w |= T
2.M, w |=⊥
3.M, w |= piffp ∈ V(w)
4.M, w |= φ

∧
ψ iff both M, w |= φ and M, w |= ψ

5.M, w |= ¬φ iff M, w |= φ
6.M, w |= Psaysφ iff for all v such that wRv and M, v |= φ
7.M, w |= OBφ iff M, v |= φ for all v such that wRv
8.M, w |= PEφ iff M, v |= φ for all v such that wRv and M, v |= φ

form regardless of the used language. Further, some axioms can be true in a specific

branch of modal logic, but not under other types, based on their accessibility

relation properties. Two axioms are sound and complete for all models: K-axiom,

and N-axiom. D-axiom is complete and sound in deontic logic. Unit-axiom is a

well-known axiom in access control logic and means that for every true formula φ

is supported by every principal. Table 4.11 lists the satisfied axioms (denoted with

A) and rules of proof (denoted with R) in the proposed ACL-DL language. Since

ACL-DL logic extends propositional logic with additional modalities, all axioms

and rules which are satisfied by propositional logic are also satisfied by ACL-DL

logic.

Table 4.11: ACL-DL Axiomatization
A0. all axioms of the propositional logic
A1. OB(φ→ ψ)→ (OBφ→ OBψ) (K-axiom)
A2. Asays(φ→ ψ)→ (Asaysφ→ Asaysψ) (K-axiom)
A3. OBφ→ ¬OB¬φ (D-axiom)
A4. Asyasφ→ ¬(Asays¬φ) (D-axiom)
A5. φ→ (Asaysφ) (unit-axiom)
R0. All rules of propositional logic
R1. if ` φ then, ` Asaysφ (N-axiom)
R2. if ` φ then, ` OBφ (N-axiom)
R3. if ` φ and ` φ→ ψ then, ` ψ (Modus Ponens)

4.5.5 Validity, Soundness, and Completeness

Definition (Validity). A formula φ of modal logic is valid if it is true in every state

of every model M is written as |= φ.

Definition (Soundness). Let S be a class of frames. A normal modal logic M
is sound with respect to S ifM⊆ S. In other words,M is sound with respect to

S if for all formulas φ, and all structures Ω ∈ S, ` Nφ → Ω |= φ. If M is sound

with respect to S, it can be said that S is a class of frames for M.

Definition (Completeness). Let S be a class of frames. A logicalM is strongly
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complete with respect to S if for any set of formulas λ∪ {φ} , if λ |= Sφ. That is,

if λ semantically entails φ on S then φ is M-deducible from λ.

The formula φ is valid on ACL-DL frames only if the relations between the

worlds in these frames are serial. ACL-DL soundness and completeness are satis-

fied within K-axiom, N-axiom and D-axiom for all its frames. Also, access-request

frame F1 is sound and complete within the unit-axiom. Another method to val-

idate the model is through valuation function V , by assigning valid formulas to

certain frames. Function V can be defined based on the system requirements to

indicate which formula is valid in a specific scenario that consists of states that

have relations without introducing any new world elements.

4.6 ACL-DL Formal Verification

In this section, the formal verification understanding and background are based

on [11, 32, 51, 102, 214, 216]. Formal verification for a formally designed system

is necessary to provide a mathematical justification that the model does what

it is designed to do. It is widely used in the hardware and software industries.

Therefore there is growing demand for techniques and professionals to apply them.

Formal verification can be calculated by a human through proof-theory. How-

ever, the formal logic modelled through relational structures such as the Kripke-

structure have an advantage in their ability to be verified through automated

formal verification such as model checking approaches. As the systems become

more complicated, there is a need for an automated formal verification. Model

checking based verification is simpler then proof based, as the latter verifies an

infinite classes of models. Whereas the model checking approach can be used to

verify the system property and is classified by the system engineering as post-

development methodology.

In the proposed research, a mode-checking approach is used to verify if the

proposed ACL-DL model M satisfies φ (written M |= φ). However, this model-

checking computation can be achieved if the ACL-DL model meets finite-model

properties.

4.6.1 Finite Model

Finite model theory studies the expressive power of finite models. Most classical

models focus on infinite structures, whereas in computer science the objects are fi-

nite. Hence, this research concentrated on logic over the finite structure. ACL-DL

is described through a Kripke-structure model which is a type of finite structures

model. Therefore, the ACL-DL model is a finite model and can be verified through
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finite-model checking approaches. Based on the model defined in Section 4.5, the

below features are met, hence making it a finite model:

� The set of propositional variables is a finite set, as its elements are countable

� The set of logical symbols are also a finite set

� The set of axioms and the set of models are recursively enumerable

4.6.2 Decidability Verification

Different methods can be used to check the decidability of modal logic, such as

finite model, filtration method, tableau system by using decision producer, and

normal system obtained from axioms D,T,B,4, 5.

Definition (Normal Modal Logic). Modal logic is said to be normal if its

sets of formulas are closed under conditions of modus ponens, generalisation and

uniform substitution [32].

ACL-DL is a normal modal logic, as its tautologies satisfy the K-axiom by

default since it also satisfies the D-axiom. ACL-DL also has a dual relation and

is closed under modus ponens, uniform substitution (N-axiom) and generalisation

(unit axiom). Normal modal logic properties allow syntactical validation and con-

clusion drawing while semantical validations and local consequences are managed

through the relational structure. As a result, ACL-DL is decidable as it is a normal

and finite model, hence decidability is not a measurement of the complexity, but

it is rather an indication that the logic is computable. In order to calculate the

complexity of ACL-DL language, it is necessary to verify its satisfiability problem.

4.6.3 Satisfiability Verification

Theorem(Satisfiability). In Section 4.5, every formula φ in the defined ACL-

DL modal language satisfies the proposed ACL-DL formal model based on a finite

tree of depth at most md(φ).

Proof. md(φ) stands for a model depth that reflects the maximum length of

a nested sequence of modality operators. A finite branch tree can be obtained

where model M satisfies φ at its root. Since ACL-DL is a finite model, M
satisfies φ on a shallow tree. There exists a PSPACE algorithm as the shallow

trees branch construction is calculated one branch at a time, where the branch

length is bounded by md(), which makes this processing polynomial in the size of

the input formula. The processing space (memory) is freed before the next branch

is constructed.
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4.6.4 ACL-DL Model Checking

As ACL-DL is modelled on a Kripke structure, it is apparent that a model-checking

approach that takes the state and the path under consideration is required. ACL-

DL is a finite model, therefore, program verification approaches are avoided as

model checking approaches are more convenient for finite state models.

Theorem. The model checking problem for ACL-DL logic can be solved in

time O(‖M‖.‖φ‖), which is a Ptime complete.

Proof. Based on the proposed language in Section 4.4, a formula φ and a

Kripke structureM are defined for ACL-DL logic. If all sub-formulae φ1, φ2, . . . φkofφ

are listed in order such that if φi is a sub-formula of φj then j < i, there exists

an algorithm that inductively labels each state of w (where w ∈ W possible world

set in M with φi or ¬φi based on which formula holds in that state. As some

states are already labelled via a V labelling function (also known as valuation

function) for the atomic propositional statements (p ∈ V AR, V AR ⊆ φ). Only

for some cases where modality operators are involved such as obligatory operator

φi ≡ OBφi for some j <= i. In this case for each state w, all states w that have

an accessibility relation such wRw are checked, and it is determined whether w

has a φi label in the jth step, otherwise it will be labelled as ¬φj. Therefore, this

algorithm can be implemented in O(‖M‖.‖φ‖) time. From a data structure point

of view, this presents an algorithm that consists of a sequence of statements and

if-then-else blocks.

4.6.5 Conclusion

The ACL-DL satisfaction problem is PSPACE solvable based on a modal depth

checking process. The satisfaction problem in ACL-DL concerns the polynomial

amount of space. Formal verification through model-checking is a PTIME as it

is solvable in a polynomial amount of time. Therefore, it is moderate in terms of

time complexity. Moreover, ACL-DL is a decidable logic, which indicates that it

is possible to implement it in a computing machine, which gives it an advantage

over other theory-based logics. This feature allows the linking of the benefit of

the theoretical computer science with the practical implementation.

4.7 ACL-DL Logic Complexity Profile

Evaluation

The ACL-DL complexity profile is a sub-type of simple modal logic; therefore, it

has some similarities in terms of the modal-checking problem and the satisfiability
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problem. Table 4.12 compares two logic complexity metrics: model-checking, and

satisfiability between ACL-DL Logic, Propositional Logic, and First-Order Logic.

Table 4.12: ABACsh sentences formal description
Model checking Satisfiability

Proposed logic: ACL-
DL

PTIME PSPACE-
complete

Propositional Logic PTIME NP
First-Order Logic PSPACE-complete Undecidable

It has been proven in Section 4.6 that ACL-DL model checking is PTime,

which indicates that ACL-DL computing complexity is reasonable compared to

First-Order Logic. ACL-DL matches the complexity of Propositional Logic, but

regarding expressive power, Propositional Logic is not able to distinguish the level

of truth as its validation mechanism is based on truth tables while ACL-DL is a

modal logic.

Regarding the satisfiability problem, First-Order Logic is undecidable as it is a

type of infinite model, and only under some fragments is it decidable. For example,

ACL-DL can be translated to be FOL2 as a fragment of First-Order Logic with

two variables. ACL-DL is formally proven to be PSPACE-hardness, as discussed

in Section 4.6.

