NiMo Syntax. Part 1

Silvia Clerici Guillermo Prestigiacomo
Cristina Zoltan
Departament de Llenguatges i Sistemes Informatics
Universitat Politecnica de Catalunya Barcelona, Spain

July 15, 2014

Abstract

Many formalisms for the specification for concurrent and distributed
systems have emerged. In particular considering boxes and strings ap-
proaches. Examples are action calculi, rewriting logic and graph rewrit-
ing, bigraphs. The boxes and string metaphor is addressed with different
levels of granularity.

One of the approaches is to consider a process network as an hyper-
graph. Based in this general framework, we encode NiMo nets as a class of
Annotated hypergraphs. This class is defined by giving the alphabet and
the operations used to construct such programs. Therefore we treat only
editing operations on labelled hypergraphs and afterwards how this edit-
ing operation affects the graph. Graph transformation (execution rules)
is not covered here.

Resumen

Hay diversos formalismos para la especificacién de sistemas concurrentes y
distribuidos. Algunos de ellos basados en en el modelo de cajas y cuerdas.
Ejemplo de ello es action calculi, rewriting logic y reescritura de grafos.
Basado en este esquema general se presenta la sintaxis de NiMo como
una clase de hypergrafos con anotaciones. Esta clase se describe dando
el alfabeto y las operaciones para construir los programas NiMo. Por lo
tanto tratamos solamente operaciones de edicién de grafos sobre grafos
con etiquetas y luego como las operaciones de edicién afectan al grafo.
Operaciones de transformacién de grafos, resultado de la ejecucién no son
tratados en este documento.

1 NiMo Programming Language

When designing a programming language, the problem of exploiting mul-
tiple processors is in general addressed following two approaches: pro-
cessing the program written to be run in a single processor architecture
in order to identify the tasks that can be executed simultaneously, or in-
clude constructions in the language for the programmer to signal those
opportunities.

The first approach is very costly and in general not very effective. The
second approach places too much responsibility on the shoulders of the
programmer.

A third approach in to relay on a coordination language that can use
legacy code. NiMo is a programming language because is a coordina-
tion language for a set of basic processes specially designed for stream
processing.

NiMo is a graphical programming language, where programs are pro-
cess networks. Processes communicate and synchronize via unbounded
channels mixing pure functional and data flow paradigms, and also have
roles. Communication is decoupled and data can be shared.

However, there are no data races and the semantics of a program is
the same regardless of the number of processors used in its execution.

The programmer’s responsibility is reduced to finding solutions which
can better exploit the available processors. Due to the evaluation model,
it suffices to show the correctness of the solution on a single processor se-
mantics, in order to ensure the correctness of the same solution exploiting
multiple processors.

The language is graphical and highly interactive. When executing
a program all the internal states are exhibited. The programmer can
visualize step by step the parts of the system where the parallelism can
be improved and changes can be made and tested directly on partially
evaluated programs.

The model has proven to be highly efficient for problems where data
flows (data intensive) and can be processed without having to be com-
pletely in memory.

In particular, NiMo is a “safe” language, for two reasons: is strongly
typed and portable. On the portability side “a safe language is com-
pletely defined by the programmer’s manual”[7]. This paper intends to
show that NiMo syntax (Part 1) and its graphical type system (Part 2)
can be described in a very simple and concise way. NiMo execution and
programming will be treated in separate papers.

2 Introduction

Many formalisms for the specification for concurrent and distributed sys-
tems have emerged. In particular considering boxes and strings approaches.
Examples are action calculi, rewriting logic and graph rewriting, bigraphs
[3]. The boxes and string metaphor is addressed with different levels of
granularity.

One of the approaches is considering a process network as an hyper-
graph [6]. Based in this general framework, we encode NiMo nets as
a class of hypergraphs that can be constructed using the construction
operations.

In [5] a model for shared graphs is developed, and also a graph pre-
sentation of action calculi.

