58,068 research outputs found

    Using Graph Transformations and Graph Abstractions for Software Verification

    Get PDF
    In this paper we describe our intended approach for the verification of software written in imperative programming languages. We base our approach on model checking of graph transition systems, where each state is a graph and the transitions are specified by graph transformation rules. We believe that graph transformation is a very suitable technique to model the execution semantics of languages with dynamic memory allocation. Furthermore, such representation allows us to investigate the use of graph abstractions, which can mitigate the combinatorial explosion inherent to model checking. In addition to presenting our planned approach, we reason about its feasibility, and, by providing a brief comparison to other existing methods, we highlight the benefits and drawbacks that are expected

    Engineering Object-Oriented Semantics Using Graph Transformations

    Get PDF
    In this paper we describe the application of the theory of graph transformations to the practise of language design. We have defined the semantics of a small but realistic object-oriented language (called TAAL) by mapping the language constructs to graphs and their operational semantics to graph transformation rules. In the process we establish a mapping between UML models and graphs. TAAL was developed for the purpose of this paper, as an extensive case study in engineering object-oriented language semantics using graph transformation. It incorporates the basic aspects of many commonly used object-oriented programming languages: apart from essential imperative programming constructs, it includes inheritance, object creation and method overriding. The language specification is based on a number of meta-models written in UML. Both the static and dynamic semantics are defined using graph rewriting rules. In the course of the case study, we have built an Eclipse plug-in that automatically transforms arbitrary TAAL programs into graphs, in a graph format readable by another tool. This second tool is called Groove, and it is able to execute graph transformations. By combining both tools we are able to visually simulate the execution of any TAAL program

    Strategic Port Graph Rewriting: An Interactive Modelling and Analysis Framework

    Get PDF
    We present strategic portgraph rewriting as a basis for the implementation of visual modelling and analysis tools. The goal is to facilitate the specification, analysis and simulation of complex systems, using port graphs. A system is represented by an initial graph and a collection of graph rewriting rules, together with a user-defined strategy to control the application of rules. The strategy language includes constructs to deal with graph traversal and management of rewriting positions in the graph. We give a small-step operational semantics for the language, and describe its implementation in the graph transformation and visualisation tool PORGY.Comment: In Proceedings GRAPHITE 2014, arXiv:1407.767

    Modeling and Reasoning over Distributed Systems using Aspect-Oriented Graph Grammars

    Full text link
    Aspect-orientation is a relatively new paradigm that introduces abstractions to modularize the implementation of system-wide policies. It is based on a composition operation, called aspect weaving, that implicitly modifies a base system by performing related changes within the system modules. Aspect-oriented graph grammars (AOGG) extend the classic graph grammar formalism by defining aspects as sets of rule-based modifications over a base graph grammar. Despite the advantages of aspect-oriented concepts regarding modularity, the implicit nature of the aspect weaving operation may also introduce issues when reasoning about the system behavior. Since in AOGGs aspect weaving is characterized by means of rule-based rewriting, we can overcome these problems by using known analysis techniques from the graph transformation literature to study aspect composition. In this paper, we present a case study of a distributed client-server system with global policies, modeled as an aspect-oriented graph grammar, and discuss how to use the AGG tool to identify potential conflicts in aspect weaving

    A UML/OCL framework for the analysis of fraph transformation rules

    Get PDF
    In this paper we present an approach for the analysis of graph transformation rules based on an intermediate OCL representation. We translate different rule semantics into OCL, together with the properties of interest (like rule applicability, conflicts or independence). The intermediate representation serves three purposes: (i) it allows the seamless integration of graph transformation rules with the MOF and OCL standards, and enables taking the meta-model and its OCL constraints (i.e. well-formedness rules) into account when verifying the correctness of the rules; (ii) it permits the interoperability of graph transformation concepts with a number of standards-based model-driven development tools; and (iii) it makes available a plethora of OCL tools to actually perform the rule analysis. This approach is especially useful to analyse the operational semantics of Domain Specific Visual Languages. We have automated these ideas by providing designers with tools for the graphical specification and analysis of graph transformation rules, including a backannotation mechanism that presents the analysis results in terms of the original language notation

    Graph Modelling and Transformation: Theory meets Practice

    Get PDF
    In this paper, we focus on the role of graphs and graph transformation for four practical application areas from software system development. We present the typical problems in these areas and investigate how the respective systems are modelled by graphs and graph transformation. In particular, we are interested in the usefulness of theoretical graph transformation results and graph transformation tools in order to solve these problems. Finally, we characterize concepts and tool features which are still missing in practice to solve the presented and related problems even better. Keywords: graph modelling, graph transformation, graph transformation tool

    Model transformation by graph transformation: A comparative study

    Full text link
    This is an electronic version of the paper presented at the Model Transformation in Practice, held in Montego Bay on 2005Graph transformation has been widely used for expressing model transformations. Especially transformations of visual models can be naturally formulated by graph transformations, since graphs are well suited to describe the underlying structures of models. Based on a common sample model transformation, four different model transformation approaches are presented which all perform graph transformations. At first, a basic solution is presented and crucial points of model transformations are indicated. Subsequent solutions focus mainly on the indicated problems. Finally, a first comparison of the chosen approaches to model transformation is presented where the main ingredients of each approach are summarized

    NiMo syntax: part 1

    Get PDF
    Many formalisms for the specification for concurrent and distributed systems have emerged. In particular considering boxes and strings approaches. Examples are action calculi, rewriting logic and graph rewriting, bigraphs. The boxes and string metaphor is addressed with different levels of granularity. One of the approaches is to consider a process network as an hypergraph. Based in this general framework, we encode NiMo nets as a class of Annotated hypergraphs. This class is defined by giving the alphabet and the operations used to construct such programs. Therefore we treat only editing operations on labelled hypergraphs and afterwards how this editing operation affects the graph. Graph transformation (execution rules) is not covered here.Postprint (published version

    Specification and Construction of Control Flow Semantics

    Get PDF
    In this paper we propose a visual language CFSL for specifying control flow semantics of programming languages. We also present a translation from CFSL to graph production systems (GPS) for flow graph construction; that is, any CFSL specification, say for a language L, gives rise to a GPS that constructs from any L-program (represented as an abstract syntax graph) the corresponding flow graph. The specification language is rich enough to capture complex language constructs, including all of Java

    Using Graph Transformation Systems to Specify and Verify Data Abstractions

    Get PDF
    This paper proposes an approach for the specification of the behavior of software components that implement data abstractions. By generalizing the approach of behavior models using graph transformation, we provide a concise specification for data abstractions that describes the relationship between the internal state, represented in a canonical form, and the observers of the component. Graph transformation also supports the generation of behavior models that are amenable to verification. To this end, we provide a translation approach into an LTL model on which we can express useful properties that can be model-checked with a SAT solver
    corecore