4.8 Summary and Discussion

Modal logic is appropriate for use in the access control field, as elaborated in Table

2.3 and investigated in Section 4.2. This chapter presents ACL-DL which combines

access control logic features with policy rule specifications based on deontic logic.

Several studies on access-control logic have been proposed, mostly related to

policy representation, enforcement, and proof-theory. The literature contains lim-

ited work that explores decidability, Kripke semantics, and the relation between

the logics. The proposed ACL-DL logic in this chapter is able to represent policy

rules through combining Access Control Logic with Deontic Logic. ACL-DL is de-

cidable as it is a type of modal logic. Furthermore, ACL-DL has a defined Kripke

semantic, in addition to the relations between the logics via says operator.



Chapter 5

ABACsh Formal Specification and

Logical reasoning via ACL-DL

logic

5.1 Introduction

The logical approach is more appropriate for access control specification, verific-

ation and reasoning than calculus-based approaches as it allows easy detection

of patterns of correct or incorrect reasoning [16, 47]. As clarified by [97] in Fig-

ure 2.4, access control modal must be formally specified in order to facilitate the

access-control mechanism implementation phase.

This chapter employs the proposed ACL-DL in specifying and reasoning about

the enhanced attribute-based access control, ABACsh. Therefore, it begins with

an identification of ABACsh properties, then proceeds with formal specification

and logical reasoning in Sections 5.3 and 5.5, respectively.

5.2 ABACsh properties

The main stages of ABACsh model are described as followed and illustrated in

Figure 5.1.

� The access control state before access request is triggered:

– Define the entities set which is involved in the ABAC process. The

entities are the subject, the object, the environment, and the system

context

– An Attributes Assignment function creates the attribute pairs (name:value).

It assigns a set of attributes for each entity that reflect its character-

57
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istics. The context attribute values are updated based on the current

context state.

– Policy Creation function. This creates ABAC policy rules that reflect

what sets of attributes access an action. Policy rules utilise an access

capability format to create access rule entries.

– SoD rules creation. This creates rules to forbid a collection of attributes

from performing a specific operation on an object.

� The access control state after access request is triggered:

– Att():function to return attributes values.

– SoD():function to check if SoD rules exist for the current request.

– Policy(): function to check if permitted rules exist for the current re-

quest.

– After rules checking, if the conclusion indicates that the access-request

is permitted, then access is granted. Otherwise, access is denied.

Figure 5.1: ABACsh model flow-chart

The interpretation of the Kripke-structure model (Section 4.5 ) in the context

of ABACsh allows the definition of what it means for a formula to be true at a given
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state in a structure. The ABACsh formal model is in the formM = (W ,R1,R2,V)

and described in the following sub-sections.

5.3 Formal Specification

ACL-DL logic is used to formally specify ABACsh properties. Access control

model formalisation requires the identification of a set of entities which will be

active within the system and a set of actions. If the set of entities are denoted as

E= { enitiy1, . . . , entitiyn} and the set of actions A={ a1, . . . , an} . The decision

for each action ∈ A in relation to the set of entities in our ABACsh model is either

to be permitted or to be forbidden. The authorisation policy is expressed based

on the ACL-DL logic. The authorisation process takes as an input the attributes

of the subject, the object, the environment, and the system context to enforce the

access-control rules.

5.3.1 Primitive Proposition

Primitive proposition indicates the basic facts which may hold in a system. In

ABACsh, the action is represented as the primitive proposition. An action con-

sists of an operation on an object (opr, obj). Each action in the system must

have at least one policy rule that controls its access permissions. A specific per-

mission of an action is called a capability, which is considered a type of formula.

For example, it is permissible for a Virtual Machine (VM) to be restarted. The

primitive proposition is an action of restarting VM and denoted as p, where the

capability represents the privilege of this action as to be permitted and formally

specified using a deontic operator as PE(p).

5.3.2 ABACsh possible worlds (states) W

W is a non-empty set of ABACsh states (or worlds). The world is described in

terms of a non-empty set φ of propositional constants. Each state reflects one

of the access control stages. Each stage indicates the system functionality and

the possible states that involve knowledge and rules. The ABACsh possible world

elements are defined in Figure 5.2. The initial state involves defining the basic

system elements such as the set of subjects, objects, and rules. Access control

modelling starts when an access request is triggered; therefore, the first state is an

access-request (w1). The next state is related to an attributes assignment function

Att(), where the attributes-gathering state takes the access-request knowledge

from state (w2) to return the required attribute values. After that, the state
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quoting (w3) uses the attribute sets to quote the access request on behalf of the

subject, so the access-request sentence will be re-formulated. Then, the (w3) state

will feed (w4) with the re-formulated access request to perform a SoD check. If

the SoD() returns true, then there is a restriction on this action. Hence access

is denied, and the access control process ends in the state (w6) (access decision).

Otherwise, if there are no restrictions on this access request, the (w4) state will

feed the (w5) state with the re-formulated access-request to check if there is a

policy rule to allow this action. If the access request has a rule that indicates that

the requested operation on an object is necessary, then the process ends in the

state (w6), and the access decision will be allowed; otherwise, access is denied.

5.3.3 Binary Relation R

ACL-DL has a binary relation of type serial between W elements. There is a

relation between the states where one state is possibly getting information from

the other state. Therefore, state w2 must consider state w1 in order for w2 to

make a decision. R(w1,w2) is known as an accessibility relation, as it defines the

relation under which w2 is a state accessible from the state w1 . R(w1, w2) is

also called a possibility relation, as it considers what states are required in a given

state. Each state feeds the next state with knowledge in order to proceed, until

the last state is reached, where an access decision is made, as explained in Section

5.3.2.

The initial state w0 is not presented in the diagram as it holds the initial state of

the system that initialises the basic system sets, such as the set of subjects, objects,

and attributes. Figure 5.2 shows the serial relation of the world elements. There

exist two relations, one for each modality. The says has relation R1 between the

states that are responsible for preparing the access request to meet the ABACsh

properties by allowing the attributes to act on behalf of the subject that issues the

access request. The obligatory (OB) relation R2 between the states is responsible

for finding the access-decision between the rule sets. Therefore; (w1, w2) ∈ R1

from the access control point of view, represent a relation between states that are

involved in the access-request formulation. While (w4, w5) ∈ R2 from the rules

point of view, represent the relation between the states that are involved in access-

decision determination. Only the successors (followers) of the current state can be

inspected by the logic operators. The successors are states that are accessible by

the current state through one R-step. For example, if the current state is a w4-

SoD-check, then moving one R-step reaches the successor state w5:Policy check,

which is inspected via OB operator.
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Figure 5.2: ACL-DL Serial relation for ABACsh model

5.3.4 Mapping Function V and Rules Creation

V is a valuation function that captures the case in which the access request is al-

lowed in a specific state of the system structure. Valuation is a critical function in

access-logic as it associates each system statement (primitive proposition) which

belongs to the system of well-formed formulas φ, a set of states in W , therefore,

V interprets at which state a primitive proposition is true. Unlike standard state

notation, the state in a Kripke model is not completely defined using a valuation

function. The SoD() and the Policy() are valuation functions where they give a

true value to the primitive proposition statements at a specific system state. The

SoD() indicates which access-request formula is true at state w4:SoD check, so

that the next state will be w6:access-decision, where the decision will be access

denied due to the SoD (SoD rules). Otherwise, w4:SoD check state will have a rela-

tion with w5:Policy check state, if the access request entry has no constraint. The

Policy() indicates which access request formula is true at the state w5:Policy check,

where the policy rule indicates which access is allowed and which is denied. Rules

creation in the proposed ABACsh is in the capability format and is specified using

deontic operators. The focus of our rules is on the object not on the subject.

Therefore, it is more appropriate to use a capability mechanism instead of other

mechanisms such as an access control list (ACL) [94, 47]. Deontic operators facilit-

ate rule expression as they are able to describe various legal rules such as permiss-

ible(PE), obligatory(OB), optional(OP), impermissible (IM ), omissible(OM ).

Another wording for impermissible is forbidden (FB). Therefore; the well-formed

formulas in our proposed ACL-DL are able to formally present rule expressions.
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Table 5.1: ABACsh sentences formal description
No System

State
ABACsh sentences ACL-DL formal rep-

resentation
1 w0 Define finite sets of entities Subject set={s1, s2, .sn}
2 w0 Create primitive propositions finite

set that reflect the system operations
on objects

p=(opr→obj)

3 w1 Access-request where a subject make
a statement to perform an action

S says (opr →obj)

4 w2 Attributes gathering function Att() Att()=[name:value]
5 w3 The access-request is reformulated as

attributes quoting the subject
S|(Att(s)&Att(o)
&Att(e)&Att(c)) says
(opr → obj)

6 w4 Forbidden operation on an object
within the current set of attributes
based on SoD rules

OB(¬Access-request)
FB(Access-request)

7 w5 Authorized operation on an object
within the current set of attributes
based on ABAC policy rules

OB(Access-request)

8 w6 Granted access request or denied PE(Access-decision),
FB(Access-decision)

The main difference between the SoD rules and the policy rules is that SoD rep-

resents constraints on specified objects, while each object must have at least one

capability in the policy rules. Therefore, it is more likely that SoD-rules reflect

forbidden actions, while policy-rules reflect what ought to be performed on an

object.