We define Directed Hypergraph as in [8], and extend the definition
to Annotated Hypergraph to be used in describing the syntax of NiMo
programs, which are a subclass of annotated hypergraphs. This class is

defined by giving the alphabet and the operations used to construct such
programs. Decorated Hypergraph are defined for encoding NiMo programs
with types. We give the operators to construct NiMo programs hypergraph
construction and how an annotated hypergraph is transformed under hy-
pergraph construction operations.

NiMo programs are process networks that not only reactive: A re-
active system is a system that responds (reacts) to external events. In
NiMo, input external nodes are the ones that accept messages from the
environment. NiMo programs may have processes that react by them-
selves or due to their neighbors. Most of the modeling in the literature
is addressed to reactive systems. NiMo processes, having the lazy ingre-
dient, can react if there is a process that requires its computation, using
a decoupled protocol. Its for this reason that NiMo programs do not fit
exactly in [6] or [4]. The main difference is that in [6] modeling, a node
can be shared by any two hyperedges without restrictions acting as the
mean to communicate the two. NiMo programs have a structure close to
Petri Nets, having channels instead of places for communicating between
transitions (processes)’. But each channel has a single provider. This
ingredient assures that non-determinism could be present in a net if non-
deterministic processes are present. Another essential difference is that
NiMo nets can be dynamic.

Here we treat NiMo syntax as process networks, with ports decorated
with their type. Therefore we treat only editing operations on labelled
hypergraphs and afterwards how this editing operation affect the node
labeling.

We are not covering graph transformation (execution rules), which
preserves type information on the transformed graph.?

2.1 Hypergraphs

Directed Hypergraph An hypergraph H = (V, E) counsists of a set of
nodes V, a set of edges E, a connection mapping s : E — (P(V), P(V))
and x : H — P(V) of external nodes.

There are two mappings hd,tl : E — V™ that give respectively the
head and the tail of an edge.

s(e) = (tl(e), hd(e))
The hypergraph in Figure 1 has

V =1{1,2,3,4,5,6,7,8,9,10,11,12}, E = {E\, Ea, F3, E4, E5}

s(E1) = ({1,2},{4,5,6})
s(E2) = ({3,4},{7,8})
s(E3) = ({6},{9,10})
s(Es) = ({10,11},{12})
L As Petri Nets, NiMo programs are bipartite graph, therefore processes do not communicate

directly, but via a channel.
2This is true only free ports in definitions are not allowed

Figure 1: Example of an hypergraph

s(Er) = ({87 9}’ {})

x(H) ={1,2,3,5,7,12}

Forward edge or F-edge Is a directed hyperedge e, such that [tl(e)| =
1

In Figure 1 E3 is the only F-edge.

Annotated Hypergraph An Annotated Hypergraph AH = (H,L,t)
where H is a directed hypergraph, L be a fixed set of labels and ¢ :
E— L

Symetric image Given the hypergraph H = (V| F), a symetric image
is the hypergraph H' = (V,E’), where E' = {¢'| 3e € E and tl(e) =
hd(e') andhd(e) = ti(e’)}

3 NiMo programs as Hypergraphs

The rest of the definitions will constrain the general definition given for
annotated hypergraphs, to a the special class: NiMo programs.

In a NiMo program, vertices are called ports.

The set of vertices is the union of three disjoint sets:

Vvir veut VF respectively in-ports, out-ports and f-ports.

For notation simplicity, instead of having sets as the range of s, hd, tl,
and x we will use sequences of ports, without repetitions.

s: E — (V™) (Vout)* V) is a 3-tuple of strings of nodes and

x : H — (Ve uvuvT)* gives the external nodes of the hypergraph.

hd,tl : E - V™

According to this presentation, for each hyperedge the mappings s will
return 3-tuples of sequences, each one taken from the three disjoint sets
of ports.