5.3.5 ABACsh Sentences Formal Description

Each row in Table 5.1 gives an example of ABACsh sentences written in ACL-

DL formal description. A collection of sets must be defined in the initial state

w0. Row no.1 gives an example of defining a finite set of the entity subject.

The proposed model requires six sets: the subjects, the objects, the subject-

attributes, the object-attributes, the environmental-attributes, and the system

context-attributes. The ABACsh model has two types of principals, either the

subject that issues the access-request, or a set of entities attributes quoting the

subject. The primitive proposition can be formally written as in row no.2. The

access request state w1 is described in row no.3, where a says operator is used to

make a request.
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5.4 Case Study

ABACsh formal specification will be demonstrated through two case studies in this

section.

The first example is shown in Figure 5.3 and is taken from [44]. This example

illustrates an access permissions for a stuff named John. The formal representation

of the ABAC policy rules Example 1 is listed in 5.2.

The second example from [73] is shown in Figure 5.4, and the formal specific-

ation of the ABAC policy using ACL-DL logic is illustrated in Table 5.3.

Figure 5.3: ABAC policy Example 1

Figure 5.4: ABAC policy Example 2
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Table 5.2: formal description for Example 1
Entities
Sub=John, obj1=HR App, obj2=Finance App, obj3=PMO App, obj4=Email
App, Context= Network address and time, Environment=the organization has
different departments
Policy Set
OB ( [Att(sub)=(FN:John,LN:Smith,DOB:31/12/9797) ]

∧
[Att(c)=IP:ipinternal] says (view →obj1) )
OB([Att(e)=Dept:Finance]

∧
[Att(s)=JobCode:F1***]

∧
[Att(c)=NW:ipinternl, time:8:00

∨
¡17:00] ( says (view →obj2) )

OB( [Att(s)=JobCode:F1234]
∧

[Att(e)=loc:Ottawa] ( says (access pro-
ject:Ottawa) →obj3))
OB([Att(e)=Dept:*] says (access →obj4))
Privileges set for John
PE( sub says (view →obj1))
PE( sub says (view →obj2))
PE( sub says (access project:Ottawa) →obj3))
PE( sub says (access→obj4))

Table 5.3: formal description for Example 2
Attributes
Att(sub1)= (Smith & IRS Auditor), Att(shb2)=(IRS Auditor & Johnson),
Att(c)=(time:09:30), Att(obj)=(Smith Tax Return, Tax, Return)
Quoting
sub1|Att(sub1), sub2|Att(sub2), obj| Att(obj), context| Att(c)
SoD rules
OB ¬ ( [Att(sub)=Smith

∧
IRS Auditor]

∧
[Att(obj)= Smith Tax Return])

says (write→obj))
Policy rules
OB([Att(sub)= IRS Auditor]

∧
[Att(obj)=Tax Ruturn ]

∧
[Att(c)=time08:00∨

time¡18:00] says ((read→ obj)
∨

(write→obj))
Privilege set
PE( sub1 says (read→obj))
PE( sub2 says ((read→obj)

∨
(write→obj))

FB ( sub1 says (write→obj))

Deny exception in Example 2 can be described via SoD rules to reflect the

constraint of the operation-object. Subject 1 attributes are restricted to perform

the writing operation. Therefore, the resulted privileges allow Subject 1 to read

an object. Subsequently, there are no restrictions on Subject 2; it can read and

write on the objects, as both subjects have the attribute of IRS Auditor.

As indicated by the examples, there are several advantages to implementing

an ABAC model policy over other access control models, as ABACs permissions

are not based on user identity. ABAC reduces the risk profile as the access rights

given are based on staff attributes. When the attributes are changed, the access



CHAPTER 5. FORMAL SPECIFICATION AND LOGICAL REASONING 65

permission is dropped automatically without a need for a manual delete on the

access permission list. There is also a lower cost for updating the access control

rights.

5.5 Logical reasoning

The knowledge and understanding of this section are based on several investiga-

tions in the area, hence; the main references are [69, 114, 102]

5.5.1 Overview

Traditional access control reasoning mechanisms are based on a simple search on

a table or a list to find the access matrix. However, there is demand for a rigorous

reasoning mechanism due to the evolving complexity of access control systems.

Therefore, access control reasoning approaches based on formal logic are adequate

for access control systems, as illustrated in the related work in Chapter 2.

There are two steps to deploying logic in access control; firstly to define the logic

which describes the access control model, and secondly, to define the reasoning

mechanism [85]. Logic was defined to express ABACsh in Section 5.3. This section

will demonstrate the proposed reasoning mechanism based on the inference which

is used to verify the logical consequence of ABAC policy.

The category of reasoning followed in this research is called closed world reas-

oning, as all positive information is specified and it is concluded that any positive

fact that is not specified or cannot be inferred will be false. Therefore, a complete

knowledge has been assumed by specifying allowable access through a rule cre-

ation method as interpreted via a Kripke-structure. In contrast, there is an open

world of reasoning used by classical logic such as First Order Logic [56].

Logical reasoning can be defined as a process followed to reach a new conclusion

from a given premise [114]. Reasoning using the Kripke model is a semantic level.

However, there is a requirement to add an extra inference rule to be able to reason

the RBAC model [117]. The reasoning via inference rule is needed if the formal

logic is not rich enough to express the policy specification or to capture certain

system relations that cannot be described by the Kripke structure [85].

In this research, ACL-DL logic axioms and rules are sufficient to allow the use

of the formulas to reason the ABACsh model.

5.5.2 Reasoning Methodology

In ABAC models, the access request will be granted if the collection of the attribute

sets is permissible to perform an operation on an object. In the proposed reasoning
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Figure 5.5: preparations for reasoning process

process, the logical consequences are based on the model-theory relations among

the system defined the world, as explored in Section 5.3 and summarised in Figure

5.5.

In an ABAC model scenario, the information required for an access-request de-

cision is not available beforehand. Hence, the obtainable information can provide

a clue to the reasoning process. The available information is expressed in logical

sentences φ, each of which gives a specific fact which may not represent everything

about the world (access request state). These sentences can be combined into a

logical theory, which in this research is a model theory.

Kripke structure is used as a model theory, where the proposed access control

model is described in terms of states that are connected via relations, and truth

values are given through a valuation function. This representation of access control

model is used to draw a conclusion, where a set of true sentences (premises)

entails a conclusion only if every state that satisfies the premises also satisfies the

conclusion. However, it is not practical to check all possible worlds to find the

logical entailment. Therefore, logical reasoning provides a tool in such scenario.

There are two types of logical reasoning: monotonic, and non-monotonic. The

main difference between them is that monotonic reasoning follows a deductive

inference approach where the information should be complete before the reasoning

process starts, as is the case in First-Order Logic. In contrast, non-monotonic

reasoning follows a defeasible inference approach where reasoning will be based on

the available information. Therefore, if the information changes, the conclusion

will also change. In this research, a non-monotonic reasoning approach is more
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suitable as it suits the modal logic and artificial intelligence characteristics [23, 15].

5.5.3 Reasoning about ABACsh

Figure 5.6: Reasoning process

The inference mechanism of the proposed ABACsh model framework is illus-

trated in Chapter 6. If the inference mechanism can reach a conclusion on the

PE (Access-request), then the request will be granted, otherwise it will be denied.

The inference mechanism is intelligent agent-based where the decision-making pro-

cess is computed.

The applied reasoning method is based on a non-monotonic approach. There-

fore, the access privilege decision is based on the available information from policy-

rules and SoD-rules. Whenever rules are updated, the access privilege will also be

automatically updated.

The access control argument consists of the set of sentences. Section 5.3.5

described ABACsh formal sentences. The set of sentences that provide evidence

called premises where the conclusion is the sentence that is acquired by the end of

the reasoning process. In an ABACsh model, there are three situations of premises

and two possible conclusions. The first case is when there is a SoD rule indicating

that access is denied. The second case is when there is an obligatory entry in the

policy rules indicating that access is allowed. The last case is when there is no

entry in the SoD or policy rules that fulfils the requested access, hence access is

denied.

The reasoning process can be visualised as in Figure 5.6. The access request

is only granted if the inference engine can make a conclusion that PE (access-
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decision). Such a decision is based on a series of access-control capability entries

in SoD rules and policy rules.

5.6 Summary and Discussion

Formal logic is appropriate for use in specifying and reasoning about ABACsh as

elaborated in this chapter. The introduced formal specification (5.3) and logical

reasoning (5.5) showed an accepted presentation for ABACsh model relations and

states which leads to better understanding of how this access control is work-

ing. This facilitates the next stages which are the design phase (Chapter 6) and

implementation phase (Chapter 7).

ACL-DL which is a type of modal logic shows an expressive representation

for ABACsh. Employing logic in access control model specifications, avoid the

ambiguity and allow a formal representation. Moreover, it helps administrators

to automatically derive the consequences of their policies.



Chapter 6

An Intelligent Framework for

ABACsh

6.1 Introduction

Figure 6.1: ABAC mechanism function points based on XACML framework

This chapter will present the design of the proposed ABACsh model framework,

taking into consideration the essential ABAC elements and a knowledge-based

agent architecture. ABAC’s underlying mechanism function points are illustrated

in Figure 6.1, extracted from an XACML (eXtensible Access Control Markup Lan-

guage) framework [98, 157] . The main four points are PEP, PDP, PIP and PAP:

the Policy Enforcement Point (PEP), where the access decision is enforced; the

Policy Decision Point (PDP), where the access control is processed to produce

69
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a decision; the Policy Information Point (PIP), where the information related to

access control processing is supplied to the PDP, and the Policy Administration

Point (PAP), where the system administrator feeds the system with the access

control policy rules. The artificial intelligence categories involved are agent archi-

tecture and logical reasoning. The aim of proposing an intelligent framework for

ABACsh is to design a dynamic attribute-based access control that can think and

act rationally. The following sections will illustrate how artificial intelligence is

utilised to meet this aim.

6.2 AI scope for the Proposed Framework

According to [69, 149, 182], artificial intelligence systems are designed to think and

act. They can be categorised into four types based on the intention of the system:

Thinking Humanly, Acting Humanly, Thinking Rationally and Acting Rationally.

The category of Thinking Rationally leads to an evolved need for the logic field

in artificial intelligence. Involving logic in an intelligent system faces two substan-

tial obstacles. The first one is the difficulty of presenting informal-knowledge using

a formal logical notation though the certainty level is less than 100%. The second

is that solving problems theoretically is different from solving them practically

when the machine capacity is taken into consideration.

Figure 6.2: Basic structure of a rule-based expert system (Negnevitsky 2011)

The category of Acting Rationally initiates the development of a computer

agent. Prior to computer science, the term agent was used in different fields.
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Therefore, there are various definitions of agent. However, it can be defined as

an entity that acts within an environment by sensing its surroundings to update

its knowledge and acts upon that to meet specific goals [199]. The agent func-

tion represents an abstract mathematical description, whereas the agent program

represents an agent implementation within a physical system.

Problem-solving through an intelligent agent involves four stages. Firstly, the

agent formulates its goal. Secondly, it formulates the problem based on five steps:

initial state, possible actions, transition model that describes what each action

does, goal test and path cost. Thirdly, it searches for a solution by looking for a

sequence of actions that leads to the goal. Fourthly, in the execution stage, the

solution found is implemented. However, the problem-solving agent is inflexible as

each possible state should be hard-coded. Therefore, the complexity of the search

stage grows exponentially in relation to the number of states in addition to its

inability to infer unobserved information. Therefore, there is a need for logic to

reason about the possible states instead of hard-coded all predicted states.

Figure 6.3: AI scope for the proposed framework

Knowledge-based reasoning is a step in overcoming problem-solving agent lim-

itations. The logic provides a natural language for describing and reasoning about

the system. The knowledge-based system is given facts about the external world,

and it is asked queries about that world. The rule-based expert system is a pop-

ular method that is used to build knowledge-based systems. The rules are used

to represent knowledge in the format of IF-THEN. The structure of a rule-based

expert system is illustrated in Figure 6.2. The Inference engine is the reasoning
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component whereby the system concludes by linking the rules given in the know-

ledge base with facts supplied from the database. The explanation facilities allow

the user to interact with the expert system to get justification regarding the results

produced by the inference engine.

Therefore the AI scope for the proposed intelligent-framework for ABACsh is

illustrated in 6.3. Modal logic is found to be the most appropriate logic to be used

in AI as discussed by [140] and highlighted in Section 4.2 .

6.3 Logical-Based Agent Architecture

Intelligence security is a fertile approach, as most existing security paradigms suffer

from reactive and fragmented approaches [115]. In a frequently changing infra-

structure, deploying an agent-based mechanism will be an advantage [63]. Modal

logic is a candidate that supports a logical approach in artificial intelligence sys-

tems [102]. The main component of a knowledge-agent is a Knowledge-Base (KB)

that consists of a set of sentences expressed using formal logic, in addition to two

generic functions that involve logical inference. The first function is known as

TELL, and adds new sentences (facts) to the KB to provide it with the required

information. The second function is known as ASK, and queries the known inform-

ation from the KB to determine the next step. The process between TELL and

ASK will end as soon as the desired action is selected. The interaction between

these two generic functions is similar to the updating and querying in databases,

as illustrated in Table 6.1. When an agent program is called upon, it performs

two main actions. Firstly, it will TELL the KB what it perceives. Secondly, it

ASKs the KB what action should be taken.

Table 6.1: A generic Knowledge-based agent function [182]
function KB-AGENT(percept) returns an action
static: KB, a knowledge base
t, a counter, initially 0, indicating time
TELL(KB, MAKE-PERCEPT-SENTENCE(percept,t))
action ← ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action,t))
t ←t + 1 return action

Therefore, agent-based architecture is suitable to represent an ABAC model.

The logical agent, furthermore, will be appropriate for the proposed modal lo-

gic scheme. Table 6.2 demonstrates how knowledge-based agent architecture can

represent an ABAC system. The logical agent can be designed to represent an

access-request state through a process of inference to derive a new representation
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Table 6.2: mapping knowledge-based agent with ABAC requirements
Components agent architecture ABAC requirements
knowledge
base(KB)

Background sentences Predefined sets of entities,
attributes and policy rules

To represent action(s) The action is access-
decision

inference
system

Infer (i.e arrive to a conclu-
sion via reasoning) hidden
properties of the world to
add new sentence to KB

New sentences are added
each time an access-request
is triggered which consist of
a combination of attributes
with the request operation

Infer based on the pre-
defined sentences and the
new ones to conclude with
appropriate actions

Reasoning based on the at-
tributes set and the policy
rule-sets to conclude with
an appropriate action (allow
or deny) the access-request

of the access-request state that can be used to deduce required actions. The pro-

posed access-control logic agent will be founded on knowledge-based agents, as

this type of agent is logic-based [182].

6.4 ABACsh Conceptual Requirement

Based on the analysis and investigations addressed within Chapter 2 and Chapter

3, the critical requirements in designing an ABAC model are listed below.

Req.1 ABAC model definition requires to identify the configuration points. Each

point should be formalised via the proper languages. The configuration point

indicates the necessary configurations to be accomplished via the ABAC

model processing for computing the access decision. These points are known

as functional points. It is more convenient to minimise the number of con-

figuration points as they affect the system's computational complexity.

Req.2 ABAC is identity-free. Therefore, identifications such as subject-id are not

the main elements in access-decision processing.

Req.3 Avoid the creation of lists or groups in the design, as ABAC is intended to

be fixable and able to cope with large enterprises.

Req.4 Context-attributes reflect the current system state, whereas environment-

attributes reflect the fixed system characteristics.

Req.5 ABAC is a multi-factor decision. Therefore it enables fine-grained access

control.
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Req.6 There are no predefined privileges for subjects as the privileges are computed

after an access request is triggered. Policy rules set in ABAC are specified

based on attributes. As a result, the permissible operations will be defined

upon access-request.

Req.7 The two basic functionalities in ABAC are attribute-assignment and rules-

creation.

Req.8 Security principles such as Separation of Duty (SoD) must be enforced.

The enhanced attribute based access control ABACsh fulfils requirement Req.1

by employing one main configuration point that is ABAC agent. This agent takes

as an input, the access request parameters which consist of the subject, the object,

and the operation (s, o, opr). Then it returns the access decision that indicates

if the subject is allowed to operate on the object or it is denied. Compared to

ABACα, which has four configuration points, the policy configuration here is re-

duced to one, as the proliferation of policy configuration points can introduce

difficulties in policy expression and comprehension [108]. For Req.2, in the Policy

Decision Point (PDP), the decision-making process considers the subject attrib-

utes in addition to other attributes, instead of depending solely on the subject

identity information. In Req.3, grouping is studied by HGABAC [192] to facilit-

ate the addition of a hierarchy feature to ABAC. However, grouping and listing

will impede the flexible nature of ABAC [52, 98]. Therefore, permissions grouping

and listing are avoided in this ABACsh. The decision calculation is based on four

sets of attributes: subject-attributes, object-attributes, environment-attributes,

and system-context attributes, all of which are taken into consideration in the

proposed design to meet requirement Req.4. System context attributes have a

special sensor to obtain an up to date system state to meet requirement Req.5.

The privilege decision is calculated based on the attributes relation defined in the

policy-rules. Therefore; the privilege value is returned after the access-decision

is triggered, which meets the requirement Req.6. There are two core functions

of ABACsh. The first function takes place at the initial system stage, where the

attribute pairs (name:value) are created for the defined access control system en-

tities (subject, object, environment, and context). The second function is rules

creation, which represents the SoD-rules and Policy-rules in the form of capability

which indicates the access-rights. These two functions meet the ABAC require-

ment Req.7. An initial SoD is introduced in this design in the type of a DSoD. The

elimination of policy-rule conflicts can be achieved by an object-operation oriented

constraint. A formal presentation of the proposed SoD enforcement sentences is

defined and will be flexible to manage the set of constraints and meet the system
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requirements Req.8 since the administrator can modify the set of SoD sentences.

The proposed SoD will be enforced after the access-request is triggered where an

action is forbidden based on a collection of attributes.

6.5 The Proposed Framework

The proposed ABACsh model framework focuses on three functional points in

reference to XACML framework: PDP, PIP and PAP as illustrated in Figure 6.4.

The framework flow is described below:

Figure 6.4: The proposed Intelligent Framework for ABACsh

� The main access-control entities, which are subject and object. The subject

issues the access request. The object will provide the resources if the request

is authorised.