Interfaces as hypergraphs The hypergraph H = [l]; ,) having ex-
actly one edge e with label [(c(e) =1). ¢ is the sequence of in-ports, o is
the sequence of out-ports and f is an f-port or is empty. V = x(H)) are
the ports of an Interface. Is an hypergraph, with a single hyperedge and
all ports are external and hd(e) € (V™)*, ti(e) € (V)" + 4+ VT,

Irreducible graph Let G be a hypergraph. A (non-trivial) decomposi-
tion of G is a pair of inclusions A —G < B such that G is the union of
A and B and G # A or G # B. A hypergraph G is irreducible if it has no
non-trivial decomposition.

Fact 3.1 The only irreducible hyperqraphs are the single vertex graph and
the interfaces.

Process and non process Interfaces The interface hypergraph
H = [ll0.0)

contains exactly one edge e, s(e) = (4, 0, f) and all the vertices are external
(X(H) = Vi).

Non process interface have f = e.

Process interfaces have two roles: as functional data (using the out-
port f to connect it to other processes. f € F) or just a process (connected
to other interfaces via ports in ¢ and/or ports in o).

3.1 NiMo Programs

NiMo programs have two types of edges E., and E;. The first ones
connect out-ports with in-ports, while the second group connect in-ports
to out-ports. The ports in the graph are the union of the ports in E;.

E.n: This group of edges is characterized by having a single source,
which is an element of V!, ti(e) € (V™)T. Given e such that hd(e) €
(Vi™* and tl(e) € (V') is the ordered pair formed by the sequence of
in-ports and a single out-port. Therefore E.; edges in NiMo programs
are F-edges.

This class of edges are divided into two groups:

e Simple edges are edges having s(e) = (3,0, ¢€) |i]| = |o| = 1 and a label
taken from {red, white, green}?

e Red Hyperedges s(e) = (i,0,€) o] =1 [i] > 1 and a label taken from
{red, white, green} *

Er = EYN U EF are the edges corresponding to interface hypergraphs
present in the toolbox. The elements in the toolbox correspond to the
alphabet of he language®. Given e such that ti(e) is the sequence obtained
by clockwise enumeration of the in-ports as they are shown in the toolbox®.
Similarly hd(e) is the ordered pair formed by the sequence of out-ports in
the west side of the interface, counterclockwise, and the f-port if present.

o Interface non process EY s(e) = (i,0,¢€) |i| + |o| > 1, the label taken
from the set of types or a value in a given type

e Process interface EY s(e) = (i,0,f) |i| + |o| > 1 label taken from
the set of pairs (name, mode)

3In the graph this type of edges are painted in black or blue

4In the graph this type of edges are painted in red

5This alphabet is dynamic as new processes can be defined and include in the toolbox. In
this paper we do not cover the operations for adding new Ef to the toolbox

6In the working graph an interface can be rotated

In the next section we will give the operators to construct NiMo pro-
grams and will see that the hyperedges ET correspond to processes, while
EY are other program elements. Simple edges and red hyperedges appear
as a result of applying a constructor operators ®. Simple edges relate
pairs of elements in F;. Therefore the constructed graph will be a bipar-
tite graph”.

4 NiMo Program Construction

In the toolbox, all the interfaces for building NiMo programs are present®.
Some are processes that can be used as functional values. NiMo program
are constructed starting from an empty hypergraph as working graph, and
applying a sequence of operators taken from:

drag bringing an interface from the toolbox into the working graph. The
toolbox holds the alphabet. Those are elements of E;.

paint setting the opposite label to a simple edge or Red hyperedge F.p.
Red is opposite to white and white is opposite to red

® connecting two nodes present in the graph by using a simple edge or
a Red hyperedge

mode Set the label of a process interface ET .

So, the graph, i.e. the NiMo program, is constructed by dragging
interfaces from the toolbox, by adding simple edges or red edges (E.p)
using the operation ®, by setting or unset the demand on an expression
or setting the label to a process interface.

In NiMo the set L labelling the edges in the set Ef are pairs formed
by interfaces names and the Modes of process. Modes are elements of the
set: (Disable, Demand Driven, End Driven, Data Driven, Weak Eager,
Autoezpand). The labels for edges in E.j are {white, red, green}.