� The Policy Enforcement Point (PEP) enforces the access decision. PEP can

be a firewall as it depends on the implemented security appliance type. It

takes the access request as an input and sends it to the PDP. It receives the

access-decision from PDP and enforces it into the object.

� The ABAC agent is the logical access-control component. It is built based

on knowledge-based agent architecture. It involves two main configuration

points based on an XACML framework. The first is PIP, where the ABAC

model collects the information needed in an access-decision process. The
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second is PDP, where the information collected from PIP in addition to the

access-rules provided by PAP are used to infer an access decision.

� The PIP involves information collection as follows:

– A sensor that collects the attributes needed requested by attribute func-

tion Att()

– A context-sensor that collects the current values of the system context-

attributes

– Information that reflects the domain-specific content is stored in KB

data storage

� The PDP involves the core logical reasoning that takes place in an inference

mechanism where the access decision is processed. The inference mechanism

is the logical engine where a domain-independent algorithm is used to com-

pute the access-decision and return an action value through the actuators

to the PEP.

� The PAP involves rule creation by the system administrators. This point

involves two types of rules, as follows:

– Policy rules contain a predefined set of policies

– SoD rules that reflect constraints to avoid policy-rule conflicts.

The main ABACsh processing stages that are required to be formally described

are attribute assignment, policy rules, SoD rules, and access requests, as illustrated

in Figure 6.5. Based on this information, the inference mechanism can draw a

conclusion as to whether the requested access is to be allowed or denied.

Figure 6.5: ABACsh processing stages

6.6 Summary and Discussion

Artificial Intelligence mechanisms are recommended to be used in a dynamic and

rule-based system such as ABAC in IaaS cloud. Two AI categories are utilised in
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the proposed intelligent framework for ABACsh. These categories are Act Ration-

ally and Think Rationally as illustrated in Figure 6.3 and discussed in Section 6.2.

The Act Rationally challenges are solved by using formal logic while the Think

Rationally challenges are solved by using modal logic.

The framework is designed based on knowledge-agent and it employee rule-

based expert system method. This intelligent system is not based on machine

learning which will have a percentage of correct answers. This system is based on

the available rules, therefore it is not a type of uncertain approch. The system

must guarantee an access decision. In reference to the framework functional points

in Section 6.5, an enforcement architecture aims to implement them through IaaS

platform as will be demonstrated in Section 7.3.1, whereas, a prototype imple-

mentation of ABACsh will be discussed in Section 7.3.2.

The purpose of this ABACsh framework is to prove that AI architecture can

contribute in supporting a dynamic access control which meets IaaS characterist-

ics. In regards to guaranteeing behaviour, the followed mechanism in this chapter

is based on knowledge available. If there is a shortage in knowledge, the access

decision will be denied. There are other AI categories related to uncertain know-

ledge such as probabilistic reasoning, However, uncertain reasoning is out of this

research scope.



Chapter 7

ABACsh Implementation for IaaS

Via OpenStack

7.1 Introduction

This chapter demonstrates the visibility of ABACsh in IaaS cloud by introducing

an enforcement architecture based on OpenStack. That is followed by a proto-

type implementation and performance evaluation that illustrates the advantages

of the proposed ABACsh extension over the existing access control model. The

contributions of this chapter are as below.

� Designing enforcement architecture for ABACsh that utilises telemeter ser-

vice deployment to be used in feeding Policy Information Point (PIP) with

attributes values.

� A prototype implementation of an extended nova access control model with

an intelligent ABAC.

– Extend the nova policy enforcement point (PEP) to communicate with

an external policy engine

– The proposed external policy-engine works as policy decision point

(PDP)

– The introduced PDP follows ABACsh by

* Utilising the attributes in access decision-making process.

* Involving forward-chaining algorithm that works as logical reason-

ing for access decision processing.

� Three experiments are studied to compare and contrast the extended ABACsh

with the default nova-OpenStack access control model.

78
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� The Quality of Service (QoS) measurement is discussed based on response

time as a performance metric.

This chapter has four main parts. The first part introduces an overview of the

primer concepts which are considered as a base for building these chapter contri-

butions. The preliminaries are an OpenStack overview, OpenStack Access Control

Model (OSAC), Policy Engine and forward-reasoning algorithm. The second part

demonstrates ABACsh enforcement architecture for OpenStack and the prototype

implementation. The third part illustrates the performance evaluation with the

results and discussion. The fourth part presents comparative study of ABAC

models implementation in OpenStack. This analysis involves ABACsh and two

ABAC from the literature which are ABACα and HGABAC.

7.2 Preliminaries

7.2.1 Open source IaaS-Cloud Test-bed

A study of the implementation tools in Cloud computing environment was studied

by [185]. The tools were classified as below:

� Mathematical modelling: Suitable for finding optimal values and predicting

behaviour

� Simulations: Does not represent an actual Cloud such as CloudSim, Green-

Cloud, iCanCloud and teach cloud.

� Testbed: Hardware platform which can be a commercial-based such as

Amazon EC2, Google App, Windows Azura, or a research-based such as

OpenCloud, OpenCirrus. Software platform such as OpenNebula, Nimbus,

OpenStack.

In order to experiment and test the access control mechanism of IaaS, there is

a need to investigate the available testbeds to find a platform that allows source-

code modifications. Therefore a brief study in the available open source test-beds

has been made. The results of the literature are summarized in Table 7.1.

Figure 7.1 illustrates the numbers of hits of popular Cloud tools from leading

academic libraries. Amazon EC2 is not open source, but it has been used by many

academic authors to validate their work, as its fees are cheaper than IBM Cloud.

Eucalyptus has an active committee and it is used by Sony, Puma, NASA, Trend

Micro and other companies to build their private Clouds, but it does not support

the LVMM process [213].
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Figure 7.1: Number of hits in variety of academic search engines related to IaaS
platforms

Table 7.1: OpenStack core components
Ref. testbed options Aim of the

Study
Observations

[171] OpenNebula,
Eucalyptus,
OpenStack

A study to find
out which to use
in their private
cloud

OpenNebula easier in deploy-
ment where OpenStack is more
complex but has and active com-
munity

[151] OpenNebula,
Eucalyptus,
OpenStack

To evaluate op-
eration of web-
hosting service
and Cloud Ab-
straction Layer
(CAL)

OpenNebula take more time for
deployment the the rest while
Openstack was the faster.

[12] OpenNebula,
Eucalyptus,
Nimbus

Comparing
middleware
functionalities

The Least one which support se-
curity standards is Eucalyptus.
The least one which support
scheduling is OpenNebula while
it is the best in virtual manage-
ment support

[225] OpenNebula,
Eucalyptus,
OpenStack

deployment re-
commendations
to different
user demands
and platform
characteristics

Two of test-bed support similer
VMM except that OpenNebula
doesnt support HyperV and Xen
Server

The CloudSim simulator has been explored to study its abilities to perform

the initial experiments. However, it does not support security implementation

as it requires JAVA extension classes in order to simulate security components.

Moreover, CloudSim does not perform like an actual Cloud.Openstack has been
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Figure 7.2: OpenStack Components [164]

selected to be the experiment platform for this PhD thesis as it support the re-

quired prototype implementation and has a very supportive community of both

academic researchers and commercial bodies.

7.2.2 OpenStack Overview

A key component in building a virtualisation environment is its operation via the

hypervisor. The hypervisor on its own cannot build IaaS. Therefore, a cloud-

stack such as OpenStack, Cloud-Stack or OpenNebul is required. According to

the current industry, OpenStack is likely to become a dominant cloud-stack [100].

OpenStack is an open-source cloud computing platform that offers an IaaS layer

of service. OpenStack IaaS infrastructure supports agent communication. For ex-

ample, network nodes in the OpenStack activate a DHCP agent to deploy a DHCP

service [160]. OpenStack was selected to be the experimental platform for this re-

search as it has a supportive and active community of both academic researchers

and commercial bodies. Figure 7.2 illustrates the OpenStack components [164]

which are known as OpenStack projects as well.

The core components are described in Table 7.2 [162] and are keystone, glance,

nova and neutron. The remaining components are optional and are dashboard ser-

vice (known as horizon), block storage service (known as cinder), object storage

service (known as swift), telemetry service (known as ceilometer) and, orchestra-

tion service (known as heat).



CHAPTER 7. ABACSH IMPLEMENTATION 82

Table 7.2: OpenStack core components
Component Known

as
Description

Identity Service keystone An integrated management single point that
provides authentication, authorization, and a
catalogue of services. It consists of a server,
drivers and modules. The server is based on the
RESTful interface. The drivers are back end ser-
vices. The modules are middleware run in Open-
stack components to communicate with keystone
during the authorization process. The modules
use Python Web Server Gateway Interface.

Image Service glance A centralised registry service to store resources
such as virtual machine (VM) images. The image
is an operating system that can be installed in
VM.

Compute Ser-
vice

nova A major component in IaaS system that manages
and hosts VMs running in the hypervisor. Its
main modules are implemented in Python.

Networking Ser-
vice

neutron Manage networking services for Openstack IaaS.
Its common agents are Layer3 and DHCP.

Figure 7.3 demonstrates the main interactions between the OpenStack com-

ponents. The main task for IaaS is to provide the virtual machine (VM) to users.

Thus the VM is indicated in a diamond shape. The keystone provides an authen-

tication service between the users and the OpenStack system and between the

OpenStack components themselves. The nova boots the instance processing data

and provision VM. The glance provides VM with the image. The neutron provides

network connections for VMs.

7.2.3 OpenStack Access Control Model (OSAC)

OpenStack can deploy different access control models within its infrastructure

[162]. For example, nova configuration files can be protected via several imple-

mentations such as centralised logging, policy file (policy.json) and MAC frame-

work (Mandatory Access Control). The availability of access control models de-

pends on the hypervisor vendor. The supported models up to the date of writing

this thesis are Mandatory Access Control (MAC), Discretionary Access Control

(DAC), and Role-Based Access Control (RBAC).

The Openstack access control model (OSAC) that enables both operators and

users to access resources for specific services is a type of RBAC. A simplified

OSAC is illustrated in Figure 7.4 [25]. The keystone [163] supports the notation

of roles and groups. Each user should be associated with a group, and each
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Figure 7.3: OpenStack Conceptual Model [161]

group has a list of roles. For a user to be granted access to a service, Openstack

service takes into consideration his/her role, though as the first authorization

step, the OpenStack PEP (Policy Enforcement Point) takes into consideration the

policy rules associated with the resources before it checks the user role. Therefore,

the policy enforcement middleware enables fine-grained access. Each Openstack

service defines the access control policies rules for its resources in a specific policy

file called policy.json.

[77] The OpenStack manages two types of authorization policy: operation

based and resource based. The operation based specifies access criteria with spe-

cific attributes where policy.json is used, while the resource-based uses RBAC and

it is available to network resources only up to the date of writing this thesis.

The OpenStack access control faces the followed challenges

� An empirical demonstration for Hacking nova through a fake user id [135]

� The policy engine is embedded within the code where it is recommended to

be separated [169]. Therefore, congress policy framework is introduced in

the OpenStack cloud for developers [168].

� Because of the admin role is set as global, a Bug 968696 is occurred. There-

fore, there is a need to investigate the following to solve this problem [230]
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Figure 7.4: OpenStack Access Control (OSAC) [25]

– Merge Policy Header

– Unify Nova, Glance and Cinder

– Move towards a single File

– Break member up into smaller roles

– Remove isadmin from lines

– Fetch policy via Endpoint Policy Extension

7.2.4 Policy Engine

Policy engine in OpenStack is a type of authorization engine that return back a

decision based on some policy rules that indicating if a specific operation is allowed

or denied [230, 25, 162]. The default policy engine is maintained via Oslo policy,

and the access request is issued via API communication. Oslo policy is completely

separated from RBAC model [166]. The developer can view Oslo policy rules that

are related to nova via the command ”oslopolicy-policy-generator –namespace

nova ”. The list of rules verifies if the user credentials are matching to grant

access to the requested resources. The user credentials are stored in the format of

a token. The token holds information related to the token itself in addition to the

user, the project, the domain, the role, the service and the endpoint. The policy

rules are stored in JSON (JavaScript Object Notation) file format.

In policy.json, the access policy consists of two main parts ”<target>” : ”<rule>”

[163]. The target is known as an action that indicates the API call for an opera-

tion such as ”start an instance”. The rules can be one of the following: allow all,

deny all, a special check, a comparison of two values, Boolean expressions based on
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Figure 7.5: Nova authorization data-flow [109]

simpler rules. The special check gives the developers an opportunity to extend the

OpenStack policy engine. The special check can indicate, a role that is extracted

from token information, or a complex rule by defining an alias, or a target URL

that delegates the check to an external policy engine.

7.2.5 Nova Authorisation Data-Flow

Each service in Openstack has its own access control configuration points which

involve PEP, PIP, PDP and PAP. The information flow between nova access-

control configuration points is demonstrated in Figure 7.5.

In the original Openstack architecture, Nova PEP will send a token that con-

tains the information of the access request to Nova PIP to retrieve the object

information. Then Nova PEP sends the information of the subject, object and

request to Nova PDP in order for Nova PDP request an access control policy from

Nova PAP. Nova PDP evaluate the access request based on the policy and return

the access decision to Nova PEP.

7.2.6 Forward-Chaining Algorithm

In the search stage of the problem-solving agent (as explained in Section 6.3 ), there

is a need to use a proper searching algorithm that meets the problem scenario and

the input information. The search algorithms that are used in rule-based systems

are backward chaining, forward-chaining and a mixture of both of them [88, 182].

Table 7.3 compares between the reasoning algorithms which are referred to as

chaining in some literature.
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Table 7.3: Comparing Forward-chaining with Backward-chaining
Forward-chaining Backward-chaining

Known as Forward reasoning
(Data driven)

Backward reasoning
(Goal driven)

reasoning Start with A Set of facts to reach a
goal (or hypothesis)

A hypothesis (goal) to
reach the facts behind it

When applicable If the goal is unknown If the set of goals are
known

Table 7.4: Forward chaining algorithm
newFacts= False
For rule in rule-list:

� If all premises match fact-base:

– For each fact in consequences:

* if fact not in fact-base:

· add fact to fact-base

· newFacts = True

If newFacts: goto 1

Many researchers avoid the Logic Theory Machine, which is based on forward-

reasoning due to the computation complexity. However, this complexity is due to

the classical mathematical logic and is not due to the forward-reasoning concept

[46]. Classical mathematical logic such as propositional logic and First-order lo-

gic. Therefore, the computational complexity of forward-chaining when it is used

in nonclassical logic such as deontic logic will be decidable, and it will have an

acceptable computation complexity. A simple algorithm for forward-chaining is

illustrated in Table 7.4. Forward reasoning search iteration is based on facts and

rules to find a conclusion.

7.3 The Proposed ABACsh Implementation for

OpenStack

7.3.1 Enforcement Architecture

The core characteristics of ABACsh are to work as an intelligent agent that sense

the attributes (the environment, the system context, the subject and the object) in

order to search for an access decision using forward chaining (forward-reasoning).

The set of attributes represent facts whereas the set of policy rules represent the

rules.
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Figure 7.6: proposed ABACsh for Openstack nova

The proposed ABACsh enforcement architecture employs the Telemetry ser-

vice of OpenStack. The telemetry service in Openstack provides the facility to

sense the IaaS cloud for environment attributes and the context attributes. The

Telemetry service facilitates polling information from the computing service since

the proposed access control agent ABACsh will use the collected information for

the attributes assignment process. As an example, the nova service access control

process will be used to illustrate ABACsh extension. Section 7.2.5 introduces the

default data flow of nova service access control while Figure 7.6 illustrates nova

service access control with ABACsh extension. The proposed ABACsh enforce-

ment architecture focuses on three configuration points: PIP (Policy Information

Point), PAP (Policy Admission Point) and PDP(Policy Decision Point).

ABACsh enforcement architecture is divided into three components as follows:

1. ABACsh PIP: this is used to collect attributes information from the access con-

trol entities, the environment, and the system context. PIP can be achieved

in Openstack through configuring the Telemetry component. The Telemetry

service is designed to support a billing system by gathering the required in-

formation. Therefore, its structure will be beneficial in providing PIP with

required attribute information. Telemetry consists of five building blocks:

Compute Agent, Central Agent, Collector, Data Store and API Server in

order to perform five essential functions [167]. Figure 7.7 summarises the

Telemeter process to collect data for further analysis. Telemeter can be con-

figured to collect the attributes and save them in JSON file as this file format

is used to store policy rules in OpenStack
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Figure 7.7: Telemeter process

2. ABACsh PAP: The knowledge database for ABACsh model consists of access

rules from SoD rules and Policy rules. The access rules are created by

the system administrator. Those rules will be stored in JSON file format to

facilitate its implementation in OpenStack.

3. ABACsh PDP: this is the logical component which reasons about access control

in ABACsh. ABACsh PDP will get an access-request sentence from ABACsh PEP

that consist of the attributes information with the access request. ABACsh PDP

will load the access rules from ABACsh PAP. ABACsh PDP accomplishes logical

reasoning through forward-chaining algorithm. The result of the logical reas-

oning indicates if the access is permitted or denied.

7.3.2 Prototype Implementation

The first stage of ABACsh deployment in Openstack is to be implemented on nova

component. ABACsh PDP part will be implemented as a prototype.

� Scope and Assumption.

IaaS access control tenant scope can be a single tenant [108], multi-tenant

[150, 40, 176] and collaborating parties a cross-clouds [127, 178].

The implementation scope of access control in this thesis is within single

tenant whereas its hypothesis is applicable to multi-tenant and cross-clouds

as the big concept behind ABACsh is user-id free and attributes-based. The

proposed ABACsh is not replacing OpenStack RBAC in this stage. Instead,

it allows fine-grained access control and opens prospective avenues to replace

RBAC in the near feature.
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� OpenStack Testbed.

Figure 7.8: OpenStack testbed in physical machines

OpenStack aids in deploying IaaS cloud. Figure 7.8 shows the deployed

testbed in this thesis. It is installed in three machines using Ubuntu 16.04

LTS as an operating system and OpenStack-Ocata the latest release (Feb

2017). One machine is configured as a controller which provides OpenStack

main server in addition to networking services (neutron), keystone, nova and

glance. The Two other machines are configured as compute nodes where

virtual machines are hosted. The machines specification is Intel Core i5-

4460 CPU Processor 3.20GHz × 4, 15.5 GiB memory, 235 GB Disk and

2 NICs cards. The testbed networking consists of two LANs: management

network and data network. The management network traffics the Openstack

service communication where data network connects the communication of

the virtual machine. This IaaS is a private cloud where OpenStack services

and the VMs are accessed by the LAN users.