L = {(process name, process mode)} U {white, red, green}

A program under construction is an annotated hypergraph in the work-
ing space called the working graph.

In this sequence starting in the empty graph, and obtained by applying
the operators every element is a retract of the precedent one®.

Connections between nodes (one out-port and one in-port) add or
change an edge of the working hypergraph i.e. alters the set E.n, keep-
ing the ports (under certain circumstances an F port may disappear).
Dragging an interface adds a new hyperedge to the working graph and
therefore new nodes are added to it (the interface ports). All the newly
added nodes add up into the set of external nodes. Connecting two nodes,
reduce the number of external nodes and eventually adds an edge to the

7As are Petri Nets

8Cannot be name clashes in the toolbox

9A retract of a graph H’ is a subgraph H of H’ such that there exists a homomorphism
r: H — H, called retraction with r(z) = z for any vertex = of H

working graph.1°. s(e) gives the in-ports, the out-ports and the F-port
of the interface having the only edge e. For non-process interface, the
F-port is not present. In a connection, the in-ports and the out-ports of
an interface do not change, the F-port may vanish. A connection changes
the x function, because ports became bound.
In describing the construction operators, as graph transformers, we
will use
H=(V,E, s,t,%)

for the hypergraph being transformed by the operator and
H/ _ (‘//7 E/, 5/7 L/, X/)

for the resulting hypergraph. We use the expression ¢ € x(H) to indicate
that c is an external node. ¢ € s(e) to indicate that ¢ € hd(e) V ¢ € tl(e)
i.e. we don’t need distinguish if ¢ is a in-port or an out-port. x. are the
open ports of an interface having the only edge e.

4.0.1 (H drag(H"=(V" {e}s" ./ X))

H)

Rule 1 states that dragging an hyperedge from the toolbox, all its elements
are added to the working graph.

H" € toolbox
Vi=vuv” s=sU s”(e)/ E ://E U{e} d=1Ud(e)
X =XxXUXe

(1)

In Fig.2 an interface is dragged into the working space, taken from the
toolbox!!. The interface has one in-port, two out-ports and a f-port.
The following rules are for connecting an out-port b, which is not an f
port, to an in-port a. e,e1 € Er, a € s(e) , b € s(e1).

4.0.2 (7222 gy

This operations connects an out-port (a) to an in-port (b). There are four
cases: if a is an f-port (rules 4,5) or not (rules 2,3).

The first one, rule 2 is for constructing simple edges, while rule 3 for
red edges.

a,be x(H)
s(e) = (i,0, f) bei s(e1) = (i1, 01, f1) a € o1 a¢F
V' =V —{fi} —{if[inx| =1 then ¢ else f } El, = Ecp U{(a,b)}
s'(a®b) = (a, (b,€)) s'(e) = (i,0,if iNx| =1 then ¢ else f)
s'(e1) = (i1,01,¢€) /' ((a,b)) = if ey € Ef then white else green

’
X =x—{ab}
(2)
101n the case where the out-port was not an external node, the edge will be a red hyperedge.

In any case if a interface involved in the connection had a f-port, it may disappears
111n the implementation, the f-port is not shown for interfaces in the toolbox

Figure 2: Drag an interface to the working space

On top right of Fig. 3, an edge is created between the two HdT!
interfaces. Both f ports vanish, because all the in-ports of the one of the
left became bound and an out-port of the other interface is also bound.
In the bottom right of Fig. 3, the connection leaves open in-ports in the
interface i f Bool, therefore the f port remains.