� Data flow.

Nova policy engine is embedded within its configuration files, therefore it is

considered as one of OpenStack’s limitations. However, the default policies

can be overwritten if policy.json is enabled. As explained in Section 7.2.4,

policy.json can be configured to call an external policy engine through URL.

The token which was introduced in Section 7.2.4 hold information that can

be passed from OpenStack keystone to ABACsh policy engine via RESET

GET-call. Nova PEP receives an access decision from ABACsh policy en-

gine via RESET POST-call. ABACsh policy engine use a forward-chaining
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algorithm to produce an access control decision. The access control reason-

ing takes facts which are subject and object attributes, in addition to the

system and context attributes. Based on access rules defined by the admin-

istrator, the access request will be allowed or denied. Figure 7.9 shows the

ABACsh PDP extension to nova authorization. A policy engine is designed and

implemented to add an access control enforcement based on attributes.

Figure 7.9: The prototype Implementation Data flow

In access control terminology, the Openstack users are the subject, the nova re-

sources are the objects, the policy.json is PEP and ABACsh policy engine is the

PDP. The attributes are extracted from the following channels

� The subject attributes can be extracted from keystone token where the avail-

able information is user name, user id, user passward, role id, role name.

The Token information can be retrieved from ’ ’ content-type:application/json’

’ through curl command.

� The extracted nova metrics from the OpenStack system via a command

openstack quota show are considered as the object attributes. The attributes

information is stored in JSON file format

� The nova environment attributes are extracted via the OpenStack command

openstack hypervisor stats show. The attributes information is stored in

JSON file format

� The context attributes are not implemented in this prototype but it is visible

to be included via Telemetry OpenStack service
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ABACsh policy engine server is implemented using several programming tech-

nologies. The web server is developed using Python programming language with

web.py since OpenStack services is using python. RESETful API utilities are used

to allow the communication between ABACsh and OpenStack APIs. The forward-

reasoning function is programmed using java since this programming language can

be smoothly integrated into web programming. To allow the technical interaction

between python and java, jpype is used [143, 156]. Data is stored in JSON file

formats such as policy data and attributes data.

7.4 Performance Evaluation

Table 7.5: Performance evaluation metrics
Performance
metrics element

Description The applicable
Access Control
component

response time The time required to process access re-
quest should meet the organization re-
quirement

PEP, PDP, PIP,
PRP

Policy re-
pository and
retrieval

The repositories form used to store and
retrieve the access control policy should
balance the cost of hardware and soft-
ware with the required efficiency by the
organization

PAP, PIP, PRP

Policy distribu-
tion

If there exist a mechanism that can be
used for access control policy distribution

PAP, PIP, PRP

Integrated with
authentication
function

if the subject and object can be associ-
ated with some identifications through an
authentication function.

PIP

Key: Policy Decision Point (PDP), Policy Administration Point
(PAP), Policy Enforcement Point (PEP), Policy Information
Point (PIP), Policy Retrieval Point (PRP)

The aim of this performance evaluation is to detect if ABACsh deployment

in Openstack introduces any significant overhead. The efficiency of deploying an

access control model depends on several factors. The quality of service (QoS)

measures can be calculated by performance properties and computation complex-

ity [231, 97]. The computation complexity for ABACsh has been discussed in

Section 3.4. In this section, the performance metrics are evaluated.

The performance metrics consist of four elements: response time, policy repos-

itory and retrieval, policy distribution, and Integrated with authentication func-

tion [97]. Table 7.5 explains theses performance metrics elements and on which

access control components they can be applied. Since the implemented prototype
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is the ABACsh PDP, the followed experiments will measure response time. With

regard to policy repository and retrieval, the implemented ABACsh use JSON file

to store access control policy which does not add any extra hardware or software

cost to OpenStack IaaS cloud as this form of policy storage is used by OpenStack.

The remaining two performance metrics elements are not calculated in this stage

as PIP is not implemented.

7.4.1 Experiment Content

In this section, the performance evaluation of the implemented ABACsh prototype

in OpenStack is presented. Specifically, ABACsh policy engine which represents

PDP of access control model is discussed. The experiments fall into three parts

where the response time is calculated. Response time indicates the time consumed

by the system in order to process the access request decision call. The response

time has been used to measure the performance in several OpenStack implement-

ations such as in [50, 207]. In these experiments, OpenStack cloud was installed

in physical servers running Ubuntu 16.04 LTS release.

Three types of execution time can be measured [136, 17]. The first one is real-

time that reflects the wall clock where the time is calculated from the start till

the end of the call including the waiting time and time used by other processes.

The second one is user-time that reflects the actual CPU-time spent outside the

kernel during the process call in user-mode without considering other processes.

The third one is sys-time that reflects the actual CPU-time spent within the kernel

during the process execution. Three experimental settings have been implemented

as explained below.

� Experiment 1 (Exp1): The response time for the default access control

model to process access request to nova resources. The default use RBAC

and Oslo policy engine.

� Experiment 2 (Exp2): The response time for extending the default nova

policy engine with ABACsh that utilizes 24 attributes in access control pro-

cessing

� Experiment 3 (Exp3): The response time for extending the default nova

policy engine with ABACsh that use forward-chaining for access control reas-

oning.

7.4.2 Experimental Results and Discussion

Each experiment was run five times, and then the average value was recorded.

Five scenarios were observed by increasing the number of requests from five to
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Table 7.6: Experimental Results
no. of Re-
quests

Response
time

Exp1 Exp2 Exp3

5 real 8.67 8.96 8.77
user 5.56 5.52 5.55
sys 0.42 0.44 0.40

10 real 17.24 17.34 17.24
user 10.99 11.05 11.11
sys 0.88 0.86 0.83

15 real 25.52 26.08 25.87
user 16.46 16.61 16.64
sys 1.25 1.31 1.22

20 real 34.40 34.56 34.45
user 22.07 22.17 22.23
sys 1.68 1.66 1.56

25 real 43.02 43.05 43.07
user 27.64 27.63 27.82
sys 2.09 2.10 1.96

twenty-five as illustrated in Table 7.6. The request indicates an access control

request from a user(subject) to access nova-resources(object).

Based on usability engineering [154, 209] The response time value can be within

three categories: over 0.1 seconds will give the user a feeling that the system is

reacting instantaneously, over 1.0 seconds will give the user a feeling of a delay

but will stay uninterrupted, over 10 seconds the user will lose his/her attention

and will search for something to work on till the computer responds.

Three time values has been recorded as illustrated in Table 7.6: real-time,

user-time and sys-time. In this study, real-time and sys-time have a direct effect

on the performance analysis whereas user-time is reflecting the processing outside

the kernel. The real-time shows the access control execution time in additions to

the other OpenStack cloud processes that introduce some delay by blocking the

process or introducing a waiting time. Therefore, this measurement will indicate

the effect of our extended ABACsh nova to the overall OpenStack system.

The graph in Figure 7.10 compares the real-time for the three set of exper-

iments. The increase is 0.05 seconds when the extended ABACsh nova employ

forward reasoning in access decision processing as shown in Table 7.7. While the

increase is 0.145 seconds when ABACsh uses twenty-four attributes in access de-

cision processing. Therefore, there is an increase of 0.56% when attributes are

added to the policy engine and 0.19% when the forward-chaining algorithm is ad-

ded. Consequently, the increase in response time is negligible in reference to the

usability engineering when the nova default access control is extended with part

of the proposed ABAC enhancement.
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Figure 7.10: real-time for access control processing in nova

Table 7.7: Comparing real-time values
Experiment 2 - Experiment 1 Experiment 3 - Experiment 1
0.29 0.1
0.1 0
0.56 0.35
0.16 0.05
0.03 0.05
average average
0.145 0.05
percentage percentage
0.56% 0.19%

On the other hand, sys-time gives the process execution only within the kernel

regardless of the other tasks. Therefore, the time for the 25 requests dropped from

43.02 seconds within real-time to 2.09 seconds within sys-time during Exp1 which

involve default nova access control. The sys-time comparison for the three experi-

ments is illustrated in Figure 7.11. The results show a slightly better performance

of 5.5% for extending the default nova access control when forward-reasoning has

been utilized whereas an increase of 4% over the default nova when 24-attributes

are used in the policy-engine as illustrated in Table 7.8.

From these results, the ABACsh shows an acceptable performance compared

to the default OpenStack access control within nova service.This section demon-

strates the enhanced attribute-based access control ABACsh performance improve-

ment when attributes and forward reasoning algorithm are employed. It has been

noticed that the performance improvement is liner in Figure 7.10 when only at-

tributes are involved in access decision. Whereas in Figure 7.11 when forward

reasoning is involved, an improvement in performance has been noticed. This in-
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dicates an opportunity of enhancing the IaaS-cloud security when logical reasoning

and AI mechanism are involved in access control system.

Figure 7.11: sys-time for access control processing in nova

Table 7.8: Comparing sys-time values
Experiment 2 - Experiment 1 Experiment 3 - Experiment 1
0.02 -0.02
-0.02 -0.05
0.06 -0.03
-0.02 -0.12
0.01 -0.13
average average
0.05 -0.07
percentage percentage
4% -5.5%

7.4.3 Limitations of Experiment

The main aim of the experiments in this chapter is to study the performance

improvement when attribute based access control model is introduced into IaaS

cloud. The experiment scale is limited to a private cloud in a LAN set-up. There-

fore, the network performance metrics has not been studied such as the latency

and throughput.