Rule 3 covers the case of connecting an out-port already connected.

a ¢ x(H)
ag¢ F s(e) = (3,0, f) s(e1) = (i1,01,¢€) bei (a,c) € Ecp,
V' =V —{if|linx| =1 then f else ¢}
Ein = Een —{(a,0)} U{(a,bc)} } §'(ex) = (in,01,€)
s'(a ®b) = (a, (bc, €)) /((a,b)) = if e € Ef then white else green
X' =x—{b}

®3)

By the ©® operation a new edge ((a, b)) is created. Both ports a, b are

no longer external ports. F' ports, if present, can be lost in this operation:

The F' port of the interface of the second operand, if this connection is

done using the interface only remaining open in-port. Always the interface

of the first operand (a) looses its F' port (if present) when using a port in
01.

@) 0
HATI|
O ©

:o 9 '.@* it O I

S i

Figure 3: Two simple edges added to the hypergraph with different labels

@~ e)

Figure 4: Sharing values

The next two rules, apply when the out-port in the operation is an
F-port. The first rule (rule 4) is for adding a simple edge and rule 5 for
connecting an F-port, the result not being a simple edge. These rules
describe how a functional value becomes an input to a process.

a€ x(H) ac Vo aclF

Vi=vVv El, = Ecn U{(a,b)} s'(a®b) = (a,b,e) ()
{(a ®b) = green X =x—{a,b}
a¢ x(H) ac Vo acF s(e) = (4, a,€) 5)

V=V s(e”) = (bi, a,¢) El, = Eo, — {e}U{e"}
{(a ®b) = green X' =x—{b}

4.0.3 quad(H 2", gy

This operation changes the edge label. Green labels cannot be changed.
Only red and white ones can be changed.

e € Ven t(e) # green t(e) = redV white

(6)

/(e) = —u(e)

Figure 5: Changing labels: White — Red, Red — White

4.0.4 quad(H mode(e,mod), H)

This operation sets the mode for process.

ecEf t(e) = (name, b)

(7)

The drag operation adds a new edge to the working graph, an element
from Ej.

The © operator is defined only for pairs of nodes, one in-port and one
out-port, the in-port must be external. This operation gives as a result a
new edge in F.n. The rules above cover the five possible cases.

The case where all the inputs are instantiated, is missing.

The paint operation, is a partial operation, changes the label of an
edge which is not an interface edge.

The mode operation, is a total operation, changes the label of the
interface edge.

As syntactic sugar, edges are painted in different colors. Ey edges are
painted in different colors depending on they are basic processes (white),
net processes (grey) or net processes that have been executed at least
once(?). Also E¢p are red if they are incident to more than one in-port.
Are blue if they are incident to a single port and is one on the top of the
interface or are black if they are incident to a in-port on the side of a
interface.

/(e) = (name, mod)

10

Lemma 4.1 In a NiMo program a node has at most two edges, one is in
Er and one (if present) in Ecp,.

Proof

The only way new nodes show up in a program is by means of a drag(e)
operation. The dragged hypergraph a siingle edge in Er and all the nodes
are in x(H).

A node is removed from x(H) by the operation ®, which creates an edge
e e Ecp.

If the node is in V°"* and not in x(H), the ® operation will create a new
red edge, incident to the node, which is in Fcp.

Lemma 4.2 NiMo programs are bipartite hypergraphs

Proof As edges go from in-ports to out-ports (Er) or from out-ports to
in-port (Eecp), NiMo programs are bipartite, directed hypergraphs.

Corollary 4.3 In a NiMo program there are no self loops

Proof
Being a bipartite graph, there are no edge, e such that hd(e) = tl(e)

5 Graphic Syntax

As described in previuos sections, NiMo programs are modeled by hy-
pergraphs. As being a graphical language the program must be drawn.
Also, by being an interpreted language, then program execution must be
displayed in any execution step.

A drawing of a graph is its representation on the plane. Formally,
the drawing of a graph is a function which maps vertices of the graph
to distinct points of the plane and edges to simple curves with ends in
adjacent vertices.

5.1 Aesthetic Criteria

A good layout can be a picture worth a thousand words; a poor lay-
out can confuse or mislead. Graphs are used to represent information
and structure in various areas of the software engineering. To achieve
the readability of the information presented, properties of a drawing are
specified, the so called aesthetics criteria [1].

1. Minimization of edge crossings; Ideally, there is a planar drawing so
that there is no edge crossing, but not every graph admits one. If
there is no planar embedding the goal is to find a drawing with a
minimal total number of crossings between edges.

2. Minimization of the drawing area; It is essential in practical visual-
ization systems to save screen space. Furthermore, it is relevant if
one cannot arbitrarily scale the graph down.

3. Minimization of the edge length; This criterion is divided into three
similar minimization concepts:

e Total edge length: Minimize the sum of the edge lengths.

11

e Maximum edge length: Minimize the maximum edge lengths.

e Uniform edge length: Minimize the variance of the edge lengths.

e Minimization of the bend number; This criterion contains three
concepts likewise

the criterion for the edge length:

e Total bend number: Minimize the total number of bends along
the edges.

e Maximum bend number: Minimize the maximum number of
bends on an edge.

e Uniform bend number: Minimize the variance of the number of
bends on an edge.

4. Minimization of the aspect ratio; Aspect ratio is defined as the ratio
of the length of the longest side to the length of the shortest side of
the smallest rectangle with horizontal and vertical side covering the
drawing. Drawings with high aspect ratio may not be conveniently
placed on a screen, even if it has small area.

Additionally to the aesthetics criteria mentioned, there is another impor-
tant criterion, the so called user mental map. In an interactive visualisa-
tion system, changes to a drawing are made constantly, sometimes by the
user and sometimes by the application. These changes frequently spoil
the layout, since node overlaps might happen. A layout algorithm that
rearranges the layout preserves the user mental map criterion if it destroys
the mental map of the user as less as possible, by minimizing changes to
the layout [9]. Most of the existing layout algorithms are designed for lay-
out creation, and so is the Topology-shape metrics(TSM) approach. Such
layout algorithms may completely rearrange the layout and thus destroy
the mental map of the diagram.

Is crucial that the program visualization of remains understandable
for the programmer during all the visualization faces. A measure of this
understandability, is that the graphical presentation remains always close
to the mental model the programmer has of the program. In achieving
this goal, several presentations of the same program must be possible.

In the graph drawing literature the basic approach for drawing a graph
works with three phases: the planarization, the orthogonalization, and
the compaction. The planarization tries to minimize the number of edge
crossing, the orthogonalization tries to draw the graph based on a grid and
the third phase aims to shorten the length of the edges without loosing the
properties of the graph. In an interactive visualization system, changes
to a drawing are made constantly, sometimes by the user and sometimes
by the application.

In our case graph drawing is subject to a set of constrains: some soft
and some hard. One of the constrains is to preserve, whenever possi-
ble, the mental map the user has of the program. In the literature there
are several work on the problem of drawing directed hypergraphs with
port constraints[2]. Their goal is to draw the graphs, preserving the flow,
having optimizing the number of cross edges. No matter their goal is dif-
ferent from ours, we will use their notion of hypergraph'? and constrains.

12NiMo programs are a sub-family of their graphs

12

In Sect. 6.2, we present the treatment to the edge corssing problem,
whilst in Sect. 6.1 the describe the constrains in drawings due to the port
constraints. Next we give some definitions of concepts to be used.

6

A topological numbering of G is numbering of the vertices of G such
that the numbering fulfills the condition (u,v) € E(G) = number(u) <
number(v). A backward is an edge that goes from a lower numbered
hyperedge to a bigger numbered hyperedge and forms a cycle in the graph.

A backward parameter, is a parameter connected with a backward
simple edge.

External hyperedge Are those hyperedges that are able to produce
results to the external world and the Expression interface

Productive hyperedge An hypergraph is a Productive Hypergraph if
there is a path from it to an external hyperedge

6.1 Port Constraints

In this part we will used the NiMo program syntax given in Section 3.1.