The implementation in this thesis does not involve the PIP component of the

access control, therefore only a simple forward reasoning algorithm has been de-

ployed without knowledge update component. The used database for knowledge

is written manually whereas the system should use an automated information col-

lection method if PIP is implemented. One subject is involved in each experiment,



CHAPTER 7. ABACSH IMPLEMENTATION 96

therefore multi-access has not been investigated in this thesis. Multi-tenant study

is a critical future work.

7.5 Comparative Study of ABAC Models

Implementation in OpenStack

OpenStack IaaS-cloud is open-source and several recognized bodies are contrib-

uting to its development such as NASA, Rackspace, RedHat, CISCO and many

others listed in OpenStack contributors [165].

Table 7.9: Compare the ABACsh implementation in OpenStack with related work
[152] [25] [109] Proposed

ABACsh

PEP OpenStack services (Nova, Glance ,,,)
architecture client-server based (RESTful API )
PDP Based on

Prevention-
Based Ac-
cess Control
(PBAC)

Based on Policy
Machine (PM)
mechanism
within Open-
Stack LAN

Based on ex-
ternal Policy
engine service
outside Open-
Stack LAN

Based on ex-
ternal Policy
engine service
within Open-
Stack LAN

ABAC
model

None Role-centric
based model
with user at-
tributes

ABACα Proposed
ABACsh

Evaluation
metrics

Execution time
in sec,Exp1:
without
PBAC,Exp2:
20 Edges,Exp3:
1000 Edges

Performance:
Time in
sec/no. re-
quest, OS RBAC,
OS PM RBAC,
OS PM ABAC

Performance:
Tim in sec/no.
user and no.
request attrib-
utes values,
0=RBAC,
5,10,15,20
attributes

Performance:
Time in sec/no.
request, 0 at-
tributes and
default OSAC,
24 attributes
with the ABAC
extension,24
attributes
with forward-
chaining al-
gorithm

OpenStack platform is flexible and allows the developers to modify the source

code. Riad in [179] focused on studying the type and the number of attributes

required in ABAC. He implemented a prototype in OpenStack and discusses the

average time that is taken by keystone to generate a token when attributes are

included and when it is excluded. Ibrahim in [159] discusses an XACML extension

for Openstack but without practical evaluation. The most related work to this
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research is summarized in Table 7.9 with a comparison to the proposed ABACsh

extension. In contrast to [152], the proposed work is a type of ABAC model where

[152] is based on Prevention data concept. The work done by [25] concentrated

on user attributes whereas the proposed ABACsh involve four types of attributes

since ABAC model is meant to involve attributes of the subject, the object, the

environment and the context based on the literature review. Moreover, in [25], the

process of assigning values to user attributes are not explained as it is out of their

research scope. Therefore, this thesis contributes in giving details of attributes

value assignment in ABACsh PIP configuration point via Telemetry service. The

accomplished evaluation by [109] focuses on the performance when attributes are

added to the token within keystone, while in ABACsh the focus was on the per-

formance of the complete access control process from getting the access request

till returning the access decision.

7.6 Summary and Discussion

In this chapter, a demonstration of the enhanced attribute-based access control

ABACsh implementation is presented. Openstack platform is used to deploy IaaS

cloud since it is open-source and supports agent architecture. The OpenStack

platform has been extended to implement ABACsh by adding an external policy

engine. An enforcement architecture is designed, and a prototype is implemented.

The enforcement architecture use Telemeter OpenStack component to implement

agent-structure to collect the required information for access control process.

The implemented prototype includes and extend policy engine that utilises

forward-chaining algorithm to reason about access decision and adds attribute

values for the object. The performance evaluation consist of three experiments.

The Experiment1 involves the default OpenStack access control. The Experiment2

involves ABACsh with 24-attributes value for object. The Experiment3 involves

ABACsh with policy-engine that is deploying forward-chaining. The experimental

results shows a negligible increase in response time for real-time and system-time

as illustrated in Table 7.7 and Table 7.8. Based on usability engineering, if the

response time value reach 0.1 seconds, then the user will feel that the system is

reacting instantaneously. The average increase in response time does not exceed

0.15 for all cases which indicates that the increase in response time is negligible.

This implementation can be considered as an initial step in deploying ABAC

model in IaaS cloud access control. There is a wide space to extend and improve

this implementation such as:

� Deploying PIP via OpenStack telemetry component
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� Study multi-tenancy scenarios by involving multi-subject.

� Scenarios to study the forward reasoning algorithm within the best and the

worst case.



Chapter 8

Conclusions and Future Work

This thesis investigates the security challenges facing IaaS cloud and focuses on

the access control model. The IaaS access control requires dynamic and fine-

grained features. Therefore, this thesis proposes an intelligent attribute based

access control model and discusses its implementation. Section 8.1 summarises

the thesis contributions, and Section 8.2 describes potential future work.

8.1 Conclusion

IaaS cloud provides dynamic, elastics, multi-tenant and easy to configure com-

puting infrastructure. It is constructed based on several technologies such as

virtualisation and grid computing. Besides the benefits gained from IaaS, there

are several challenges such as the security aspects. This thesis focusses on enhan-

cing IaaS cloud security from access control perspective. Due to the IaaS dynamic

environment characteristics and the flexibility for the users to join and leave the

system, there is a need for an access control model that is able to cope with this

environment. The literature relating to IaaS cloud access control reveal an ap-

proach to introduce attribute-based access control model into cloud computing.

Attribute-based access control (ABAC) faces two main challenges to be deployed

in IaaS cloud. The first one is related to formal ABAC specification and reasoning.

The second one is related to the specification of its conceptual characteristics.

This thesis contributes to the IaaS cloud security enhancement by introducing

an attribute-based access control model that meets IaaS cloud characteristics.

Furthermore, an artificial intelligence framework is designed and implemented in

OpenStack testbed. The enhanced attribute-based access control (ABACsh ) is

designed to be context-aware and supports SoD, as discussed in Chapter 3. To

the best knowledge of the author, there is no existing formal logic that is able

to describe, verify and reason about ABAC models; this thesis introduces an Ac-
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cess Control Logic (ACL) combined with Deontic Logic (DL) that can satisfy

this requirement, as demonstrated in Chapter 4. The proposed ACL-DL is used

to formally specify ABACsh and logical infer its access decision, as explained in

Chapter 5. The formal specification of an access control is a critical necessity for

facilitation of the implementation stage. An intelligent framework is proposed to

support ABACsh dynamic feature as introduced in Chapter 6. An implementa-

tion of a prototype of this framework is illustrated in Chapter7 with performance

analysis. The contributions of this thesis are summarised in the table 8.1

The understanding of IaaS access-control requirements is essential to study the

improvement opportunities in cloud security. The access control in IaaS is still

an evolving area as the current implemented model is RBAC whereas ABAC is

recommended model by several researchers. Moreover, applications that involve

artificial intelligent and formal logic is a critical research that allows a significant

improvement in security systems. The modal logic field can contribute in reasoning

about knowledge which supports the development of expert systems. The link

between these areas can open critical research directions.

8.2 Future Work

This research can open further studies and applications. ABACsh can be im-

proved by adding support for access control concepts such as delegation and

object-oriented concept such as hierarchy. Take into consideration that ABAC

models should be ID-free and based on attributes to maintain its flexibility and

dynamic features. Further study for ACL-DL can be conducted using a theorem

prover, such as NuSmv, to implement an automated reasoning tool. The proposed

ABACsh enforcement architecture can be deployed via Telemeter component in

OpenStack, where a Heat component can be used in the implementation phase

to construct an intelligent ABACsh that can be employed in a real IaaS cloud

operating environment.
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Table 8.1: Summary of the Thesis Contributions
Chapter
no.

Main contribution Details objective

2 Analytical study to
identify access con-
trol challenges and
requirements in IaaS
cloud

�Study the security chal-
lenges related to access
control in IaaS. �Identify
IaaS access control re-
quirements. �Identify the
approaches that can contrib-
ute to enhancing IaaS access
control systems.

Obj.1,
Obj.2

3 An enhanced attribute
based access control
ABACsh

�Context-aware. �Support
SoD

Obj.3

4 A formal logic that is
able to specify ABACsh,
known as Access Con-
trol Logic Deontic Logic
(ACL-DL)

�Formal logic language.
�Kripke structure. �ACL-
DL Formal verification

Obj.4

5 A formal specification
and logical reasoning for
ABACsh using ACL-DL

�Formal description of the
ABACsh states, relations,
and functions. �Logical
reasoning about ABACsh.
�Explained through a case
study

Obj.4

6 An intelligent frame-
work for ABACsh

�A framework that is based
on agent and logic. �Utilise
knowledge-agent implemen-
ted through rule-based ex-
pert system mechanisms.

Obj.5

7 ABACsh implement-
ation in IaaS cloud
testbed (OpenStack)

�show the visibility of the
proposed intelligent frame-
work for ABACsh. �An
enforcement architecture
for the ABACsh agent is
designed using OpenStack
components. �ABACsh PDP is
deployed in OpenStack

Obj.6
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