The ports of a hyperedge e are the points in the drawing connected to
the hyperedge by a small arrow (some autors call them dendrites). This
points are visible whenever open. When a port is closed, the diamond
hypergraph is drawn attached to the (end point). In NiMo these ports
have a specific semantic interpretation, such as being inputs or outputs for
data tokens in the program. As mentioned in [2] the strictest variant of
port constraints is the one where the exact position of each port, relative
to the respective node, is prescribed. This implies that each port has an
associated side of the node where it is drawn, which is the case in NiMo
programs, where hyperedges have a corresponding icon and the icon is
present in the toolbox. Icons in the toolbox are used as reference, having
ports on the north (top), south (bottom), west (left) and east (right). Due
to the icon representation, nodes in the program can not be moved and
are always in the icons border. This produces a rigidity for controlling
edge crossing.

6.2 Edge crossing

Consider a topological numbering for the NiMo program, constrained to
the lower values are assigned to external hyperedges. Ignoring back hy-
peredges, every NiMo program can be drawn from left to right guided by
a topological ordering. This ordering may be need to be recalculated after
each editing operation and execution operation because new nodes show
up and maybe some disappears. Keeping the mental model stands for
minimizing the variation in the drawing guided by two successive topo-
logical numberings of the program.

13

Back edges must be drawn, once the other edges are already displayed,
in such way that the cycle keeps inside all the elements attached to hy-
peredges present in the cycle. This strategy, in the general case minimizes
edge crossing.

7 Conclusions

In this paper we presented a syntactical aspect of the NiMo graphical
language. First a formal definition is given for the graph that are NiMo
programs. Several hypergraphs models serve for describing the syntax
of NiMo programs. Different models emerge under the perspective of
implementing the language. In this paper we present a single one.

Part II of this paper will define Decorated Hypergraph for encoding
NiMo programs with types. We will present the way decorations in the
graph evolve due to edition operations.

In the previous section we sketched some remarks signaling the dif-
ference between the problem of drawing a graph having some constrains
like port constrains and drawing a sequence of graphs. In the literature
the problem of drawing a graph is limited to the drawing of a single and
final graph. In drawing NiMo programs the problem is incremental and
in general is aided by the programmer during edition face.

The sequence of graph drawings correspond to the program evolution
in edition and/or execution. This graph drawing must preserve the mental
model the programmer has of the program being edited/executed and
also allow the programmer to understand the program evolution. The
degree attained of this objective is crucial to usability of the language as
a debugging workbench.

References

[1] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.
Tollis. Graph Drawing: Algorithms for the Visualization of Graphs.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 1998.

[2] Markus Chimani, Carsten Gutwenger, Petra Mutzel, Miro Spone-
mann, and Hoi-Ming Wong. Crossing minimization and layouts of
directed hypergraphs with port constraints. In Proceedings of the 18th
International Conference on Graph Drawing, GD’10, pages 141-152,
Berlin, Heidelberg, 2011. Springer-Verlag.

[3] Troels Christoffer Damgaard, Arne J. Glenstrup, Lars Birkedal, and
Robin Milner. An inductive characterization of matching in binding
bigraphs. Formal Asp. Comput., 25(2):257-288, 2013.

[4] Andrei Dorman and Tobias Heindel. Structured operational seman-
tics for graph rewriting. In Alexandra Silva, Simon Bliudze, Roberto
Bruni, and Marco Carbone, editors, ICE, volume 59 of EPTCS, pages
37-51, 2011.

[5] Masahito Hasegawa. Models of sharing graphs: A categorical seman-
tics of let and letrec. Technical report, 1997.

14

[6] Barbara Konig. A general framework for types in graph rewriting.
Acta Inf., 42(4):349-388, 2005.

[7] Benjamin C. Pierce. Types and programming languages. MIT Press,
Cambridge, MA, USA, 2002.

[8] Alberto Torres and Julidn Ardoz. Directed hypergraph models of
knowledge bases in expert systems. Acta Cientfica Venezolana, pages
387-394, 1988.

[9] D. J. Walmsley. Mental Maps, Locus of Control, and Activity: A
Study of Business Tourists in Coffs Harbour.

15

